TI00066D/06/EN/13.14

71255187

Technical Information **Dosimag**

Electromagnetic flowmeter

Flowmeter with maximum repeatability and ultra-compact sensor with hygienic design

Application

- The measuring principle is virtually independent of pressure, density, temperature and viscosity
- For demanding dosing and filling applications
- Device properties
- Wetted materials CIP, SIP cleanable
- Nominal diameter: DN 4 to 15 ($\frac{1}{8}$ to $\frac{1}{2}$ ")
- Measuring device conform to FDA
- Pulse/frequency/switch output, Modbus RS485
- ATEX, cCSAus
- Excellent and easy cleanable transmitter

Your benefits

- High process safety high measuring accuracy and repeatability in shortest filling time
- Energy-saving flow measurement no pressure loss due to cross-section constriction
- Maintenance-free no moving parts
- Versatile and time-saving wiring plug connector
- Industry-optimized ultra-compact design
- For hygiene requirements stainless steel housing

Table of contents

Document information	
Function and system design Measuring principle Measuring system	. 4
Input	.5 .5 6
Output Output signal Signal on alarm Low flow cut off Galvanic isolation Protocol-specific data	6 • 8 9 9
Power supply Pin and socket assignment Supply voltage Power consumption Electrical connection Potential equalization Cable specification	10 11 12 12 15 15
Performance characteristics	15 15 15 16
Installation	16 17 18 18
Environment	19 20 20 20 20 20 20 20
Process	20 20 21 21 21 21 21 21 21

Vibrations	21
Mechanical construction	22 28 28 28 28 28
Operability	28 28 29
Certificates and approvals CE mark C-Tick symbol Ex approval Sanitary compatibility Pressure Equipment Directive Other standards and guidelines	29 29 29 29 29 29 30
Ordering information	30
Accessories	30 30 30 31
Supplementary documentation	31 31 32
Registered trademarks	32

Document information

Symbols used

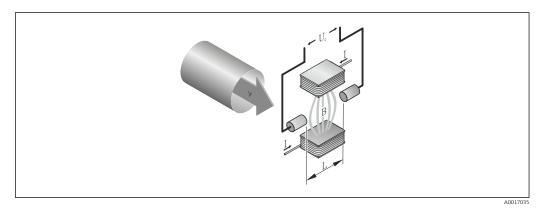
Electrical symbols

Symbol	Meaning
	Direct current A terminal to which DC voltage is applied or through which direct current flows.
\sim	Alternating current A terminal to which alternating voltage is applied or through which alternating current flows.
\sim	 Direct current and alternating current A terminal to which alternating voltage or DC voltage is applied. A terminal through which alternating current or direct current flows.
<u> </u>	Ground connection A grounded terminal which, as far as the operator is concerned, is grounded via a grounding system.
	Protective ground connection A terminal which must be connected to ground prior to establishing any other connections.
\$	Equipotential connection A connection that has to be connected to the plant grounding system: This may be a potential equalization line or a star grounding system depending on national or company codes of practice.

Symbols for certain types of information

Symbol	Meaning
	Permitted Indicates procedures, processes or actions that are permitted.
	Preferred Indicates procedures, processes or actions that are preferred.
×	Forbidden Indicates procedures, processes or actions that are forbidden.
i	Tip Indicates additional information.
Ĩ	Reference to documentation Refers to the corresponding device documentation.
	Reference to page Refers to the corresponding page number.
	Reference to graphic Refers to the corresponding graphic number and page number.
	Visual inspection

Symbols in graphics


Symbol	Meaning
1, 2, 3,	Item numbers
1. , 2. , 3	Series of steps
A, B, C,	Views
A-A, B-B, C-C,	Sections
≈ →	Flow direction
A0013441	

Symbol	Meaning
EX A0011187	Hazardous area Indicates a hazardous area.
A0011188	Safe area (non-hazardous area) Indicates the non-hazardous area.

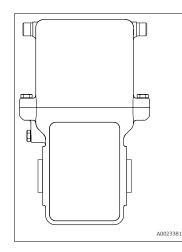
Function and system design

Measuring principle

In accordance with *Faraday's law of magnetic induction* a voltage is induced in a conductor which is moved through a magnetic field.

- Ue Induced voltage
- B Magnetic induction (magnetic field)
- L Electrode spacing
- I Current
- v Flow velocity

In the electromagnetic measuring principle, the flowing medium corresponds to the moving conductor. The voltage induced (U_e) is proportional to the flow velocity (v) and is supplied to the amplifier by means of two measuring electrodes. The flow volume (Q) is calculated via the pipe cross-section (A). The magnetic field is generated by a switched direct current of alternating polarity.


Formulae for calculation

- Induced voltage $U_e = B \cdot L \cdot v$
- Volume flow $Q = A \cdot v$

Measuring system

Transmitter and sensor

The transmitter and sensor form a single unit.

- Nominal diameter range: DN 4 (⁵/₃₂"), 8 (⁵/₁₆"), 15 (¹/₂")
- Materials:
 - Transmitter and sensor housing: stainless steel 1.4308 (304)
 - Measuring tube: stainless steel 1.4301 (304)
 - Liner: PFA
- O-rings: EPDM, silicone, Viton
- Electrodes: 1.4435 (316L); option Alloy C22, 2.4602 (UNS N06022)

Input

Measured variable	Direct measured variables	
	Volume flow (proportional to induced voltage)	
Measuring range	Typically v = 0.01 to 10 m/s (0.03 to 33 ft/s) with the specified accuracy Electrical conductivity: 5 to 10000 μ S/cm	
	Flow characteristic values in SI units	

Nominal diameter	Recommended flow	Factory settings	
	Maximum full scale value	Pulse value	Low flow cut off (v ~ 0.04 m/s)
[mm]	[1/s]	[ml]	[ml/s]
4	0.14	0.005	0.5
8	0.5	0.02	2
15K ¹⁾	1.2	0.1	7
15	1.66	0.1	7

1) Conical version (corresponds to DN 12)

Flow characteristic values in US units

Nominal diameter	Recommended flow	Factory settings	
	Maximum full scale value	Pulse value	Low flow cut off (v ~ 0.13 ft/s)
[in]	[gal/s]	[oz fl]	[oz fl/s]
⁵ / ₃₂	0.035	0.0002	0.02
⁵ / ₁₆	0.13	0.001	0.08
1⁄2K ¹⁾	0.32	0.004	0.25
1/2	0.44	0.004	0.25

1) Conical version (corresponds to DN 12)

To calculate the measuring range, use the *Applicator* sizing tool

Recommended measuring range

"Flow limit" section ($\rightarrow \square 21$)

Over 1000 : 1 Operable flow range Status input • Off Assignable functions Start batch Start & stop batch Reset totalizer 1 Reset totalizer 2 Reset totalizer 3 Reset all totalizers Flow override Response time Range of adjustment: 10 to 200 ms Active level High Low

Output

Value status input

Output signal

Pulse/frequency/switch output (option 3)			
Version	Passive, open emitter		
Maximum input values	 DC 30 V 25 mA 		
Voltage drop	For 25 mA: ≤ DC 2 V		
Operating mode			
Assignable functions	 Off Pulse Automatic pulse Frequency Switch 		
Channel 2	 Off Redundant 0° Redundant 90° Redundant 180° 		
Pulse output			
Pulse width	Adjustable: 0.05 to 3.75 ms		
Maximum pulse rate	10 000 Impulse/s		
Value per pulse	Adjustable		
Assignable measured variables	OffVolume flow		
Frequency output	Frequency output		
Output frequency	Adjustable: 0 to 10 000 Hz		
Damping	Adjustable: 0 to 999.9 s		
Pulse/pause ratio	1:1		
Assignable measured variables	Volume flow		
Switch output			

Displays the current input signal level of the status input.

Switching behavior	Binary, conductive or non-conductive
Switching delay	Adjustable: 0 to 100 s
Number of switching cycles	Unlimited
Assignable functions	 Off On Diagnostic behavior Alarm Alarm and warning Warning Limit value: Off Volume flow Flow velocity Status Low flow cut off

Switch output (option 4 and 5)

Switch output	
Assignable functions	OpenClosedBatching
Switch status	OpenClosed

Batch output (option 4 and 5)

Batch control	Functions: • Start • Stop
Quantity last batch	Total measured quantity including the drip quantity of the last batch. Unit: selected unit
Time last batch	Duration of the last batch up to the end of drip quantity measurement. Unit: s
Close time last batch	Closing duration for the last batch from the switch-off time up to the end of drip quantity measurement. Unit: ms
Quantity last drip	Drip quantity of the last batch Unit: selected unit
Current drip correction quantity	Drip correction quantity for the next batch Unit: selected unit
Overall batching quantity	Total of all measured batching processes Unit: selected unit
Batch counter	Number of batching processes Unit: number
Reset overall batching quantity	Functions: • Resetting • Cancel
Batch profile	Functions: Profile 1 to 6
Assignable measured variables	Functions Off Volume flow
Batch quantity	Set the batch quantity. Input range: 0 to X Unit: selected unit

Fixed compensation quantity	Set the fixed compensation quantity. Input range: X to X Unit: selected unit
Batch unit	Functions: • cm ³ • dm ³ • m ³ • ml • l • hl • ml • af • ft ³ • fl oz (us) • gal (us) • Mgal • bbl (us) • bbl (imp) • gal (imp) • gal (imp) • g • kg • lb • User mass • User vol. • kgal (us)
Drip correction mode	Functions: • Off • Low flow cutoff or fixed time • Fixed time
Measuring time drip quantity	Input range: 0.01 to 100 s
Filter depth drip median	Functions: • Off • Median 3 • Median 5 • Median 7
Average drip correction quantity	Input range: 1 to 100
Batch levels	Functions: • One-level • Two-level • One-level and blow out
Start level 2	Input range: 0 to 100 %
Stop level 2	Input range: 100 to 0 %
Blow out delay	Input range: 1 to 100 s
Blow out duration	Input range: 1 to 100 s
Maximum batch time	Input range: 1 to 1 000 000 s
Maximum flow rate	Set the maximum flow. Input range: 0 to X Unit: selected unit
Disable time pressure shock suppression	Input range: 0 to 100 s

Modbus RS485 (option 4 and 5)

Physical interface	In accordance with EIA/TIA-485-A standard
--------------------	---

Signal on alarm

Depending on the interface, failure information is displayed as follows:

Pulse/frequency/switch output (option 3)

Pulse output	
Failure mode	Choose from: • Actual value • No pulses
Frequency output	
Failure mode	Choose from: • Actual value • 0 Hz • Defined value0 to 10 000 Hz
Switch output	
Failure mode	Choose from: • Current status • Open • Closed

Modbus RS485 (option 4 and 5)

Failure mode	Choose from: • NaN value instead of current value • Last valid value
--------------	--

Low flow cut off

Galvanic isolation

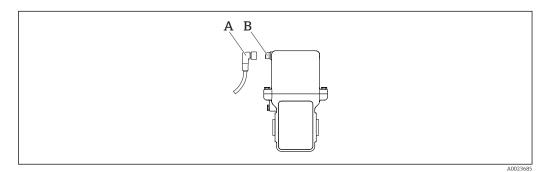
The switch points for low flow cut off are user-selectable.

Option 3 (PFS output): all outputs are galvanically isolated from one another. Option 4: batch output at supply potential.

- Option 5: batch outputs and auxiliary input at supply potential.

Protocol-specific data

Modbus RS485 (option 4 and 5)

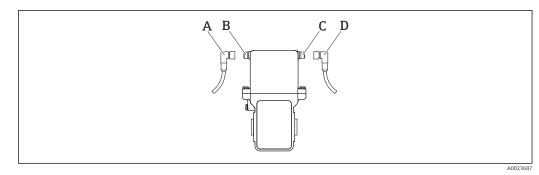

Protocol	Modbus Applications Protocol Specification V1.1
Device type	Slave
Slave address range	1 to 247
Broadcast address range	0
Function codes	 03: Read holding register 04: Read input register 06: Write single registers 08: Diagnostics 16: Write multiple registers 23: Read/write multiple registers 43: Read device identification
Broadcast messages	Supported by the following function codes: 06: Write single registers 16: Write multiple registers 23: Read/write multiple registers
Supported baud rate	 1 200 BAUD 2 400 BAUD 4 800 BAUD 9 600 BAUD 19 200 BAUD 38 400 BAUD 57 600 BAUD 115 200 BAUD

Data transfer mode	ASCIIRTU
Data access	Each device parameter can be accessed via Modbus RS485.

Power supply

Pin and socket assignment

Pulse/frequency/status output (option 3)

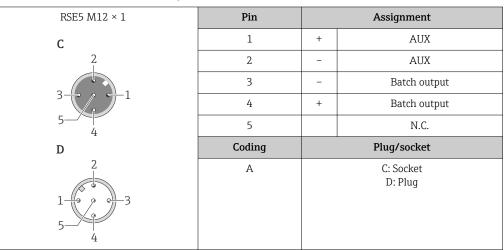


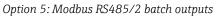
■ 1 Connection (option 3)

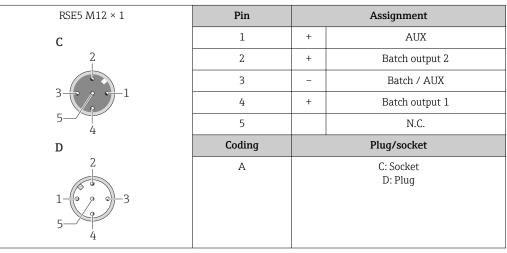
Option 3: Pulse/frequency/status output

RSE8 M12 × 1	Pin	Ass	ignment
KSEO MIZ ^ I	1	L+	Supply voltage: 24 V_{DC} nominal voltage (20 to 30 $V_{DC}),4.5$ W
A	2	+	RX service interface (may not be connected during normal operation)
	3	+	TX service interface (may not be connected during normal operation)
8-4	4	L-	Supply voltage: 24 V_{DC} nominal voltage (20 to 30 $V_{DC}),4.5$ W
7 5	5	+	Pulse/frequency/status output (max. 30 V)
B	6	-	Pulse/frequency/status output 1 (max. 25 mA)
3 2	7	-	Pulse/frequency/status output 2 (max. 25 mA)
	8	-	GND service interface (may not be connected during normal operation)
	Coding	Plu	g/socket
6	А	A: S B: P	Socket Iug

Modbus RS485/batching option (option 4 and 5)




☑ 2 Connections for Modbus RS485/batching option (option 4 and 5)


	Pin	Ass	Assignment	
RSE8 M12 × 1	1	L+	Supply voltage: 24 V_{DC} nominal voltage (20 to 30 $V_{DC}),4.5$ W (+500 mA per batch output)	
A	2	+	RX service interface (may not be connected during normal operation)	
	3	+	TX service interface (may not be connected during normal operation)	
	4	L-	Supply voltage: 24 V_{DC} nominal voltage (20 to 30 $V_{DC}),4.5$ W (+500 mA per batch output)	
6	5		N.C.	
B	6	А	Modbus RS485	
	7	В	Modbus RS485	
4 8	8	-	GND service interface (may not be connected during normal operation)	
5 6	Coding	Plu	g/socket	
	А		Socket Plug	

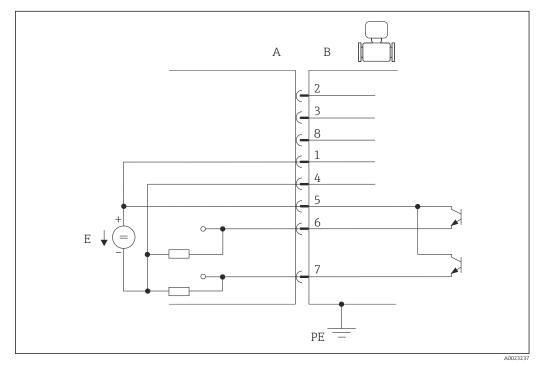
Option 4 and 5: Modbus RS485/batching option

Option 4: Modbus RS485/1 batch output

Supply voltage

Transmitter and sensor

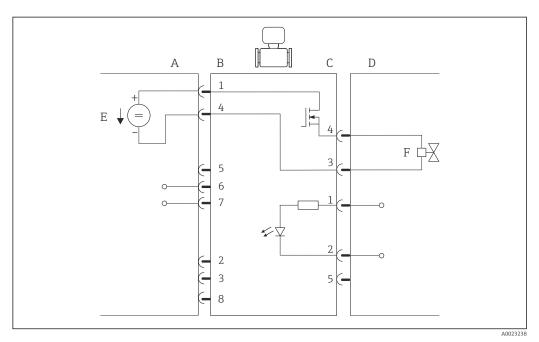
24 V_{DC} Nominal voltage (20 to 30 V_{DC})


The power supply may not exceed a maximum short-circuit current of 50 A.
 The measuring device may only be connected to SELV, PELV or CLASS 2 circuits.

Power consumption	Transmitter and sensor
	DC: max. 4.5 W (incl. sensor) + 500 mA per batch output
	Switch-on current: max. 1 A (< 6 ms)

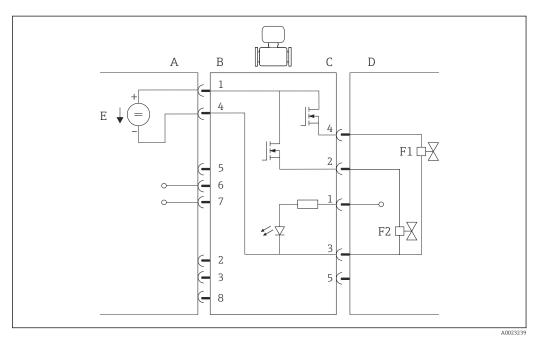
Electrical connection

M12 socket \times 1 for supply voltage and signal outputs.


Connection option 3

☑ 3 8-pin device connection

- A Socket, input
- B Connector, input
- 1 Supply voltage +
- 2 Service interface
- 3 Service interface
- 4 Supply voltage –
- 5 (+) pulse/frequency/status output
- 6 (-) pulse/frequency/status output
- 7 (-) pulse/frequency/status output
- 8 Service interface
- E PELV or SELV power supply


Connection option 4

- € 4 Batch option with 1 valve
- Socket, input Α
- В Connector, input

- B.1 Supply voltage + B.2 Service interface B.3 Service interface
- B.4 Supply voltage -
- B.5 N.C.
- B.6 Modbus A
- B.7 Modbus B
- B.8 Service interface
- C Socket, batch output
- C.1 AUX +
- C.2 AUX -
- C.3 Batch -
- C.4 Batch output +
- C.5 N.C.
- D Connector, batch output
- PELV or SELV power supply
- E F Valve

Connection option 5

■ 5 Batch option with 2 valves

- A Socket, input
- B Connector, input
- B.1 Supply voltage +
- B.2 Service interface
- B.3 Service interface
- B.4 Supply voltage –
- B.5 N.C.
- B.6 Modbus A
- B.7 Modbus B
- B.8 Service interface
- C Socket, batch output
- C.1 AUX +
- C.2 Batch output 2 +
- C.3 AUX / batch 1 and 2 -
- C.4 Batch output 1 +
- C.5 N.C.
- D Connector, batch output
- E PELV or SELV power supply
- F1 Valve 1
- F2 Valve 2

Ground connection

The ground connection is via a cable lug that must be mechanically connected to the ground connection of the measuring device.

	6 Ground connection
Potential equalization	No potential matching is needed for grounded steel lines. In the case of devices for hazardous areas, pay attention to the information in the Ex-specific supplementary documentation.
Cable specification	Use connecting cables with a cross-section of at least 0.25 mm ² (e.g. AWG23). The temperature specification of the cable must be at least 20 °C higher than the ambient temperature in the application.

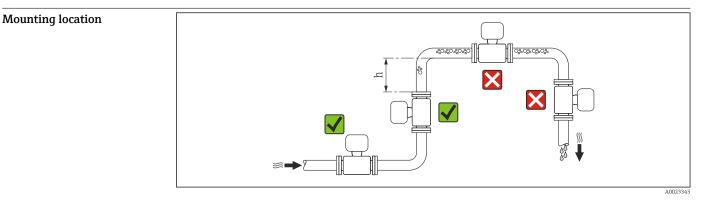
Performance characteristics

Reference operating conditions	 In accordance with DIN EN 29104 Medium temperature: +28 ± 2 °C (+82 ± 4 °F) Ambient temperature: +22 ± 2 °C (+72 ± 4 °F) Warm-up period:30 min
	 Installation Inlet run > 10x DN Outlet run > 5x DN Sensor and transmitter grounded. The sensor is centered in the pipe.
	To calculate the measuring range, use the <i>Applicator</i> sizing tool
Maximum measured error	Error limits under reference operating conditions
	o.r. = of reading
	<pre>Volume flow • ±0.25 % o.r. ± 1 to 4 m/s (3.3 to 13 ft/s) or • ±0.5 % o.r. ± 1 mm/s (0.04 in/s) or • ±5 % o.r. Fluctuations in the supply voltage do not have any effect within the specified range.</pre>
	 ±0.25 % o.r. ± 1 to 4 m/s (3.3 to 13 ft/s) or ±0.5 % o.r. ± 1 mm/s (0.04 in/s) or ±5 % o.r.

Repeatability

o.r. = of reading

DN 15 (200 ml/s), DN 8 (50 ml/s), DN 4 (10 ml/s); 400 µS/cm

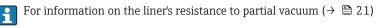

Batch time "t _a " [s]	Relative standard deviation in relation to the batched volume [%]
1.5 s < t _a < 3 s	0.4
3 s < t _a < 5 s	0.2
5 s < t _a	0.1

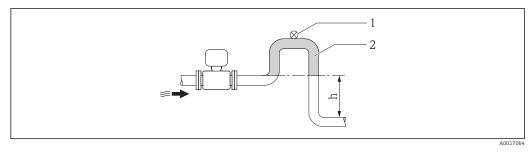
DN 15K (200 ml/s); 400 µS/cm

Batch time "t _a " [s]	Relative standard deviation in relation to the batched volume [%]
1.5 s < t _a < 3 s	0.25
3 s < t _a < 5 s	0.12
5 s < t _a	0.08

Installation

No special measures such as supports are necessary. External forces are absorbed by the construction of the device.

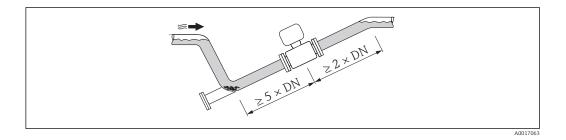

Preferably install the sensor in an ascending pipe, and ensure a sufficient distance to the next pipe elbow: $h \ge 2 \times DN$


To prevent measuring errors arising from accumulation of gas bubbles in the measuring tube, avoid the following mounting locations in the pipe:

- Highest point of a pipeline.
- Directly upstream of a free pipe outlet in a down pipe.

Installation in down pipes

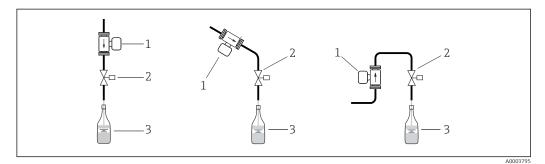
Install a siphon with a vent valve downstream of the sensor in down pipes whose length $h \ge 5 \text{ m}$ (16.4 ft). This precaution is to avoid low pressure and the consequent risk of damage to the measuring tube. This measure also prevents the system losing prime.



- Installation in a down pipe
- 1 Vent valve
- 2 Pipe siphon
- *h* Length of down pipe

Installation in partially filled pipes

A partially filled pipe with a gradient necessitates a drain-type configuration. The empty pipe detection (EPD) function offers additional protection by detecting empty or partially filled pipes.

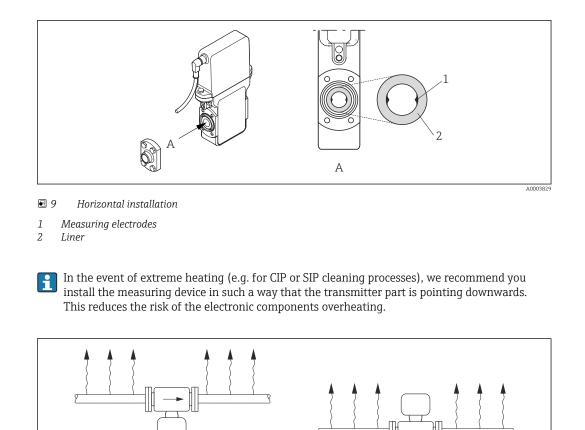

Orientation

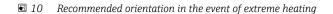
The direction of the arrow on the sensor nameplate helps you to install the sensor according to the flow direction (direction of medium flow through the piping).

An optimum orientation position helps avoid gas and air accumulations and deposits in the measuring tube.

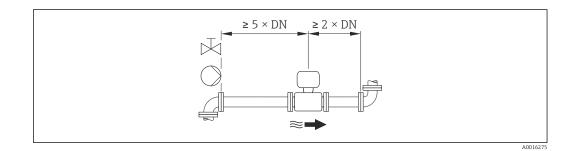
Batching systems

Optimum measurement takes place when the pipe system is completely filled with the medium.




- 🗷 8 Batching system
- 1 Measuring device
- 2 Batch valve
- 3 Vessel

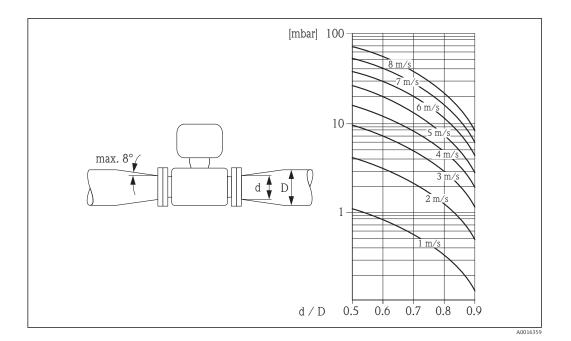
Horizontal


The measuring electrode plane must be horizontal. This prevents brief insulation of the two measuring electrodes by entrained air bubbles.

Inlet and outlet runs

If possible, install the sensor upstream from fittings such as valves, T-pieces or elbows. Observe the following inlet and outlet runs to comply with accuracy specifications:

Adapters


Suitable adapters to DIN EN 545 (double-flange reducers) can be used to install the sensor in largerdiameter pipes. The resultant increase in the rate of flow improves measuring accuracy with very slow-moving fluids.

The nomogram shown here can be used to calculate the pressure loss caused by reducers and expanders:

- Calculate the ratio of the diameters d/D.
- From the nomogram read off the pressure loss as a function of flow velocity (downstream from the reduction) and the d/D ratio.

The nomogram only applies to liquids with a viscosity similar to that of water.

Environment

Ambient temperature range

Transmitter	-40 to +60 °C (-40 to +140 °F)
Sensor	-40 to +60 °C (-40 to +140 °F)
Liner	Do not exceed or fall below the permitted temperature range of the liner ($\rightarrow \ \textcircled{B} 20$).

Temperature tables

The following interdependencies between the permitted ambient and fluid temperatures apply when operating the device in hazardous areas:

Ex nA

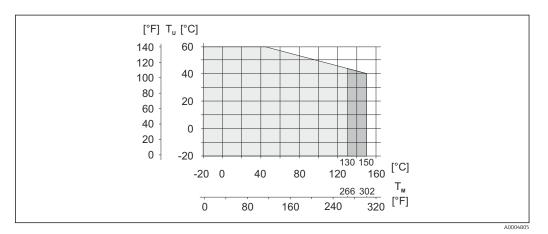
SI units

	°C					
	T5 [100 ℃]	T4 [135 ℃]	T3 [200 °C]	T2 [300 °C]	T1 [450 ℃]	
Ambient temperature T _a	60	50	45	45	45	
Maximum medium temperature T _m	70	105	130	130	130	

US units

	°F					
	T5 [212 °F]	T4 [275 °F]	T3 [392 °F]	T2 [572 °F]	T1 [842 °F]	
Ambient temperature T _a	140	122	113	113	113	
Maximum medium temperature T _m	158	221	266	266	266	

The minimum **medium temperature** is -20 °C (-4 °F).


The minimum **ambient temperature** is -40 °C (-40 °F).

Storage temperature	The storage temperature corresponds to the operating temperature range of the measuring transmitter and the appropriate measuring sensors.
	 Protect the measuring device against direct sunlight during storage in order to avoid unacceptably high surface temperatures. Select a storage location where moisture cannot collect in the measuring device as fungus or bacteria infestation can damage the liner. If protection caps or protective covers are mounted these should never be removed before installing the measuring device.
Degree of protection	Transmitter and sensor As standard: IP67, type 4X enclosure
Shock resistance	Acceleration up to 2 g following IEC 60068-2-6
Vibration resistance	Acceleration up to 2 g following IEC 60068-2-6
Interior cleaning	 Cleaning in place (CIP) Sterilization in place (SIP)
Electromagnetic compatibility (EMC)	According to IEC/EN 61326 For details refer to the Declaration of Conformity.

Process

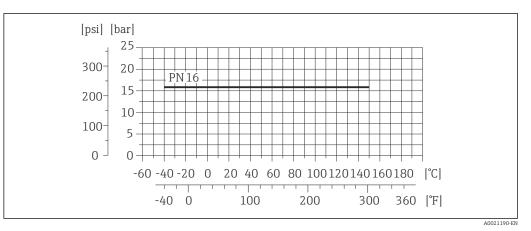
Medium temperature range	 Sensor:-20 to +130 °C (-4 to +266 °F) Cleaning: +150 °C (+302 °F) / 60 min for CIP and SIP processes
	Seals:

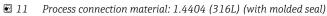
- EPDM: -20 to +130 °C (-4 to +266 °F) (max. +150 °C (302 °F) for cleaning
- Silicon:-20 to +130 °C (-4 to +266 °F)
- Viton:0 to +150 °C (+32 to +302 °F)

- T_U Ambient temperature
- T_M Medium temperature

Light-gray area: standard fluid temperature range

Dark-gray area: fluid temperature range for cleaning

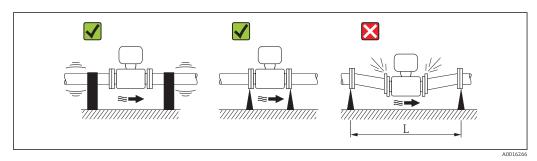

Conductivity


- \geq 5 µS/cm for liquids in general
- 10 µS/cm for demineralized water

Pressure-temperature ratings

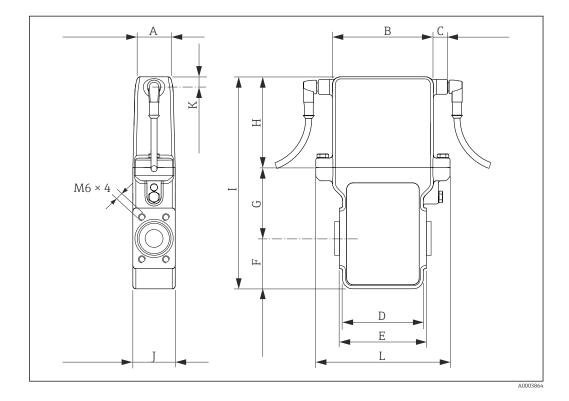
Permitted process pressure: 16 bar (232 psi)

Process connection: weld-in nipple according to DIN 11850, ODT/SMS; Clamp L14 AM7



Pressure tightness	Liner: PFA							
	Nominal	diameter	Limit values for absolute pressure in	[mbar] ([psi]) for fluid temperatures:				
	[mm]	[in]	+25 °C (+77 °F)	+150 °C (+302 °F)				
	4 to 15	⁵⁄₃₂ to ½	< 1 mbar (0.402 inH ₂ O) (0)	$< 1 \text{ mbar } (0.402 \text{ inH}_2 \text{O}) (0)$				
Flow limit	optimum ve (v) to the pł ■ v < 2 m/s	elocity of flow nysical prope (6.56 ft/s):	e and the flow rate determine the nomi w is between 2 to 3 m/s (6.56 to 9.84 f erties of the fluid: for abrasive fluids (e.g. cleaning agent) for fluids producing buildup (e.g. liquid	t/s). Also match the velocity of flow				
	A nece diame	2	se in the flow velocity can be achieved	by reducing the sensor nominal				
	For an	For an overview of the measuring range full scale values, see the "Measuring range" section						
Pressure loss	same non	ninal diamet	DN 15 (½") no pressure loss occurs if the ter. nfigurations incorporating adapters acc					
System pressure								
				A0015				
	Never insta damage to t		on the pump suction side in order to av	void the risk of low pressure, and thu				
	1 Furthe	ermore, insta	all pulse dampers if reciprocating, diaph	rragm or peristaltic pumps are used.				
	💶 🖕 Info	rmation on t	on the liner's resistance to partial vacuates the shock resistance of the measuring s the vibration resistance of the measurir	ystem (→ 🖺 20)				
Vibrations	In the event	of very stro	ng vibrations, the pipe and sensor mus	t be supported and fixed.				

Information on the shock resistance of the measuring system ($\rightarrow \square 20$) Information on the vibration resistance of the measuring system ($\rightarrow \square 20$)

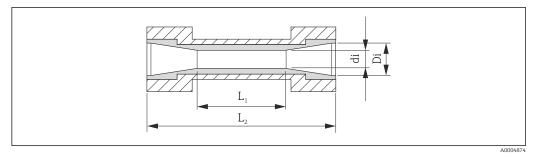

• 12 Measures to avoid device vibrations (L > 10 m (33 ft))

Mechanical construction

Design, dimensions

Compact version

Order code for "Housing", option B "Compact IP67 NEMA4X, stainless steel"



Dimensions in SI units

L	A	В	С	D	Е	F	G	Н	I	J	К
[mm]											
133	33.4	100	12	80	86	50	70	90	210	42	10

Dimensions in US units

	L	А	В	С	D	E	F	G	Н	Ι	J	К
	[in]											
ĺ	5.24	1.31	3.94	0.47	3.15	3.39	1.97	2.76	3.54	8.27	1.65	0.39

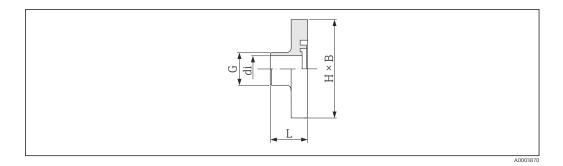
13 Measuring tube dimensions

Dimensions in SI units

DN	L ₁	L ₂ ¹⁾	di	Di
[mm]	[mm]	[mm]	[mm]	[mm]
4	44	90	4.5	9
8	-	90	9	9
15K ²⁾	20	90	12	16
15	-	90	16	16

Total length depends on the process connections Conical version (corresponds to DN 12)

1) 2)

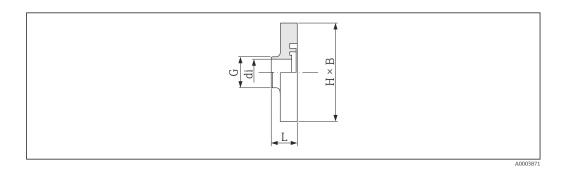

Dimensions in US units

DN	L ₁	L ₂ ¹⁾	di	Di
[in]	[in]	[in]	[in]	[in]
5/32	1.73	3.54	0.17	0.35
5/16	-	3.54	0.35	0.35
1/2K ²⁾	0.79	3.54	0.47	0.63
1/2	-	3.54	0.63	0.63

Total length depends on the process connections Conical version (corresponds to DN 12) 1) 2)

Process connections in SI units

Weld-in nipples

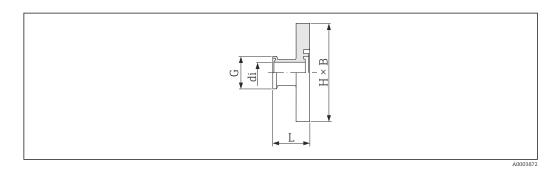

DN sensor [mm]	Suits pipe DIN 11850	di [mm]	G [mm]	L [mm]	H x B [mm]
4 8	14 × 2	9	14	23.3	60 × 42
15K ¹⁾ 15	20 × 2	16	20	23.3	60 × 42

1) Conical version (corresponds to DN 12)

• Length = $(2 \times L) + 86 \text{ mm}$

• It is essential to take the internal diameters of the measuring tube and process connection (di) into account when cleaning with pigs!

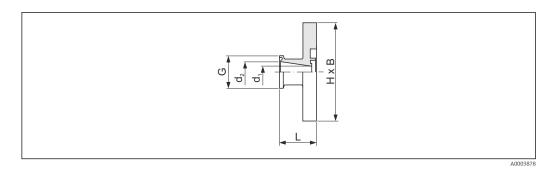
Weld-in nipple ODT/SMS



DN sensor [mm]	Suits pipe ODT/SMS	di [mm]	G [mm]	L [mm]	H × B [mm]
4 8	12.7 × 1.65	9	12.7	16.1	60 × 42
15K ¹⁾ 15	19.1 × 1.65	16	19.1	16.1	60 × 42

1) Conical version (corresponds to DN 12)

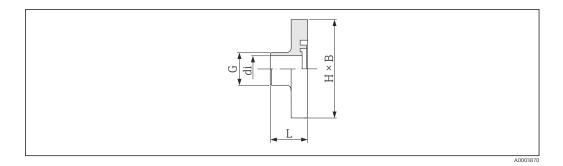
- Length = (2 × L) + 86 mm
- It is essential to take the internal diameters of the measuring tube and process connection (di) into account when cleaning with pigs!


Tri-Clamp

DN sensor [mm]	Suits pipe ODT/SMS	di [mm]	G [mm]	L [mm]	H × B [mm]
4 8	12.7 × 1.65	9.4	25.0	28.5	60 × 42
15K ¹⁾ 15	19.1 × 1.65	15.8	25.0	28.5	60 × 42

- 1) Conical version (corresponds to DN 12)
- Length = $(2 \times L) + 86 \text{ mm}$
- It is essential to take the internal diameters of the measuring tube and process connection (di) into account when cleaning with pigs!

Tri-Clamp (conical)

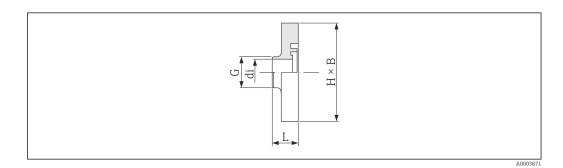

DN sensor	Suits pipe	d ₁	d ₂	G	L	H × B
[mm]	DIN 11850	[mm]	[mm]	[mm]	[mm]	[mm]
4 8	Pipe 19.1 × 1.65	9	15.8	25.0	28.5	60 × 42

■ Length = (2 × L) + 86 mm

• It is essential to take the internal diameters of the measuring tube and process connection (di) into account when cleaning with pigs!

Process connections in US units

Weld-in nipples

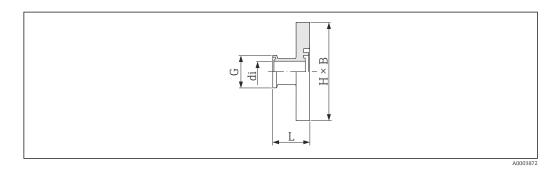

DN sensor [in]	Suits pipe DIN 11850	di [in]	G [in]	L [in]	H × B [in]
⁵ / ₃₂ ⁵ / ₁₆	14 × 2	0.35	0.55	0.92	2.36 × 1.65
¹ / ₂ K ¹⁾ ¹ / ₂	20 × 2	0.63	0.79	0.92	2.36 × 1.65

1) Conical version (corresponds to DN 12)

• Length = $(2 \times L) + 86 \text{ mm}$

• It is essential to take the internal diameters of the measuring tube and process connection (di) into account when cleaning with pigs!

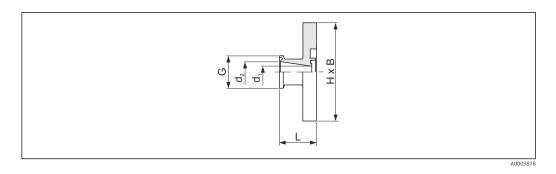
Weld-in nipple ODT/SMS


DN sensor [in]	Suits pipe ODT/SMS	di [in]	G [in]	L [in]	H × B [in]
⁵ / ₃₂ ⁵ / ₁₆	12.7 × 1.65	0.35	0.5	0.63	2.36 × 1.65
¹ √2K ¹⁾ ¹ √2	19.1 × 1.65	0.63	0.75	0.63	2.36 × 1.65

1) Conical version (corresponds to DN 12)

■ Length = (2 × L) + 86 mm

• It is essential to take the internal diameters of the measuring tube and process connection (di) into account when cleaning with pigs!


Tri-Clamp

DN sensor [in]	Suits pipe ODT	di [in]	G [in]	L [in]	H × B [in]
⁵ / ₃₂ ⁵ / ₁₆	ODT ½	0.37	0.98	1.12	2.36 × 1.65
¹ / ₂ K ¹⁾ ¹ / ₂	ODT ¾	0.62	0.98	1.12	2.36 × 1.65

- 1) Conical version (corresponds to DN 12)
- Length = $(2 \times L) + 86 \text{ mm}$
- It is essential to take the internal diameters of the measuring tube and process connection (di) into account when cleaning with pigs!

Tri-Clamp (conical)

DN sensor	Suits pipe	d ₁	d ₂	G	L	H × B
[in]	ODT	[in]	[in]	[in]	[in]	[in]
⁵ / ₃₂ ⁵ / ₁₆	ODT ¾	0.35	0.62	1.12	2.36 × 1.65	2.36 × 1.65

■ Length = (2 × L) + 86 mm

• It is essential to take the internal diameters of the measuring tube and process connection (di) into account when cleaning with pigs!

Weight

Compact version

Weight in SI units

DN [mm]	Weight [kg]
4	2.8
8	2.8
15	2.8

Weight in US units

DN [in]	Weight [lbs]
5/32	6.17
5/16	6.17
1/2	6.17

Materials

Transmitter housing

Stainless steel 1.4308 (304)

Transmitter and sensor housing

Acid-resistant and alkali-resistant external surface, stainless steel 1.4308 (304)

Measuring tube

Stainless steel 1.4301 (304)

Liner

PFA

Process connections

- Weld-in nipple: 1.4404 (316L)
- Weld-in nipple, aseptic: 1.4404 (316L)
- Tri-Clamp: 1.4404 (316L)

List of all available process connections ($\rightarrow \square 28$)

Seals

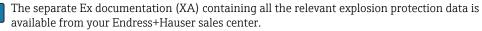
Molded seal (EPDM, silicone, Viton)

Fitted electrodes	 Standard: stainless steel 1.4435 (316L) Optional: Alloy C22, 2.4602 (UNS N06022)
Process connections	With aseptic molded seal: • Weld-in nipple (DIN 11850, ODT / SMS) • Tri-Clamp (L14 AM7)
	For information on the materials of the process connections (\rightarrow 🖺 28)

Operability

Local display

The measuring device does not have a display or display elements.


Remote operation	Operation takes place via Endress+Hauser's DeviceCare and FieldCare configuration and service programs. This can be used to configure functions and read off measured values.
	In the case of measuring devices with the batching option it is also possible to configure and read measured values via Modbus.
	Certificates and approvals

Endress+Hauser confirms successful testing of the device by affixing to it the CE mark.

C-Tick symbol The measuring system meets the EMC requirements of the "Australian Communications and Media Authority (ACMA)".

Ex approval

The measuring device is certified for use in hazardous areas and the relevant safety instructions are provided in the separate "Safety Instructions" (XA) document. Reference is made to this document on the nameplate.

ATEX

Currently, the following versions for use in hazardous areas are available:

Ex nA

Category	Type of protection
II3G	Ex nA IIC T5-T1 Gc

cCSAus

Currently, the following versions for use in hazardous areas are available:

NI

Category	Type of protection
Class I Division 2 Groups ABCD	NI (non-incendive version)

Sanitary compatibility	 3A approval and EHEDG-certified Seals → in conformity with FDA
Pressure Equipment Directive	 With the PED/G1/x (x = category) marking on the sensor nameplate, Endress+Hauser confirms compliance with the "Essential Safety Requirements" specified in Annex I of the Pressure Equipment Directive 97/23/EC. Devices bearing this marking (PED) are suitable for the following types of medium: Media in Group 1 and 2 with a vapor pressure greater than, or smaller and equal to0.5 bar (7.3 psi) Devices not bearing this marking (PED) are designed and manufactured according to good engineering practice. They meet the requirements of Art.3 Section 3 of the Pressure Equipment Directive 97/23/EC. The range of application is indicated in tables 6 to 9 in Annex II of the Pressure Equipment Directive.

Other standards and guidelines

EN 60529

Degrees of protection provided by enclosures (IP code)

- EN 61010-1 Safety requirements for electrical equipment for measurement, control and laboratory use
 IEC/EN 61326
- Emission in accordance with Class A requirements. Electromagnetic compatibility (EMC requirements).
- CSA-C22.2 No. 142-M1987 Process Control Equipment
- CAN/CSA-C22.2 No. 1010.1-92
 Safety Requirements for Electrical Equipment for Measuring, Control and Laboratory Use. Pollution degree 2, Installation Category I
- ANSI/ISA-S82.01
 Safety Standard for Electrical and Electronic Test, Measuring, Controlling and related Equipment -General Requirements. Pollution degree 2, Installation Category I

Ordering information

Detailed ordering information is available from the following sources:

- In the Product Configurator on the Endress+Hauser web site: www.endress.com → Choose your country → Products → Select measuring technology, software or components → Select product (picklists: measurement method, product family etc.) → Device support (right-hand column): Configure the selected product → The Product Configurator for the selected product is opened.
- From your Endress+Hauser Sales Center: www.addresses.endress.com

Product Configurator - the tool for individual product configuration

- Up-to-the-minute configuration data
- Depending on the device: Direct input of measuring point-specific information such as measuring range or operating language
- Automatic verification of exclusion criteria
- Automatic creation of the order code and its breakdown in PDF or Excel output format
- Ability to order directly in the Endress+Hauser Online Shop

Accessories

Various accessories, which can be ordered with the device or subsequently from Endress+Hauser, are available for the device. Detailed information on the order code in question is available from your local Endress+Hauser sales center or on the product page of the Endress+Hauser website: www.endress.com.

Accessories	Description
Seal set	For regular replacement of the seals on the process connections.
Housing seal	To seal the transmitter
Mounting kit	Consists of: • 2 process connections • Threaded fasteners • Seals
	Seal set Housing seal

Communication-specific accessories	Accessories	Description
	Adapter connection	Adapter connections for installing on other electrical connections
	RSE8 adapter	RSE8 connection jack, 8-pin adapter (RSE8), 24 V DC, pulse, status
	RSE5 adapter	RSE8 connection jack, 5-pin adapter (RSE5), 24 V DC, pulse, status
	RSE4 adapter	RSE8 connection jack, 4-pin adapter (RSE4), 24 V DC, pulse

	Service interface connecting cable from the device to the PC for using the "DeviceCare" operating software
RSE8 supply cable	RKWTN8-56/5 P92 cable

Service-specific accessories	Accessories	Description
	Applicator	 Software for selecting and sizing Endress+Hauser measuring devices: Calculation of all the necessary data for identifying the optimum flowmeter: e.g. nominal diameter, pressure loss, accuracy or process connections. Graphic illustration of the calculation results
		Administration, documentation and access to all project-related data and parameters over the entire life cycle of a project.
		Applicator is available:Via the Internet: https://wapps.endress.com/applicatorOn CD-ROM for local PC installation.
	W@M	Life cycle management for your plant W@M supports you with a wide range of software applications over the entire process: from planning and procurement, to the installation, commissioning and operation of the measuring devices. All the relevant device information, such as the device status, spare parts and device-specific documentation, is available for every device over the entire life cycle. The application already contains the data of your Endress+Hauser device. Endress +Hauser also takes care of maintaining and updating the data records.
		W@M is available:Via the Internet: www.endress.com/lifecyclemanagementOn CD-ROM for local PC installation.
	DeviceCare and FieldCare	FDT-based plant asset management tool from Endress+Hauser. It can configure all smart field units in your system and helps you manage them. By using the status information, it is also a simple but effective way of checking their status and condition.
		For details, see Operating Instructions BA00027S and BA00059S
	Commubox FXA291	Connects Endress+Hauser field devices with a CDI interface (= Endress+Hauser Common Data Interface) and the USB port of a computer or laptop.
		For details, see "Technical Information" TI00405C

Supplementary documentation

For an overview of the scope of the associated Technical Documentation, refer to the following:

- The CD-ROM provided for the device (depending on the device version, the CD-ROM might not be part of the delivery!)
 - The W@M Device Viewer : Enter the serial number from the nameplate (www.endress.com/deviceviewer)
 - The *Endress+Hauser Operations App*: Enter the serial number from the nameplate or scan the 2-D matrix code (QR code) on the nameplate.

Standard documentation Brief Operating Instructions

Measuring device	Documentation code
Dosimag	KA01175D

Operating Instructions

Measuring device	Documentation code		
	Pulse/frequency/status output Option 3	Modbus RS485 Option 4 and 5	
Dosimag	BA00098D	BA01321D	

Supplementary devicedependent documentation

Safety Instructions

Contents	Documentation code
ATEX Ex nA	XA01332D
cCSAus NI	FES0231

Special Documentation

Contents	Documentation code
Modbus RS485 Register Information	SD01148D

Registered trademarks

Modbus®

Registered trademark of SCHNEIDER AUTOMATION, INC.

Microsoft®

Registered trademark of the Microsoft Corporation, Redmond, Washington, USA

VITON[®]

Registered trademark of DuPont Performance Elastomers L.L.C., Wilmington, USA

TRI-CLAMP®

Registered trademark of Ladish & Co., Inc., Kenosha, USA

Applicator[®], DeviceCare[®], FieldCare[®]

Registered or registration-pending trademarks of the Endress+Hauser Group

www.addresses.endress.com

