Leuze electronic $\mathrm{GmbH}+\mathrm{Co} . \mathrm{KG}$
In der Braike 1
D-73277 Owen / Germany
Phone: +49 7021 573-0
Fax: +49 7021 573-199
http://www.leuze.com
info@leuze.de
1 About this document ..... 8
1.1 Used symbols and signal words ..... 8
1.2 Terms and abbreviations ..... 8
2 Safety ..... 11
2.1 Intended use ..... 11
2.2 Foreseeable misuse ..... 11
2.3 Competent persons ..... 12
2.4 Exemption of liability ..... 12
3 Device description ..... 13
3.1 General information ..... 13
3.2 General performance characteristics ..... 13
3.3 Connection system ..... 14
3.4 Display elements ..... 14
3.4.1 Operation indicators on the receiver control panel ..... 14
3.4.2 Display on the receiver control panel ..... 15
3.4.3 Operating indicators on the transmitter ..... 17
3.5 Operating elements on the receiver control panel ..... 17
3.6 Menu structure of the receiver control panel ..... 18
3.7 Menu navigation on the receiver control panel ..... 20
3.7.1 Meaning of the display icons ..... 20
3.7.2 Level display ..... 20
3.7.3 Menu navigation ..... 21
3.7.4 Editing value parameters ..... 21
3.7.5 Editing selection parameters ..... 22
4 Functions ..... 24
4.1 Beam modes ..... 24
4.1.1 Parallel. ..... 24
4.1.2 Diagonal ..... 24
4.1.3 Crossed-beam ..... 25
4.2 Measurement beam sequence ..... 26
4.3 Beam-stream ..... 27
4.4 Evaluation functions ..... 28
4.5 Hold function ..... 28
4.6 Blanking ..... 28
4.7 Power-Up Teach ..... 30
4.8 Smoothing ..... 31
4.9 Cascading/triggering ..... 32
4.9.1 External triggering ..... 34
4.9.2 Internal triggering. ..... 35
4.10 Block evaluation of beam areas ..... 36
4.10.1 Defining beam area ..... 36
4.10.2Autosplitting ..... 36
4.10.3Mapping beam area to switching output ..... 37
4.10.4 Teach height area ..... 38
4.11 Switching outputs ..... 40
4.11.1 Light/dark switching ..... 40
4.11.2Time functions ..... 40
4.12 Interference suppression (filter depth). ..... 40
5 Applications ..... 41
5.1 Height measurement ..... 41
5.2 Object measurement ..... 42
5.3 Width measurement, orientation detection ..... 43
5.4 Contour measurement. ..... 44
5.5 Gap control/gap measurement ..... 44
5.6 Hole recognition ..... 45
6 Mounting and installation ..... 46
6.1 Mounting the light curtain ..... 46
6.2 Definition of directions of movement ..... 47
6.3 Fastening via sliding blocks ..... 48
6.4 Fastening via swivel mount ..... 48
6.5 Fastening via swiveling mounting brackets ..... 49
7 Electrical connection ..... 50
7.1 Shielding and line lengths ..... 50
7.1.1 Shielding ..... 50
7.1.2 Cable lengths for shielded cables ..... 52
7.2 Connection and interconnection cables. ..... 53
7.3 Device connections ..... 53
7.4 Digital inputs/outputs on connection X1 ..... 53
7.5 Electrical connection - CML 700i with IO-Link/analog interface ..... 54
7.5.1 X1 pin assignment - CML 700i with IO-Link interface ..... 54
7.5.2 X1 pin assignment - CML 700i with analog interface ..... 55
7.5.3 X2/X3 pin assignment - CML 700i with IO-Link/analog interface ..... 56
7.6 Electrical connection - CML 700i with fieldbus interface ..... 56
7.6.1 Pin assignment - CML 700i with fieldbus interface ..... 57
7.6.2 X2 pin assignment - CML 700i with CANopen interface ..... 59
7.6.3 X2 pin assignment - CML 700i with Profibus or RS 485 Modbus interface ..... 59
7.7 Electrical supply ..... 60
8 Starting up the device - Basic configuration ..... 61
8.1 Aligning transmitter and receiver ..... 61
8.2 Teaching the environmental conditions ..... 63
8.2.1 Teach via receiver control panel ..... 63
8.2.2 Teaching via a control signal from the control ..... 64
8.3 Check alignment ..... 65
8.4 Setting the function reserve ..... 66
8.5 Extended configurations on the receiver control panel menu ..... 66
8.5.1 Define digital inputs/outputs ..... 66
8.5.2 Inversion of the switching behavior (light/dark switching) ..... 70
8.5.3 Defining the filter depth ..... 70
8.5.4 Defining the display properties ..... 70
8.5.5 Changing the language ..... 71
8.5.6 Product information ..... 71
8.5.7 Reset to factory settings ..... 72
9 Starting up the device - Analog output ..... 73
9.1 Analog output configuration on the receiver control panel ..... 73
9.2 Analog output configuration via the Sensor Studio configuration software ..... 73
9.3 Behavior of the analog output ..... 74
10 Starting up the device - IO-Link interface ..... 76
10.1 Defining IO-Link device configurations on the receiver control panel ..... 76
10.2 Defining configurations via the IO-Link master module of the PLC-specific software ..... 76
10.3 Parameter/process data for IO-Link ..... 77
11 Starting up the device - CANopen interface ..... 92
11.1 Defining the CANopen basic configuration on the receiver control panel ..... 92
11.2 Defining configurations via the PLC-specific software of the CANopen master ..... 92
11.3 Parameter- / process data for CANopen ..... 93
12 Starting up the device - Profibus interface ..... 109
12.1 Defining the Profibus basic configuration on the receiver control panel ..... 109
12.2 Defining configurations via the PLC-specific software ..... 109
12.3 Parameter/process data for Profibus ..... 110
12.3.1 General information on Profibus ..... 110
12.3.2Configuration parameters or process data ..... 111
13 Starting up the device - RS 485 Modbus interface ..... 120
13.1 Defining the RS 485 Modbus basic configuration on the receiver control panel ..... 120
13.2 Defining configurations via the RS 485 Modbus interface module of the PLC software ..... 120
13.2.1 Modbus read access ..... 121
13.2.2Modbus write access ..... 122
13.2.3Error check (CRC calculation) ..... 122
13.2.4Defining configurations via the PLC-specific software ..... 124
13.3 Parameter/process data for RS 485 Modbus ..... 125
13.4 Autosend mode ..... 135
14 Example configurations ..... 137
14.1 Example configuration - Reading out 64 beams (beam-stream) ..... 137
14.1.1 Configuration of beam-stream process data via IO-Link interface ..... 137
14.1.2Configuration of beam-stream process data via CANopen interface ..... 137
14.1.3Configuration of beam-stream process data via Profibus interface. ..... 137
14.1.4Configuration of beam-stream process data via RS 485 Modbus interface ..... 138
14.2 Example configuration- Mapping of beams $1 \ldots 32$ to output pin 2 ..... 138
14.2.1 Configuration of area/output mapping (general) ..... 138
14.2.2Configuration of an area/output mapping via IO-Link interface ..... 139
14.2.3Configuration of area/output mapping via CANopen interface ..... 140
14.2.4Configuration of area/output mapping via Profibus interface. ..... 140
14.2.5Configuration of area/output mapping via RS 485 Modbus interface ..... 140
14.3 Example configuration - Hole recognition ..... 141
14.3.1Configuration of hole recognition via IO-Link interface ..... 141
14.3.2Configuration of hole recognition via CANopen interface ..... 142
14.3.3Configuration of hole recognition via Profibus interface ..... 142
14.3.4Configuration of hole recognition via RS 485 Modbus interface ..... 142
14.4 Example configuration - Activating and deactivating blanking areas ..... 143
14.4.1 Configuration of blanking areas (general) ..... 143
14.4.2Configuration of blanking areas via IO-Link interface ..... 143
14.4.3Configuration of blanking areas via CANopen interface ..... 144
14.4.4Configuration of blanking areas via Profibus interface ..... 144
14.4.5Configuration of blanking areas via RS 485 Modbus interface ..... 145
14.5 Example configuration - smoothing ..... 145
14.5.1 Smoothing configuration (general) ..... 145
14.5.2Configuration of smoothing via IO-Link interface. ..... 145
14.5.3Configuration of smoothing via CANopen interface. ..... 145
14.5.4Configuration of smoothing via Profibus interface ..... 146
14.5.5Configuration of smoothing via RS 485 Modbus interface ..... 146
14.6 Example configuration - Cascading ..... 146
14.6.1 Configuration of a cascading arrangement (general) ..... 146
14.6.2Configuration of a cascading arrangement via IO-Link interface. ..... 148
14.6.3Configuration of a cascading arrangement via CANopen interface ..... 150
14.6.4Configuration of a cascading arrangement via Profibus interface ..... 152
14.6.5Configuration of a cascading arrangement via RS 485 Modbus interface ..... 154
15 Connecting to a PC - Sensor Studio ..... 157
15.1 System requirements. ..... 158
15.2 Installing Sensor Studio configuration software and IO-Link USB master. ..... 158
15.2.1 Installing the Sensor Studio FDT frame. ..... 158
15.2.2 Installing drivers for IO-Link USB master ..... 159
15.2.3Connecting IO-Link USB master to the PC ..... 159
15.2.4Connect the IO-Link USB master to the light curtain ..... 159
15.2.5 Installing the DTM and IODD ..... 161
15.3 Starting the Sensor Studio ..... 162
15.4 Short description of the Sensor Studio configuration software ..... 163
15.4.1FDT frame menu ..... 164
15.4.2 IDENTIFICATION function ..... 164
15.4.3 CONFIGURATION function ..... 164
15.4.4 PROCESS function ..... 165
15.4.5 DIAGNOS/S function ..... 166
15.4.6Exiting Sensor Studio ..... 166
16 Troubleshooting ..... 167
16.1 What to do in case of error? ..... 167
16.2 Operating displays of the LEDs ..... 167
16.3 Error codes in the display ..... 168
17 Care, maintenance and disposal ..... 171
17.1 Cleaning ..... 171
17.2 Servicing ..... 171
17.2.1 Firmware update ..... 171
17.3 Disposing ..... 171
18 Service and support ..... 172
19 Technical data ..... 173
19.1 General specifications ..... 173
19.2 Timing ..... 176
19.3 Minimum object diameter for stationary objects ..... 178
19.4 Dimensional drawings ..... 179
19.5 Dimensional drawings: Accessories ..... 180
20 Ordering information and accessories ..... 183
20.1 Nomenclature ..... 183
20.2 Accessories - CML 700i with IO-Link/analog interface ..... 184
20.2.1IO-Link analog interface (connection in the switch cabinet: screw terminals) ..... 185
20.2.2IO-Link interface (connection to IO-Link master) ..... 187
20.3 Accessories - CML 700i with CANopen, Profibus or RS 485 Modbus interface ..... 188
20.3.1 CANopen interface ..... 188
20.3.2Profibus or RS 485 Modbus interface ..... 191
20.3.3Profibus/RS 485 Modbus interface (alternative terminating resistor) ..... 194
20.3.4Profibus/RS 485 Modbus interface (configuration with subsequent slave) ..... 195
20.4 Accessories - fastening technology ..... 195
20.5 Accessories - PC connection ..... 196
20.6 Scope of delivery ..... 196
21 EC Declaration of Conformity ..... 197

## 1 About this document

These original operating instructions contain information regarding the proper use of the CML 700i measuring light curtain series. It is included in the delivery contents.

### 1.1 Used symbols and signal words

Table 1.1: Warning symbols, signal words and symbols

| NOTICE | Pay attention to passages marked with this symbol. Failure to observe the pro- <br> vided instructions could lead to personal injury or damage to equipment. |
| :---: | :--- |
| O | Signal word for property damage <br> Indicates dangers that may result in property damage if the measures for dan- <br> ger avoidance are not followed. |
|  | Symbol for tips <br> Text passages with this symbol provide you with further information. |
|  | Symbols for action steps <br> Text passages with this symbol instruct you to perform actions. |

Table 1.2: Operating on the display

|  | Main Settings | Bold text <br> Indicates that this field is currently selected and appears highlighted in <br> the receiver display. |
| :--- | :--- | :--- |
|  | Digital IOs | Normal text <br> Indicates that this field is not currently selected (is not highlighted in the <br> receiver display). |

### 1.2 Terms and abbreviations

Table 1.3: Terms and abbreviations

| DTM (Device Type Manager) | Software device manager of the sensor |
| :--- | :--- |
| IO | Input Output |
| FB (First Beam) | First beam |
| FIB (First Interrupted Beam) | First interrupted beam |
| FNIB (First Not Interrupted Beam) | First uninterrupted beam |
| FDT (Field Device Tool) | Software frame for management of device managers (DTM) |
| LB (Last Beam) | Last beam |
| LIB (Last Interrupted Beam) | Last interrupted beam |
| LNIB (Last Not Interrupted Beam) | Last uninterrupted beam |
| TIB (Total Interrupted Beams) | Number of all interrupted beams |
| TNIB (Total Not Interrupted Beams) | Number of all uninterrupted beams (TNIB = n - TIB) |
| n | Number of all logical beams of a light curtain; dependent on the <br> selected measurement field length and resolution as well as the <br> beam mode (parallel- / diagonal- / crossed-beam scanning) |
| EDS | Electronic Data Sheet (EDS file for CANopen interface) <br> Description of the device for the control |


| GSD | Device master data file (GSD file for Profibus interface) <br> Description of the device for the control |
| :--- | :--- |
| IODD | IO Device Description (IODD file for IO-Link interface) <br> Description of the device for the control |
| GUI (Graphical User Interface) | Graphical user interface |
| RTU | Remote Terminal Unit (serial RS 485 Modbus RTU mode) |
| PLC | Programmable Logic Control <br> (corresponds to Programmable Logic Controller (PLC)) |
| Response time per beam | Length of time for the evaluation of a beam |
| Resolution | The minimum size of an object that can be reliably detected. <br> With parallel-beam evaluation, the smallest object to be <br> detected corresponds to the sum of beam spacing and optic <br> diameter. |
| Delay before start-up | Duration between the switching on of the supply voltage and <br> the start of operational readiness of the light curtain |
| Function reserve (sensitivity adjust- <br> ment) | Ratio of the optical reception power set during the teach event <br> and the minimum light quantity required to switch the individual <br> beam. This compensates for the light attenuation caused by <br> dirt, dust, smoke, humidity and vapor. <br> High function reserve = low sensitivity <br> Low function reserve = high sensitivity |
| Meas. field length | Optical detection range between the first and last beam |
| Beam spacing | Center-to-center spacing between two beams |
| Cycle time | Sum of the response times of all beams of a light curtain plus <br> the duration of the internal evaluation. <br> Cycle time = <br> number of beams x response time per beam + evaluation time |



Figure 1.1: Definition of terms

## 2 Safety

This sensor was developed, manufactured and tested in line with the applicable safety standards. It corresponds to the state of the art.

### 2.1 Intended use

The device is designed as a measuring and object-detecting, configurable, multi-sensor unit.

## Areas of application

The measuring light curtain is designed for the measurement and detection of objects for the following areas of application in handling and warehousing systems, the packaging industry or a comparable environment:

- Height measurement
- Width measurement
- Contour measurement
- Orientation detection


## CAUTION

## Observe intended use!

$\stackrel{4}{4}$ Only operate the device in accordance with its intended use.
The protection of personnel and the device cannot be guaranteed if the device is operated in a manner not complying with its intended use.
Leuze electronic GmbH + Co. KG is not liable for damages caused by improper use.
${ }^{\Perp}$ Read the original operating instructions before commissioning the device.
Knowledge of the original operating instructions is an element of proper use.

## NOTICE

## Comply with conditions and regulations!

$\stackrel{\wedge}{ }$ Observe the locally applicable legal regulations and the rules of the employer's liability insurance association.

### 2.2 Foreseeable misuse

Any use other than that defined under "Intended use" or which goes beyond that use is considered improper use.

In particular, use of the device is not permitted in the following cases:

- Rooms with explosive atmospheres
- Circuits relevant to safety
- Operation for medical purposes


## NOTICE

Do not modify or otherwise interfere with the device!
$\stackrel{\wedge}{ } \Rightarrow$ Do not carry out modifications or otherwise interfere with the device.
The device must not be tampered with and must not be changed in any way.
The device must not be opened. There are no user-serviceable parts inside.
Repairs must only be performed by Leuze electronic GmbH + Co. KG.

### 2.3 Competent persons

Connection, mounting, commissioning and adjustment of the device must only be carried out by competent persons.

Prerequisites for competent persons:

- They have a suitable technical education.
- They are familiar with the rules and regulations for occupational safety and safety at work.
- They are familiar with the original operating instructions of the device.
- They have been instructed by the responsible person on the mounting and operation of the device.


## Certified electricians

Electrical work must be carried out by a certified electrician.
Due to their technical training, knowledge and experience as well as their familiarity with relevant standards and regulations, certified electricians are able to perform work on electrical systems and independently detect possible dangers.
In Germany, certified electricians must fulfill the requirements of accident-prevention regulations BGV A3 (e.g. electrician foreman). In other countries, there are respective regulations that must be observed.

### 2.4 Exemption of liability

Leuze electronic $\mathrm{GmbH}+\mathrm{Co}$. KG is not liable in the following cases:

- The device is not being used properly.
- Reasonably foreseeable misuse is not taken into account.
- Mounting and electrical connection are not properly performed.
- Changes (e.g., constructional) are made to the device.


## 3 Device description

### 3.1 General information

The light curtains of the CML 700i series are designed as measuring and object-detecting, configurable, multi-sensor units. Depending on the configuration and model, the devices are suitable for a variety of tasks with various resolutions and can be integrated in different control environments.
The total system of the light curtain consists of a transmitter and a receiver, including the connection and interconnection cables.

- Transmitter and receiver are connected to one another via a synchronization cable.
- The integrated control panel with indicators and operational controls for configuring the total system is located on the receiver.
- The shared power supply is provided via connection X1 on the receiver.


Figure 3.1: Total system in combination with a programmable logic control

### 3.2 General performance characteristics

The most important performance characteristics of the CML 720i series are:

- Operating range up to 6000 mm
- Measurement field length from 150 mm to 2960 mm
- Beam spacings of $5 \mathrm{~mm}, 10 \mathrm{~mm}, 20 \mathrm{~mm}, 40 \mathrm{~mm}$
- Response time $30 \mu \mathrm{~s}$ per beam
- Beam modes: parallel, diagonal, crossed-beam
- Single-beam evaluation (beam-stream)
- Evaluation functions: TIB, TNIB, LIB, LNIB, FIB, FNIB, status of beam areas $1 \ldots 32$, status of the digital inputs/outputs
- Local control panel with display
- Interfaces to the machine control:
- IO-Link:

4 digital inputs/outputs (configurable)

- CANopen, Profibus-DP, RS 485 Modbus:

2 digital inputs/outputs (configurable) plus IO-Link

- Analog:

2 analog current/voltage outputs plus IO-Link
2 digital inputs/outputs (configurable)

- Blanking of unnecessary beams
- Smoothing for interference suppression
- Cascading of multiple devices
- Block evaluation of beam areas
- Position / hole recognition with continuous web material


### 3.3 Connection system

The transmitter and receiver feature an M12 connector with the following number of pins:

| Device type | Designation on device | Plug/socket |
| :--- | :--- | :--- |
| Receiver | X1 | M12 plug (8-pin) |
| Receiver | X2 | M12 socket (5-pin) |
| Transmitter | X3 | M12 plug (5-pin) |

### 3.4 Display elements

The display elements show the device status in operation and provide support during commissioning and error analysis.

Located on the receiver is a control panel with the following display elements:

- two LEDs
- one OLED display (Organic Light-Emitting Diode), two-line

Located on the transmitter is the following display element:

- one LED


### 3.4.1 Operation indicators on the receiver control panel

Two function indicator LEDs are located on the receiver control panel.


Figure 3.2: LED indicators on the receiver
Table 3.1: Meaning of the LEDs on the receiver

| LED | Color | State | Description |
| :--- | :--- | :--- | :--- |
| 1 | Green | ON (continuous <br> light) | Light curtain ready (normal mode) |
|  |  | Flashing | see chapter 16.2 |
|  |  | OFF | Sensor not ready |


| LED | Color | State | Description |
| :--- | :--- | :--- | :--- |
| 2 | Yellow | ON (continuous <br> light) | All active beams are free - with function reserve |
|  |  | Flashing | see chapter 16.2 |
|  |  | OFF | At least one beam interrupted (object detected) |

### 3.4.2 Display on the receiver control panel

Located on the receiver is an OLED display which serves as a function indicator.


Figure 3.3: OLED display on the receiver
The type of display on the OLED display is different for the following operating modes:

- Alignment mode
- Process mode


## Display indicators in alignment mode

In alignment mode, the OLED display shows the received signal level of the first (FB) and last (LB) beam via two bar graph indicators.


Figure 3.4: OLED display on the receiver in alignment mode

## Display indicators in process mode

In process mode, the upper line shows the number of interrupted beams (TIB) and the lower line shows the logic state of the digital outputs.


Figure 3.5: OLED display on the receiver in process mode

O If the control panel is not used for several minutes, the display darkens and switches off. Press
$\square$ a function button to again make the display visible. Settings for visibility, display duration, etc. can be changed via the Display menu.

### 3.4.3 Operating indicators on the transmitter

Located on the transmitter is an LED which serves as a function indicator.
Table 3.2: Meaning of the LED on the transmitter

| LED | Color | State | Description |
| :--- | :--- | :--- | :--- |
| 1 | Green | ON <br> (continuous light or <br> flashing in sync with <br> the measurement) | Light curtain operates continuously with maximum measure- <br> ment frequency |
|  |  | OFF | No communication with the receiver <br> Light curtain waits for external trigger signal |

### 3.5 Operating elements on the receiver control panel

Located on the receiver below the OLED display is a membrane keyboard with two function buttons for entering various functions.


Figure 3.6: Function buttons on the receiver

### 3.6 Menu structure of the receiver control panel

The following summary shows the structure of all menu items. In a given device model, only the actually available menu items are present for entering values or for selecting settings.

## Menu level 0

Level 0

| Main Settings |
| :--- |
| Digital IOs |
| Analog Output |
| Display |
| Information |
| Exit |

## Menu "Main Settings"

| Level 1 | Level 2 | Description |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Command |  | Teach | Reset | Factory Settings | Exit |
| Operational setting | Filter Depth | $\begin{aligned} & \text { (enter value) } \\ & \min =1 \\ & \max =255 \end{aligned}$ |  |  |  |
|  | Beam mode | Parallel | Diagonal | Crossed-beam |  |
|  | Function reserve | High | Medium | Low |  |
|  | Blanking Teach | Inactive Active |  |  |  |
|  | Power-Up Teach | Inactive Active |  |  |  |
|  | Smoothing | $\begin{aligned} & \text { (enter value) } \\ & \min =1 \\ & \max =255 \end{aligned}$ |  |  |  |
| IO-Link | Bit rate | COM3: 230.4 kbit/s | COM2: 38.4 kbit/s |  |  |
|  | PD Length | 2 bytes | 8 bytes | 32 bytes |  |
|  | Data Storage | Deactivated | Activated |  |  |
| CANopen | Node ID | $\begin{aligned} & \text { (enter value) } \\ & \min =1 \\ & \max =127 \end{aligned}$ |  |  |  |
|  | Bit rate | $1000 \mathrm{kbit} / \mathrm{s}$ | $500 \mathrm{kbit} / \mathrm{s}$ | $250 \mathrm{kbit} / \mathrm{s}$ | $125 \mathrm{kbit} / \mathrm{s}$ |
| Profibus | Slave address | $\begin{aligned} & \text { (enter value) } \\ & \min =1 \\ & \max =126 \end{aligned}$ |  |  |  |
|  | Bit rate | $3000 \mathrm{kbit} / \mathrm{s}$ | $1500 \mathrm{kbit} / \mathrm{s}$ | $500 \mathrm{kbit} / \mathrm{s}$ | 187.5 kbit/s |
|  |  | 93.75 kbit/s | $45.45 \mathrm{kbit} / \mathrm{s}$ | 19.2 kbit/s | 9.6 kbit/s |
| RS 485 Modbus | Slave address | $\begin{aligned} & \text { (enter value) } \\ & \min =1 \\ & \max =247 \end{aligned}$ |  |  |  |
|  | Bit rate | 921.6 kbit/s | $115.2 \mathrm{kbit} / \mathrm{s}$ | $57.6 \mathrm{kbit} / \mathrm{s}$ | 38.4 kbit/s |
|  |  | 19.2 kbit/s | 9.6 kbit/s | 4.8 kbit/s |  |
|  | Parity | none | Straight | Not straight |  |
|  | Silent Interval | 0 =auto | $\begin{aligned} & \text { (enter value) } \\ & \min =1 \\ & \max =300 \end{aligned}$ |  |  |

## Menu "Digital IOs"

Level 1

| IO Logic |
| :--- |
| 10 Pin 2 |
| 10 Pin 5 |
| IO Pin 6 |
| IO Pin 7 |
|  |
|  |
|  |
|  |
|  |
|  |

Level 2

| IO Function |
| :--- |
| Inversion |
| Teach height |
| Area Logic |
| Start Beam |
| End Beam |

Description

| Positive PNP | Negative NPN | Area Out | Warn Out | Trigger Out |
| :---: | :---: | :---: | :---: | :---: |
| Trigger In | Teach In |  |  |  |
| Normal | Inverted |  |  |  |
| Execute | Exit |  |  |  |
| AND | OR |  |  |  |
| $\begin{aligned} & \text { (enter value) } \\ & \min =1 \\ & \max =1774 \end{aligned}$ |  |  |  |  |
| $\begin{aligned} & \text { (enter value) } \\ & \min =1 \\ & \max =1774 \end{aligned}$ |  |  |  |  |

## Menu "Analog output"

| Level 1 |
| :--- |
| Analog Signal <br> Analog Function <br> Start Beam <br> End Beam |

Level 2

## Menu "Display"

Level 1

| Language |
| :--- |
| Mode |
| Visibility |
| Time Unit (s) |
| Evaluation function |

Level 2

## Menu "Information"

| Level 1 |  |
| :--- | :--- |
| Product name |  |
| Product ID |  |
| Serial number |  |
| Tx.transmitter-ID |  |
| Tx.transmitter-SN |  |
| FW version |  |
| HW version |  |
| Kx version |  |

Description

| Off | $\mathrm{U}: 0 \ldots 5 \mathrm{~V}$ | U: $0 \ldots 10 \mathrm{~V}$ | U: $0 \ldots 11 \mathrm{~V}$ | $\mathrm{I}: 4 \ldots 20 \mathrm{~mA}$ | I: $0 \ldots 20 \mathrm{~mA}$ | $\mathrm{I}: 0 \ldots 24 \mathrm{~mA}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Off | FIB | FNIB | LIB | LNIB | TIB | TNIB |

(enter value)
$\min =1$
$\max =1774$
(enter value)
$\min =1$
$\max =1774$

Description

| English | German | French | Italian | Spanish |
| :--- | :--- | :--- | :--- | :--- |
| Process mode | Alignment |  |  |  |
| Off Dark Normal Bright Dynamic <br> (enter value) <br> min $=1$ <br> $\max =240$     <br> TIB TNIB FIB FNIB LIB | LNIB |  |  |  |

Description
CML 720i

| Receiver part no. (e.g., 50119835) |
| :--- |
| Receiver serial number (e.g., 01436000288) |
| Transmitter part no. (e.g., 50119407) |
| Transmitter serial no. (e.g., 01436000289) |
| e.g., 01.61 |
| e.g., A001 |
| e.g., P01.30e |

### 3.7 Menu navigation on the receiver control panel

The $\nabla$ and $\longleftarrow$ buttons have different functions depending on the operating situation. These functions are displayed at the left edge of the display above the icons.

### 3.7.1 Meaning of the display icons

| Icon | Position | Function |
| :---: | :---: | :---: |
| , | First line | Symbolizes that you can select the next parameter within a menu level by pressing the $\boldsymbol{\nabla}$ button. |
| C3 | First line | Symbolizes that you have reached the lowest menu level (not highlighted). |
| 28 | Second line | Symbolizes the respective, next menu level that you have not yet selected (not highlighted). |
| + | Second line | Press the $\downarrow$ button to exit the menu level or the menu. |
| 8 | Second line | Symbolizes the input mode. <br> The selected (highlighted) option field can be a fixed selection parameter or a multi-digit input field. With a multi-digit input field, you can increase the active digit by one with the $\boldsymbol{\nabla}$ button and use the $\downarrow$ button to switch from one digit to the next. |
| 7 | Second line | Symbolizes the confirmation of a selection. <br> This icon appears when you complete an option field with the $\longleftarrow$ button. |
| 3 | Second line | Symbolizes the rejection of a selection. <br> This icon is accessed from the previous icon (check mark) by pressing the $\boldsymbol{\nabla}$ button. This mode allows you to reject the current value or option parameter by pressing the $\_$button. |
| $\pm$ | Second line | Symbolizes the return to the selection. <br> This icon is accessed from the previous icon (cross) by pressing the $\boldsymbol{\nabla}$ button. This mode allows you to reset the current value or option parameter for the purpose of entering a new value or selecting an option parameter by pressing the $\_$button. |

### 3.7.2 Level display

The display of bars between icons and text that span both lines indicates the open menu levels. The example shows a configuration in the menu level 2 :


### 3.7.3 Menu navigation

|  | Main Settings |
| :--- | :--- |
|  | Digital IOs |

V Selects the next menu item ("Digital IOs"); the other menu items follow if pressed again.
$\downarrow \quad$ Selects the highlighted submenu ("Main Settings").

### 3.7.4 Editing value parameters

|  | Start Beam |  |
| :--- | :--- | :--- |
| Rnd |  |  |
|  | End Beam |  |

$\longleftarrow \quad$ Selects the "Start Beam" menu item with the bright background.

|  |  | Start Beam |
| :---: | :---: | :---: |
|  |  | 0001 |

V Changes the value of the first digit (0).
$\leftarrow \quad$ Selects additional numbers for configuring values.
After entering the last number, the total value can be saved, rejected or reset.

| Fant |  | Start Beam |
| :--- | :--- | :--- |
|  |  | 0010 |

$\_\quad$ Saves the new value (0010).
V Changes the action mode; first A and then appears on the second line.
If the selected option is not saved in the window above, but rather the $\square$ action mode is selected with the $\boldsymbol{\nabla}$ button, this means:

|  |  | Start Beam |
| :--- | :--- | :--- |
| Z |  |  |
|  |  | 0010 |

$\_\quad$ Rejects the current input value. The display returns to the higher-order menu level: Start Beam/ End Beam

If the
action mode is selected with the button, this means:

$\_\quad$ Resets the current input value (0001) and allows the entry of new values.

### 3.7.5 Editing selection parameters

|  | IO Logic |
| :--- | :--- |
| rat |  |
|  | IO Pin 2 |

$\longleftarrow \quad$ Selects the "IO Logic" menu item with the bright background.

|  | IO Logic |  |
| :--- | :--- | :--- |
| 4 |  |  |
| r | Positive PNP |  |

- With each actuation, displays the next option on this menu level, i.e., the display switches between:
- Negative NPN
- Positive PNP
$\longleftarrow \quad$ Selects the "Positive PNP" menu item with the bright background.

- Changes the action mode; 4 appears; subsequent actuation displays or again. $\longleftarrow \quad$ Saves the selected option "Positive PNP".


## 4 Functions

This chapter describes the functions of the light curtain for adaptation to different applications and operating conditions.

### 4.1 Beam modes

### 4.1.1 Parallel

In "parallel"-beam mode (parallel-beam scanning), the light beam of each transmitter LED is detected by the directly opposing receiver LED.


Figure 4.1: Beam path in "parallel" beam mode

### 4.1.2 Diagonal

In "diagonal" beam mode, the light beam of each transmitter diode is received in succession both by the directly opposing receiver diode as well as by the next receiver diode in the counting direction (i-1) (parallel and diagonal beam path). This increases the resolution in the middle between the transmitter and receiver.


1 Area with increased resolution
Figure 4.2: Beam path in "diagonal" beam mode

## Calculation

The number of beams for diagonal-beam scanning $\mathrm{n}_{\mathrm{d}}$ is calculated from the number of beams for parallelbeam scanning $n_{p}$.

Formula for calculating the number of beams for diagonal-beam scanning

$$
\mathrm{n}_{\mathrm{d}}=2 \mathrm{n}_{\mathrm{p}}-1
$$

$\mathrm{n}_{\mathrm{d}} \quad$ [number] = number of beams for diagonal-beam scanning
$\mathrm{n}_{\mathrm{p}}$ [number] = number of beams for parallel-beam scanning
Example: 288 beams in parallel-beam scanning become 575 logical individual beams in diagonal-beam scanning, which must be taken into account during evaluation functions. With a beam spacing of 5 mm , this spacing is reduced to 2.5 mm in the center area.

The "diagonal" beam mode (diagonal-beam scanning) can be activated via the respective fieldbus interface (see chapter 10 et seq.) or via the Sensor Studio configuration software (see chapter 15).

## NOTICE

## Minimum distance for diagonal-beam scanning!

${ }^{\Perp}$ For diagonal-beam scanning, the minimum distance that must be maintained between transmitter and receiver changes, whereby the values vary depending on beam spacing (see chapter 19).

## NOTICE

## Teach after changing the beam mode!

${ }^{\Perp}>$ Changing the beam mode changes the number of beams used for the evaluation. Perform a teach after changing the beam mode (see chapter 8.2).

### 4.1.3 Crossed-beam

The "crossed-beam" mode (crossed-beam scanning) is available for increasing the resolution for an area of the measurement field. In "crossed-beam" mode, the light beam of each transmitter LED is detected in succession both by the directly opposing receiver LED as well as by the two adjacent receiver LEDs (i+1, i-1).


1 Area with increased resolution
Figure 4.3: Beam path in "crossed-beam" mode

## Calculation

The number of beams for crossed-beam scanning $n_{k}$ is calculated from the number of beams for parallelbeam scanning $n_{p}$.

Formula for calculating the number of beams for crossed-beam scanning

$$
n_{k}=3 n_{p}-2
$$

$\mathrm{n}_{\mathrm{K}} \quad$ [number] = number of beams for crossed-beam scanning
$\mathrm{n}_{\mathrm{p}} \quad$ [number] = number of beams for parallel-beam scanning

## NOTICE

Minimum distance for crossed-beam scanning!
$\left.{ }^{4}\right)$ For crossed-beam scanning, the minimum distance that must be maintained between transmitter and receiver changes, whereby the values vary depending on beam spacing (see chapter 19).

Example: 288 beams in parallel-beam scanning become 862 logical beams in crossed-beam scanning. With a beam spacing of 5 mm , this spacing is reduced to 2.5 mm in the center area.


The "crossed-beam" mode (crossed-beam scanning) can be activated via the respective fieldbus
$\pi$ interface (see chapter 10 et seq.) or via the Sensor Studio configuration software (see chapter 15).

### 4.2 Measurement beam sequence

By default, the counting direction of the beams begins at the sensor connection unit. It can, however, be reconfigured so that counting begins with 1 at the sensor head.
The simplest application case for the inverted beam sequence is vertical mounting with the connection unit at the top, e.g., for height measurement, where beam 1 is to begin at the bottom:

a Receiver connection unit
b Optical part
Another variant with two successive light curtains, where the second is rotated by $180^{\circ}$ and counting again begins with 1, is illustrated as follows:


For width detection, counting can begin with 1 at either end at the head part of the sensor as shown below:


O The counting direction can be changed via the respective fieldbus interface (see chapter 10 et
I seq.) or via the Sensor Studio configuration software (see chapter 15).

### 4.3 Beam-stream

The beam-stream evaluation returns the status of each individual beam (see figure 4.4). Uninterrupted beams (free beams) are represented as logical 1 in the output bit in this case.
$\stackrel{\square}{\square}$
The data is available via the respective fieldbus interface (see chapter 10 et seq.) or via the
Sensor Studio configuration software (see chapter 15).
For an example configuration, see chapter 14.1.


1 Beam-stream
Figure 4.4: Example: beam-stream evaluation

### 4.4 Evaluation functions

The states of the individual optical beams (free/interrupted) can be evaluated in the CML 700i and the result read out via various evaluation functions.
The most important evaluation functions are shown in the following figure:


Figure 4.5: Evaluation functions
Also included among the evaluation functions are:

- the status of beam areas 132
- the status of the digital inputs/outputs

For the beam area mappings to an output pin or the status of the digital inputs/outputs, see chapter 4.10.

### 4.5 Hold function

$\square$ The setting of the hold times is performed via the respective fieldbus interface (see chapter 10 et seq.) or via the Sensor Studio configuration software (see chapter 15).

The minima and maxima of the following evaluation functions can be temporarily stored for an adjustable period of time via this function:

- First interrupted beam (FIB)
- First uninterrupted beam (FNIB)
- Last interrupted beam (LIB)
- Last uninterrupted beam (LNIB)
- Number of all interrupted beams (TIB)
- Number of all uninterrupted beams (TNIB)

This simplifies the reading out of the measurement results if the used control cannot transmit the data at the same speed that the light curtain makes the data available.

### 4.6 Blanking

If light curtains are installed such that existing frames / cross bars etc. continuously interrupt some beams, these beams must be suppressed.

During blanking, beams that are not to be included in the evaluation are suppressed. The numbering of the beams is not affected, i.e., the suppression of beams does not change the beam numbers.


$$
\begin{array}{ll}
1 & \text { Interrupted beams } \\
2 & \text { Suppressed beams (blanking) } \\
3 & \text { Free beams } \\
4 & \text { Object present at the installation site }
\end{array}
$$

Figure 4.6: Beam states


Up to four adjacent beam areas can be suppressed.


The beams can be activated or suppressed via the respective fieldbus interface (see chapter 10 et seq.), via the Sensor Studio configuration software (see chapter 15) and partially via the operational controls on the receiver.

The behavior of each blanking area can be adapted to the requirements of the application:

| Logical value of a blanking area | Meaning in the application |
| :--- | :--- |
| No beams are blanked | All beams of the device are included in the evaluation. |
| Logical value 0 for blanked beams | All beams of the blanking area are taken into account <br> as interrupted beams (logical value 0) in the evalua- <br> tion. |
| Logical value 1 for blanked beams | All beams of the blanking area are taken into account <br> as free beams (logical value 1) in the evaluation. |
| Logical value is the same as the adjacent <br> beam with lower beam number | All beams of the blanking area behave in the evalua- <br> tion like the previous beam. |
| Logical value is the same as the adjacent <br> beam with higher beam number | All beams of the blanking area behave in the evalua- <br> tion like the subsequent beam. |

For an example configuration, see chapter 14.4.

## NOTICE

Teach after changing the blanking configuration!
$\stackrel{y}{ } \stackrel{\text { Perform }}{ }$ a teach after changing the blanking configuration (see chapter 8.2).

## Auto blanking during teaching

If there are obstacles present in the measurement field at the installation site and at least one blanking area is activated, interrupted beams can be mapped to the blanking area(s) during teaching. Existing
settings for the blanking areas are then overwritten (see chapter 8.2). If no beams are interrupted during teaching, no blanking areas are configured.


Auto blanking cannot be used to detect transparent objects.
$\stackrel{O}{\square}$ Deactivated beams are lost if the beam mode is changed while auto blanking is active.

## NOTICE

Deactivate auto blanking in process mode!
${ }^{4}$ ) Deactivate auto blanking in process mode.
Activate auto blanking only during commissioning of the device to suppress distracting objects.

## NOTICE

Deactivate auto blanking during Power-Up Teach!
${ }^{4}$ D Deactivate auto blanking if "Power-Up Teach" is activated (see chapter 4.7).

## NOTICE

## Resetting all blanking areas!

${ }^{4}$ ) To deactivate blanking areas, leave auto blanking active with at least the same number of blanking areas.

Perform a new teach in a free measurement field.
${ }^{4}$ To deactivate blanking with the Sensor Studio configuration software, configure the number of blanking areas as zero and, at the same time, deactivate each area.
Perform a new teach.

### 4.7 Power-Up Teach

After applying operating voltage, the "Power-Up Teach" function performs a teach event when the device is ready for operation.

- If the Power-Up teach is successful, the new teach values are adopted if they are different from the previously stored teach values.
- If the Power-Up teach is not successful (e.g. object in the light path), the previously saved teach values are used.

$\stackrel{O}{\square}$
The "Power-Up Teach" event can only be activated via the receiver control panel.

## NOTICE

Deactivate auto blanking during Power-Up Teach!
$\stackrel{y}{\wedge}$ Deactivate auto blanking if "Power-Up Teach" is activated.

## NOTICE

No objects in the light path!
${ }^{\text { }}$ D During "Power-Up Teach", ensure that no beams are partially covered by an object.

### 4.8 Smoothing

With the smoothing function, interrupted beams are then only taken into account in the evaluation if the set minimum number of adjacent beams is reached at the same time.

Smoothing can be used, e.g., to suppress interference caused by spot soiling of the lens cover. Smoothing " 1 " means that every interrupted beam is evaluated.


Figure 4.7: Smoothing configuration " 1 "
If smoothing is set to a value of " 3 ", for example, data is only output if at least three adjacent beams are interrupted.


Figure 4.8: Smoothing configuration " 3 ", but no more than two adjacent beams interrupted


1 Data output: beam numbers from ... to ... interrupted
2 Interrupted beam is not taken into account
Figure 4.9: Smoothing configuration " 3 ", and three or more adjacent beams interrupted

## NOTICE

Configuration values for smoothing!
$\stackrel{4}{ }{ }^{4}$ Values from 1 to 255 can be entered for smoothing.

## Inverted smoothing

Inverted smoothing can suppress interference near the edges of objects, since uninterrupted beams are not evaluated until the set number is reached.

With inverted smoothing it is possible to detect, e.g., only successive openings of a certain minimum size within a web.
For an example configuration, see chapter 14.5.

### 4.9 Cascading/triggering

If the measurement field length of a light curtain is not sufficient for detecting a desired measurement path, multiple light curtains can be connected in series or cascaded. When doing so, it must be ensured that the light curtains do not mutually influence or interfere with one another. This is ensured by activating (triggering) with a time offset.

The following light curtain arrangements are possible in a cascade arrangement:

- Multiple light curtains above one another, e.g., for height monitoring


Figure 4.10: Simple cascading with two light curtains for height monitoring

- Multiple light curtains in a rectangular frame, e.g., for object measurement of height and width along a transport system.


Figure 4.11: Simple cascading with three light curtains for object measurement

The selection of activation via an internal or external trigger signal is made via the respective fieldbus interface (see chapter 10 et seq.) or via the Sensor Studio configuration software (see chapter 15).

## NOTICE

Cascading necessary for multiple-track transport systems!
$\stackrel{y}{\Perp}$ Cascade light curtains for multiple-track transport systems.
${ }^{4}$ ) Prevent mutual interference through sequential activation of the light curtains.
If the spatial configuration excludes mutual interference, multiple light curtains can also be activated simultaneously.

### 4.9.1 External triggering

## Trigger input

For an exact time assignment, it is possible to start the measurement cycle of a light curtain in a targeted manner by means of a pulse at the trigger input. In this way, mutual interference can be prevented in applications with multiple light curtains. This trigger signal generated in the control must be wired at all cascaded light curtains.
The individual light curtains are configured so that the respective measurement is started with different delay times to the trigger pulse (see figure 4.12).


Figure 4.12: Activation via external trigger

### 4.9.2 Internal triggering

With internal trigger activation, a CML 700i configured as "master light curtain" generates the trigger pulse. This trigger pulse is continuous; this means that no further activation is required from a primary control.

## Trigger output

The trigger output of the master light curtain makes available the trigger signal necessary for "cascading via internal trigger". The trigger output must be wired to the trigger inputs of the slave light curtains (see figure 4.13). This is used to start the measurement in the configured time sequence.
$\stackrel{\circ}{\square}$
The cycle time of the respective light curtain can be read out via the Sensor Studio configuration software (see chapter 15) or via the respective fieldbus interface (see chapter 10 et seq.).
$\stackrel{\circ}{\circ}$
The selection of activation via an internal or external trigger signal is made via the respective fieldbus interface (see chapter 10 et seq.) or via the Sensor Studio configuration software (see chapter 15).

For an example configuration, see chapter 14.6.
The following figure shows a wiring example for the cascading of three light curtains via internal trigger:


Trigger $\ln$ (on X1, e.g. pin 5)
2 Slave light curtain 3
3 Slave light curtain 2
4 Master light curtain 1
$5 \quad$ Trigger Out (on X1, e.g. pin 5)
Figure 4.13: Wiring example of three light curtains via internal trigger
The following example shows a configuration of three light curtains via internal trigger.


Figure 4.14: Example: cascading via internal trigger

### 4.10 Block evaluation of beam areas

With this function, the quantity of data to be transmitted can be reduced by restricting the imaging accuracy. The minimum resolution of the light curtain is still retained.

### 4.10.1 Defining beam area

To read out the beam states block-wise with a 16 -bit or 32 -bit telegram, the individual beams can be mapped to up to 32 areas independent of the maximum beam number. The individual beam information of grouped beams is linked to a logical bit, i.e., each area is represented as 1 bit.
The number of beams in an area can be freely defined. However, the beams must be adjacent to one another. The start beam and the end beam are to be defined as well as the conditions for switching of the area.

## NOTICE

Hold function for beam areas!
H The hold function (see chapter 4.5) also applies for the block evaluation of beam areas.

### 4.10.2 Autosplitting

The beams of the device are automatically divided into the selected number of areas of the same size. The states of the areas generated in this way can be read out in the process data by means of the "Area Out HiWord" and "Area Out - LoWord" parameters.

Procedure:

- Select logic combination of the beams within the areas (logical AND / logical OR)
- Define the number of desired areas (e.g., 16 or 32 )

The autosplitting configuration can be defined via the respective fieldbus interface (see chapter 10 et seq.) or via the Sensor Studio configuration software (see chapter 15).

### 4.10.3 Mapping beam area to switching output

If grouping individual beams or if creating a block, the beam state of any number of adjacent beams (area) can be signaled at a switching output.

The following options are possible here:

- To use a specific, single beam for the evaluation, e.g., as trigger signal for a primary control.
- To group the complete measurement field into one switching area and thereby signal at the switching output whether an object (at any position) is located in the measurement field.
- To configure up to 32 switching areas for a reference check or height monitoring; in many cases, this can make beam-data processing in the primary programmable logic control (PLC) unnecessary.

The switching conditions for the areas can be either AND or OR linked:

| Logic func- <br> tion | Group bit (area status) <br> [logic 1/0] |  |
| :--- | :--- | :--- |
| AND | 1 | if all beams mapped to the area are interrupted |
|  | 0 | if at least one beam is not interrupted in the selected area |
| OR | 1 | if at least one beam is interrupted in the selected area |
|  | 0 | if none of the beams mapped to the area are interrupted |

Areas may be sequential or overlapping. A maximum of 32 areas are available.

O The switching behavior or the conditions for switching a beam area on and off can be defined via the respective fieldbus interface (see chapter 10 et seq.) or via the Sensor Studio configuration software (see chapter 15).

For an example configuration, see chapter 14.2.
Example for the configuration of an OR or AND link for a light curtain with 32 beams

|  | OR | AND |
| :--- | :--- | :--- |
| Start Beam | 1 | 1 |
| End Beam | 32 | 32 |
| Switch-on condition | 1 beam interrupted | 32 beams interrupted |
| Switch-off condition | 0 beams interrupted | 31 beams interrupted |

The following figure shows how the beam areas can be arranged directly next to one another or freely overlapping.


Figure 4.15: Beam areas
For a mapping of previously defined beam areas to, e.g., four switching outputs (Q1 to Q4), see chapter 14.2.

## NOTICE

Increased number of logical beams for the diagonal- or crossed-beam function!
${ }^{4}$ Take into account the (increased) number of beams if the "diagonal"- or "crossed-beam" mode is activated (see chapter 4.1.2 or see chapter 4.1.3).

### 4.10.4 Teach height area

With the "Teach height area" function, it is possible to teach in up to four height areas, e.g. for height monitoring or sorting packets. In many cases, this saves time for programming.

- A maximum of four height areas are available.
- A height area is automatically defined using an object

When teaching a height area, all free beams above or below the object are combined into one height area. Therefore, the object cannot be located in the center of the measurement field length; the first or last beam must be interrupted.


Figure 4.16: Teaching the height area with the "Teach in height area" function

- To define the entire beam area as a height area, teaching of the height area is performed without an object (all beams free).


Figure 4.17: Teaching of the total beam area as height area without object

- The switching behavior or the conditions for switching the height area on or off via the "Teach height area" function is permanently defined as OR.
- Every IO pin can be assigned to a height area via the receiver control panel. Example: Digital IOs > IO Pin $2>$ Teach height $>$ Execute

○ On the receiver control panel, the "Teach height area" function is activated via the Teach height
$\square$ menu item. Example: Digital IOs > IO Pin $2>$ Teach height $>$ Execute

If the "Teach height area" function is activated via the receiver control panel, the IO pins are automatically assigned to the height areas.

Example configurations for the assignment of previously defined height areas to switching outputs Q1 to Q4:

- see chapter 14.2 "Example configuration - Mapping of beams $1 \ldots 32$ to output pin 2"


### 4.11 Switching outputs

### 4.11.1 Light/dark switching

The behavior of switching outputs Q1 to Q4 (or Q1 to Q2) can be configured with respect to light/dark switching. The setting ex works is "light switching", i.e., the outputs are activated if the light paths are free and become inactive if an object is detected in the measurement field.

$\stackrel{O}{\square}$
The output behavior can be changed to "dark switching" via the respective fieldbus interface (see chapter 10 et seq.), via the receiver control panel and via the Sensor Studio configuration software (see chapter 15).

### 4.11.2 Time functions

Each of the individual switching outputs can be assigned one of the time functions described in the following table.

O The accuracy of the switching delay is dependent on the measurement frequency. Observe this especially in cascaded operation.

| Time function | Selectable <br> duration | Description |
| :--- | :--- | :--- |
| Start-up delay <br> with re-trigger | $0 \ldots 65000 \mathrm{~ms}$ | Time that the sensor delays the start-up process after <br> detecting an object. <br> By means of a start-up delay, it is possible to suppress, <br> e.g., upward-protruding packaging remnants (stretch <br> wrap, etc.) during pallet height monitoring. |
| Switch-off delay <br> with re-trigger | $0 \ldots 65000 \mathrm{~ms}$ | Time that the sensor delays the switching back of the <br> output if the object leaves the detection range. |
| Pulse stretching | $0 \ldots 65000 \mathrm{~ms}$ | Minimum time that the state of the output is retained <br> independent of what the sensor detects during this time. <br> Pulse stretching is necessary for, e.g., hole recognition if <br> the PLC cycle time does not register short pulses. |
| Pulse suppression <br> with re-trigger | $0 \ldots 65000 \mathrm{~ms}$ | Minimum time that a measurement signal must be pres- <br> ent in order for the output to switch. Short interference <br> pulses are thereby suppressed. |

The various time functions can be configured via the respective fieldbus interface (see
$\pi$ chapter 10 et seq.) or via the Sensor Studio configuration software (see chapter 15).

### 4.12 Interference suppression (filter depth)

To suppress any faulty measurement values that may occur due to interference (ambient light, electromagnetic fields, ...), the filter depth of the light curtain can be increased.
"Filter depth" means that an interrupted/free beam is not included in the further data evaluation until the same beam status is recorded for the set number of measurement cycles.
Filter depth "1" = the beam states of each measurement cycle are output.
Filter depth " 3 " = only those beam states that were stable over three measurement cycles are output.
$\stackrel{O}{\square}$
Filter depth can be configured via the respective fieldbus interface (see chapter 10 et seq.) or via the Sensor Studio configuration software (see chapter 15).

## 5 Applications

The following typical applications with corresponding evaluation function (see chapter 4 ) exist for the measuring light curtain.

### 5.1 Height measurement



Figure 5.1: Height measurement
$\stackrel{4}{4}$ Evaluation function: Last interrupted beam (LIB).

### 5.2 Object measurement



Figure 5.2: Object measurement
(7) Height evaluation function: Last interrupted beam (LIB).
${ }^{\wedge}$ Width evaluation function: Number of all interrupted beams (TIB).

### 5.3 Width measurement, orientation detection



Figure 5.3: Width measurement, orientation detection
4. Evaluation function for width measurement: Number of all interrupted beams (TIB).
${ }^{4}$ Evaluation function for orientation detection: Single-beam evaluation (beam-stream) or first/last interrupted beam (FIB/LIB).

### 5.4 Contour measurement



Figure 5.4: Contour measurement
(7) Evaluation function: Single-beam evaluation (beam-stream).

### 5.5 Gap control/gap measurement



Figure 5.5: Gap control/gap measurement
${ }^{\wedge}$ ) Evaluation function: Single-beam evaluation (beam-stream).

### 5.6 Hole recognition

For a detailed configuration example see chapter 14.3.


Figure 5.6: Hole recognition
4.) For hole recognition within a web material, a beam area must be defined over the area to be monitored and mapped to an output. All beams in this area are interrupted. If a beam becomes "free" due to a flaw in the material, the output switches.
${ }^{4}$ If, for example, the web edge wanders slightly, the beam area can be dynamically adapted by "tracking" the start beam by selecting the First interrupted beam (F/B) evaluation function and the end beam by selecting the Last interrupted beam (LIB) evaluation function.

## 6 Mounting and installation

### 6.1 Mounting the light curtain

## NOTICE

No reflective surfaces, no mutual interference!
${ }^{4}$ ) Avoid reflective surfaces near the light curtains.
Objects may otherwise not be precisely detected due to halation.
${ }^{\wedge} \downarrow$ Ensure sufficient distance, suitable positioning or partitioning.
Optical sensors (e.g., other light curtains, photoelectric sensors, etc.) must not interfere with one another.
${ }^{4}>$ Avoid interference from outside light (e.g., from flash lamps, direct sunlight) on the receiver.
Mount the transmitter and receiver as follows:
${ }^{4}$ ) Select the fastening type for transmitter and receiver.

- Fastening via the T-groove on one side of the standard profile (see chapter 6.3).
- Fastening via the rotating bracket on the ends of the profile (see chapter 6.4).
- Fastening via the swiveling mounting brackets or parallel brackets (see chapter 6.5).
$\left.{ }^{4}\right)$ Have a suitable tool at hand and mount the light curtain in accordance with the notices regarding the mounting locations.
${ }^{4}$ ) Mount the transmitter and receiver at the same height or with the same housing reference edge, free of tension and with the base in full contact with the mounting surface.


## NOTICE

## Must be observed!

$\stackrel{4}{4}$ For horizontally mounted measuring light curtains with lengths of more than $2,000 \mathrm{~mm}$, use an additional mounting bracket in the middle of the light curtain.
$\stackrel{\rightharpoonup}{4}$ The optical surfaces of transmitter and receiver must be parallel to and opposite one another.
$\stackrel{\leftrightarrow}{\wedge}$ The transmitter and receiver connections must point in the same direction.
$\stackrel{\wedge}{ })$ Secure transmitter and receiver against turning or sliding.


1 Same height position / upper edge
2 Parallel alignment
3 Receiver
4 Transmitter
Figure 6.1: Arrangement of transmitter and receiver

To achieve the maximum operating range limit, transmitter and receiver must be aligned with one another as accurately as possible.

After mounting, you can electrically connect (see chapter 7) and start up (see chapter 8) the light curtain.

### 6.2 Definition of directions of movement

The following terms for alignment movements of the light curtain around one of its individual beams are used:


Sliding: movement along the longitudinal axis
b Turning: movement around the longitudinal axis
c Tilting: lateral turning movement diagonal to the lens cover
d Pitching: lateral turning movement in the direction of the lens cover
Figure 6.2: Directions of movement during alignment of the light curtain

### 6.3 Fastening via sliding blocks

By default, transmitter and receiver are delivered with two sliding blocks (three sliding blocks for measurement field lengths of more than $2,000 \mathrm{~mm}$ ) each in the side groove (see chapter 20).
$\stackrel{\wedge}{\wedge}$ Fasten transmitter and receiver to the machine or system via the lateral T-groove with M6 screws.

## $\xrightarrow{\circ}$

Sliding in the direction of the groove is possible, but turning, tilting and pitching is not.


Figure 6.3: Mounting via sliding blocks

### 6.4 Fastening via swivel mount

When mounting with the BT-2R1 swivel mount (see table 20.21), sold separately, the light curtain can be aligned as follows:

- Sliding through the vertical threaded holes in the wall plate of the swivel mount
- Turning by $360^{\circ}$ around the longitudinal axis by fixing on the screw-on cone
- Tilting around main axis
- Pitching through horizontal threaded holes in the wall mounting

The wall mounting through threaded holes makes it possible to lift the mounting bracket after the screws have been loosened over the connection cap. Therefore, the mounting brackets do not need to be removed from the wall when exchanging the device. Loosening the screws is sufficient.


Figure 6.4: Mounting via swivel mount

O Devices with rear connector outlet require an additional cylinder and screw for mounting with the
! BT-2R1 swivel mount. These extra parts are included in the scope of delivery of the device.

## One-sided mounting on the machine table

The sensor can be mounted directly on the machine table via an M5 screw on the blind hole in the end cap. On the other end, a BT-2R1 swivel mount can be used, for example, so that turning movements for alignment are possible despite the fact that the sensor is mounted on one side.

## NOTICE

Avoid reflection bypasses at the machine table!
Make sure that reflections on the machine table and in the vicinity are prevented reliably.


Figure 6.5: Mounting directly on the machine table

### 6.5 Fastening via swiveling mounting brackets

When mounting with the BT-2SSD/BT-4SSD or BT-2SSD-270 swiveling mounting brackets (see table 20.21), sold separately, the light curtain can be aligned as follows:

- Sliding in the direction of slot
- Turning $+/-8^{\circ}$ around the longitudinal axis

The BT-SSD (see figure 19.5) swiveling mounting brackets are also equipped with a vibration damper.

## 7 Electrical connection

### 7.1 Shielding and line lengths

The light curtains are equipped with modern electronics developed for industrial applications. In industrial environments, a number of sources of interference may affect the light curtains.
In the following, information is provided on the EMC-compliant wiring of the light curtains and the other components in the switch cabinet.

### 7.1.1 Shielding

## NOTICE

## General shielding information!

${ }^{4}$ ) Avoid interference emissions when using power components (frequency inverters, ...).
The necessary specifications under which the power component satisfies its CE Declaration of Conformity can be found in the technical descriptions of the power components.
In practice, the following measures have proven effective:
Properly ground the total system.
Screw mains filter, frequency inverter, etc., flat to a galvanized mounting plate (thickness 3 mm ) in the switch cabinet.
Keep cable between mains filter and inverter as short as possible and twist cables.
Shield both ends of the motor cable.
$\stackrel{y}{*}$ Carefully ground all parts of the machine and of the switch cabinet using copper strips, ground rails or grounding cables with large cross section.
$\stackrel{4}{4}$ Keep the length of the shieldless end of the cable as short as possible.
$\Leftrightarrow$ Guide the shielding untwisted to a terminal (no "RF braid").

## NOTICE

## Separate power and control cables!

${ }^{\wedge} \downarrow$ Lay the cables for the power components (mains filter, frequency inverter, ...) as far from the light curtain cables as possible (distance > 30 cm ).
${ }^{\Perp}$ Avoid laying power and light curtain cables parallel to one another.
(4) Cable crossings should be laid as perpendicular as possible.

## NOTICE

```
Lay cables close to grounded metal surfaces!
4 Lay the cables on grounded metal surfaces
This measure reduces interference coupling in the cables.
```


## NOTICE

Avoid leakage currents in the cable shielding!
$\Leftrightarrow$ Carefully ground all parts of the machine.
Leakage currents arise from incorrectly implemented equipotential bonding.
You can measure leakage currents with a clip-on ammeter.

## NOTICE

## Star-shaped cable connections!

$\leftrightarrow$ Ensure that the devices are connected in a star-shaped arrangement.
You thereby avoid mutual influences from various loads.
This prevents cable loops.

## Grounding the light curtain housings

${ }^{m} \Rightarrow$ Connect the transmitter housing and receiver housing of the light curtain to the protective conductor on the FE machine star point via the PE screw on the grounding slot nut (see figure 7.1).
The cable should have an impedance as low as possible for high-frequency signals, i.e., be as short as possible and have a large cross-sectional area (grounding strip, ...).
$\left.{ }^{4}\right)$ Use a lock washer and check the penetration of the anodized layer.
$\stackrel{y}{\wedge}$ Check the small Allen screw to ensure a secure connection between the grounding slot nut and housing. The Allen screw is correctly tightened upon delivery from the factory.
If you have changed the position of the grounding slot nut or the PE screw, tighten the small Allen screw.


Figure 7.1: Connecting the ground potential to the light curtain
Example for shielding both ends of the connection cables from the switch cabinet to the light curtain
$\stackrel{\wedge}{ }{ }^{\wedge}$ Ground the transmitter housing and receiver housing of the light curtain (see chapter "Grounding the light curtain housings").
$\left.{ }^{4}\right)$ Clamp the shield in the switch cabinet flat to FE (see figure 7.2).
Use special shielding terminals (e.g., Wago, Weidmüller, ...).


Figure 7.2: Connecting the cable shielding in the switch cabinet

Depicted shielding components from Wago, series 790 ...:

- 790 ... 108 screen clamping saddle 11 mm
- 790 ... 300 busbar holder for TS35

Example for shielding both ends of the connection cables from the PLC to the light curtain
$\stackrel{H}{ } \Rightarrow$ Ground the transmitter housing and receiver housing of the light curtain (see chapter "Grounding the light curtain housings").
${ }^{4}$ ) Only lay shielded light curtain cables to the PLC.
$\stackrel{\wedge}{\wedge}$ Clamp the shield flat to FE in the PLC (see figure 7.3). Use special shielding terminals (e.g., Wago, Weidmüller, ...).
$\stackrel{\wedge}{\wedge}$ Make certain that the mounting rail is well grounded.


Figure 7.3: Connecting the cable shielding to the PLC

Depicted shielding components from Wago, series 790 ...:

- 790 ... 108 screen clamping saddle 11 mm
- 790 ... 112 carrier with grounding foot for TS35


### 7.1.2 Cable lengths for shielded cables

${ }^{4}$ ) Observe the maximum cable lengths for shielded cables.
Table 7.1: $\quad$ Cable lengths for shielded cables

| Connection to the CML 700i | Interface | Max. cable length | Shielding |
| :--- | :--- | :--- | :--- |
| PWR IN/digital IO, IO-Link, analog | X1 | 20 m | required |
| PWR IN/digital IO (Y-connection cable and <br> synchronization cable) | X1 | 20 m | not required |
| Synchronization cable analog/IO-Link | X2/X3 | 20 m | required |
| BUS IN /BUS OUT (Y-fieldbus cable) | X2 | 40 m | required |

Designation of the interface connections:see chapter 7.3 "Device connections"

### 7.2 Connection and interconnection cables

Use only the cables listed in the accessories (see chapter 20) for all connections (connection cable, analog/IO-Link/fieldbus interconnection cable, cable between transmitter and receiver).

Use only shielded cables for the cable between transmitter and receiver.

## NOTICE

Competent persons and approved purpose!
$\stackrel{\Perp}{\Perp}$ Only allow competent persons to perform the electrical connection.
4 Select the functions so that the light curtain can be used as intended (see chapter 2.1).

### 7.3 Device connections

The light curtain is provided with the following connections:

| Device <br> connection | Type | Function |
| :--- | :--- | :--- |
| X1 on receiver | M12 connector, <br> 8-pin | Control interface and data interface: <br> • Voltage supply <br> - Switching outputs and control inputs <br> Configuration interface <br> - Synchronization interface <br> (for devices with fieldbus interface) |
| X2 on receiver | M12 socket, <br> $5-$ pin | Synchronization interface and fieldbus interface: <br> - Synchronization interface (for devices with analog output or <br> IO-Link interface) <br> • Fieldbus interface (for CANopen/Profibus/RS 485 Modbus <br> devices) |
| X3 on trans- <br> mitter | M12 connector, <br> $5-p i n$ | Synchronization interface (for all controller types) |

### 7.4 Digital inputs/outputs on connection X1

Ex works, input/output IO 1 (pin 2) is assigned the teach-in function and input/output IO 2 (pin 5) is assigned the trigger-in function.


Figure 7.4: Digital input/output schematic diagram

## NOTICE

## Single assignment of input functions!

« Each input function may only be used one time. If multiple inputs are assigned the same function, malfunctions may occur.

### 7.5 Electrical connection - CML 700i with IO-Link/analog interface

The electrical connection of devices with IO-Link and analog interfaces is established in the same way.

## NOTICE

Light curtain grounding!
$\stackrel{y}{ }{ }^{4}$ Ground the light curtain before establishing an electrical connection or connecting the voltage supply (see chapter "Grounding the light curtain housings").


## PWR IN/OUT

1 Receiver (R)
2 Transmitter ( T )
3 Connection cable (M12 socket, 8-pin),see table 20.3
4 Synchronization cable (M12 plug/socket, 5-pin), see table 20.4
Figure 7.5: Electrical connection - CML 700i with IO-Link/analog interface
$\stackrel{y}{\wedge}$ Connect connection X2 to connection X3 using the appropriate synchronization cable.
$\stackrel{4}{4}$ Connect connection X1 to the power supply and the control using the appropriate connection cable.

### 7.5.1 X1 pin assignment - CML 700i with IO-Link interface

8-pin, M12 plug (A-coded) for connecting to PWR IN/digital IO and IO-Link interface.


1 M12 plug (8-pin, A-coded)
Figure 7.6: Connection X1 - CML 700i with IO-Link interface
Table 7.2: $\quad$ X1 pin assignment - CML 700i with IO-Link interface

| Pin | X1 - Logic and power on the receiver |
| :--- | :--- |
| 1 | VIN: +24 V DC supply voltage |
| 2 | IO 1: input/output (configurable) <br> Ex works: teach input (Teach In) |
| 3 | GND: ground (0 V) |


| Pin | X1 - Logic and power on the receiver |
| :--- | :--- |
| 4 | C/Q: IO-Link communication |
| 5 | IO 2: input/output (configurable) <br> Ex works: trigger input (Trigger-In) |
| 6 | IO 3: input/output (configurable) |
| 7 | IO 4: input/output (configurable) |
| 8 | GND: ground (0 V) |

Connection cables: see table 20.3.

### 7.5.2 X1 pin assignment - CML 700i with analog interface

8-pin, M12 plug (A-coded) is used for connecting to PWR IN/digital IO and analog interface.


1 M12 plug (8-pin, A-coded)
Figure 7.7: Connection X1 - CML 700i with analog interface
Table 7.3: $\quad \mathrm{X} 1$ pin assignment -CML 700 i with analog interface

| Pin | X1 - Logic and power on the receiver |
| :--- | :--- |
| 1 | VIN: +24 V DC supply voltage |
| 2 | IO 1: input/output (configurable) <br> Ex works: teach input |
| 3 | GND: ground (0 V) |
| 4 | C/Q: IO-Link communication <br> Ex works: trigger input |
| 5 | $0 \ldots 10 \mathrm{~V}:$ analog voltage output |
| 6 | $4 \ldots 20$ mA: analog current output |
| 7 | AGND: analog output reference potential |
| 8 |  |

Connection cables: see table 20.3.

## NOTICE

## Select either voltage output (pin 6) or current output (pin 7)!

$\stackrel{\wedge}{ }{ }^{\wedge}$ Voltage output and current output (pin 6 and pin 7) are not available simultaneously. The type of analog signal must be selected via the receiver control panel (see chapter 9). Alternatively, the analog signal can be configured via the Sensor Studio configuration software (see chapter 15).

## NOTICE

Signal crosstalk in analog operation during simultaneous IO-Link communication!
If the simultaneous operation of IO-Link and analog signals is desired, perform the following measures:
$\stackrel{\wedge}{ }{ }^{4}$ Wire a filter to the analog input of the control.
$\left.{ }^{\star}\right\rangle$ Use shielded cables for the analog lines.

## NOTICE

Permissible load resistance on the analog output!
When connecting the analog output, note the permissible load resistance.
$\stackrel{\wedge}{ }{ }^{\wedge}$ Voltage output $0 \ldots 10 \mathrm{~V}$ DC / $0 \ldots 11 \mathrm{~V} \mathrm{DC}: \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$
${ }^{\star}$ Current output $4 \ldots 20 \mathrm{mADC} / 0 \ldots 24 \mathrm{mADC}: \mathrm{R}_{\mathrm{L}} \leq 500 \Omega$

### 7.5.3 X2/X3 pin assignment - CML 700i with IO-Link/analog interface

5-pin, M12 socket/plug (A-coded) for the connection between transmitter and receiver.


Figure 7.8: Connection X2/X3 - CML 700i with IO-Link/analog interface
Table 7.4: $\quad$ X2/X3 pin assignment - CML 700i with IO-Link/analog interface

| Pin | X2/X3 - Transmitter and receiver |
| :--- | :--- |
| 1 | SHD: FE functional earth, shield |
| 2 | VIN: +24 V DC supply voltage |
| 3 | GND: ground (0 V) |
| 4 | RS 485 Tx+: synchronization |
| 5 | RS 485 Tx-: synchronization |

Interconnection cables: see table 20.4.

### 7.6 Electrical connection - CML 700i with fieldbus interface

The electrical connection is established in the same way for all devices with fieldbus interfaces (CANopen, Profibus or RS 485 Modbus interface).

## NOTICE

Light curtain grounding!
$\stackrel{4}{ }{ }^{\Perp}$ Ground the light curtain before establishing an electrical connection or connecting the voltage supply (see chapter "Grounding the light curtain housings").


Figure 7.9: Electrical connection - CML 700i with CANopen, Profibus or RS 485 Modbus interface
${ }^{4}$ ) Connect connection X 2 on the receiver with the Y -interconnection cable; use both ends to connect to BUS IN or BUS OUT on the other network devices.
${ }^{4}$ ) Connect connection X 1 with the Y -interconnection cable; connect the short end to the power supply or configuration software interface and connect the long end to connection X3 on the transmitter.

### 7.6.1 Pin assignment - CML 700i with fieldbus interface

X1 pin assignment (logic and power on the receiver and connection to transmitter)
8 -pin, M12 plug (A-coded) for connecting to PWR IN/digital IO and transmitter.

$\begin{array}{ll}1 & \text { M12 plug (8-pin, A-coded) } \\ 2 & \text { M12 plug (5-pin, A-coded) }\end{array}$
Figure 7.10: X1/X3 connection - CML 700i with CANopen, Profibus or RS 485 Modbus interface

Table 7.5: $\quad$ X1/X3 pin assignment - CML 700i with CANopen, Profibus or RS 485 Modbus interface

| Pin (X1) | X1 - Logic and power on the receiver and connection to transmitter | Pin (X3) |
| :--- | :--- | :--- |
| 1 | VIN: +24 V DC supply voltage | 2 |
| 2 | IO 1: input/output (configurable) |  |
| 3 | GND: ground (0 V) | 3 |
| 4 | C/Q: IO-Link communication | 5 |
| 5 | IO 2: input/output (configurable) | 4 |
| 6 | RS 485 Tx-: synchronization | 1 |
| 7 | RS 485 Tx+: synchronization |  |
| 8 | SHD: FE functional earth, shield |  |

Connection cables: see table 20.7
Pin assignment on the short end of the Y-interconnection cable (PWR IN/digital IO)
5-pin, M12 plug (A-coded) on the short end of the Y-interconnection cable for connecting to PWR IN/ digital IO.


1 M12 plug (5-pin, A-coded)
Figure 7.11: Connection X1-PWR IN/digital IO

Table 7.6: X1 pin assignment - PWR IN/digital IO

| Pin | X1 - Short end of the Y-interconnection cable |
| :--- | :--- |
| 1 | VIN: +24 V DC supply voltage |
| 2 | IO 1: input/output (configurable) <br> Ex works: teach input |
| 3 | GND: ground ( 0 V ) |
| 4 | C/Q: IO-Link communication |
| 5 | IO 2: input/output (configurable) <br> Ex works: trigger input |

Connection cables: see table 20.8
Pin assignment on the long end of the Y-interconnection cable (PWR IN/digital IO)
The pin assignment on the long end of the $Y$-interconnection cable for synchronization of transmitter and receiver for devices with fieldbus interface is the same as for IO-Link/analog (see chapter 7.5.3).

X3 pin assignment (transmitter)
The pin assignment on the transmitter for devices with fieldbus interface is the same as for IO-Link/analog ; see chapter 7.5.3 and see table 7.5.
Connection cables: see table 20.7

### 7.6.2 X2 pin assignment - CML 700i with CANopen interface

5-pin, M12 plug (A-coded) for a device with CANopen interface for connecting to BUS IN/BUS OUT.


1 M12 socket (5-pin, A-coded)
Figure 7.12: Connection X2 - CML 700i with CANopen interface
Table 7.7: $\quad$ X2 pin assignment - CML 700i with CANopen interface

| Pin | X2 - CANopen interface |
| :--- | :--- |
| 1 | SHD: FE functional earth, shield |
| 2 | n.c. |
| 3 | CAN_GND: ground $(0 \mathrm{~V})$ |
| 4 | CAN_H: |
| 5 | CAN_L: |

Interconnection cables: see table 20.11.

### 7.6.3 X2 pin assignment - CML 700i with Profibus or RS 485 Modbus interface

5-pin, M12 plug (B-coded) for a device with Profibus or RS 485 Modbus interface for connecting to BUS IN/BUS OUT.


1 M12 socket (5-pin, B-coded)
Figure 7.13: X2 connection - CML 700i with Profibus or RS 485 Modbus interface

Table 7.8: $\quad$ X2 pin assignment - CML 700 i with Profibus or RS 485 Modbus interface

| Pin | X2 - Profibus/RS 485 Modbus interface |
| :--- | :--- |
| 1 | VP: +5 V for bus termination |
| 2 | PB_A: receive/transmit data, A-cable (Tx-) |
| 3 | PB_GND: ground (0 V) |
| 4 | PB_B (P): receive/transmit data, B-cable (Tx+) |
| 5 | SHD: FE functional earth, shield |

Connection cables: see table 20.13.
Profibus termination: see table 20.17 and see table 20.19.

### 7.7 Electrical supply

With regard to the data for the electrical supply, see table 19.6.

## 8 Starting up the device - Basic configuration

The basic configuration includes the alignment of transmitter and receiver and the basic configuration steps via the receiver control panel.

The following optional basic functions are available for operation and configuration via the receiver control panel:

- Define digital inputs/outputs
- Defining the filter depth
- Defining the display properties
- Changing the language
- Product information
- Resetting to factory settings


### 8.1 Aligning transmitter and receiver

## NOTICE

Alignment during commissioning!
$\stackrel{\leftrightarrow}{\leftrightarrow}$ The alignment performed during commissioning should only be performed by qualified personnel.
$\stackrel{H}{r}$ Observe the data sheets and mounting instructions of the individual components.

## Prerequisites:

- The light curtain has been mounted (see chapter 6) and connected (see chapter 7) correctly.
(4) Switch on the light curtain.


## NOTICE

Alignment mode!
${ }^{4}$ When switched on for the first time ex works, the light curtain automatically starts in process mode.
$\stackrel{\Perp}{\Perp}$ You can switch from process mode to alignment mode via the control panel.
${ }^{\Perp}$ Check whether the green LEDs on the receiver control panel and transmitter illuminate continuously.
The display shows the alignment state of the first beam (FB) and last beam (LB) via two bar graph indicators.


Figure 8.1: Example: display showing an incorrectly aligned light curtain
$\stackrel{\leftrightarrow}{ }{ }^{\wedge}$ Loosen the fastening screws of the transmitter and receiver.

Loosen the screws only enough so that the devices can just be moved.
(2) Turn or slide the transmitter and receiver until the optimum position is reached and the bar graph indicators show the maximum values for the alignment.

## NOTICE

Minimum sensitivity of the sensor!
${ }^{4}$ In order to perform a teach, a minimum level must be reached in the bar graph indicator (mark in the middle of the display).


Figure 8.2: Display showing an optimally aligned light curtain
${ }^{\wedge}$ Tighten the fastening screws of the transmitter and receiver.
Transmitter and receiver are aligned.

## Switching to process mode

After aligning, switch to process mode.

## ${ }^{\wedge}$ ) Select Display > Mode > Process mode.

The display in the receiver of the light curtain shows the process mode states with the number of all interrupted beams (TIB) and the logic states of the digital inputs/outputs (digital IOs).


Figure 8.3: Display showing the process mode state of the light curtain
The structure of the configuration in the receiver control panel menu is as follows:


## Switching to alignment mode

You can switch from process mode to alignment mode via the menu.

## *) Select Display > Mode > Alignment.

The structure of the configuration in the receiver control panel menu is as follows:


The next configuration step is teaching the environmental conditions (teach).

### 8.2 Teaching the environmental conditions

During teaching, the system checks whether the signals of all beams are within a certain corridor.
This means that a teach event generally regulates all beams to the preset function reserve (or sensitivity) for the current operating range. This ensures that all beams exhibit an identical switching behavior.

## NOTICE

Conditions for performing a teach!
${ }^{\Perp}$ When teaching without preconfigured blanking areas, the light path must always be completely free.
A teaching error will otherwise occur.
$\stackrel{\wedge}{\wedge}$ In this case, remove the obstacles and repeat the teach.
${ }^{4}$ If the light path is partially interrupted by structural elements, the permanently interrupted beams can be suppressed by means of blanking (auto blanking function). Interrupted beams are "deactivated" in this case.
${ }^{4}$ To automatically suppress the affected beams during teaching, configure the number of blanking areas via the configuration software Sensor Studio (see chapter 15).

The configuration can be performed via the respective fieldbus interface (see chapter 10 et seq.) or via the Sensor Studio configuration software (see chapter 15).

You can choose whether the teach values are to be stored permanently or only temporarily (while the operating voltage is applied). The configuration ex works is for permanent (non-volatile) storage.

A teach event can be performed both directly from process mode as well as from alignment mode.

## NOTICE

## Execute teach after changing the beam mode!

$\stackrel{\wedge}{\Perp}$ Always perform a teach after changing the beam mode (parallel-/diagonal-/crossed-beam scanning) as well.

Prerequisites:

- The light curtain must be correctly aligned (see chapter 8.1).
- The bar graph indicator must show a minimum level.
${ }^{4}$ ) You can use one of the following teach types:
Teach via receiver control panel (see chapter 8.2.1).
Teach via teach input (see chapter 8.2.2).
Teach via fieldbus interface (IO-Link, see chapter 10; CANopen, see chapter 11; Profibus, see
chapter 12; RS 485 Modbus, see chapter 13).
Teach via Sensor Studio configuration software (see chapter 15).


### 8.2.1 Teach via receiver control panel

If blanking areas are configured via the configuration software interface, a teach event is performed that takes these blanking areas into account (blanking teach or auto blanking, see chapter 4.6).

During a blanking teach or auto blanking, an "additional distance" is always added to the beams detected as interrupted. Safer operation is thereby achieved, e.g., in the case of vibrating guides, etc., in the "blanked" area.

Optimization of the blanked beams is to be performed via a software interface configuration.
A maximum of four adjacent areas of suppressed beams (blanking areas) can be configured.
The structure of the configuration in the receiver control panel menu is as follows:


```
*) Select Main Settings > Command > Teach.
&}\mathrm{ Press the }\downarrow\mathrm{ button to execute the teach.
The display shows
```

Wait...
If the teach was started while in process mode, the display returns to the process mode display after a successful teach (see chapter 8.1).
If the teach was started from alignment mode, the display returns to the bar graph indicator following a successful teach and shows the received signal level of the first beam (FB) and the last beam (LB) (see chapter 8.1).
If teach is successful, both bars display the maximum value.


Figure 8.4: Display after successful teach
If no bars are visible in the bar graph indicator for the first beam (FB) and the last beam (LB), an error has occurred. It is possible, e.g., that the reception signal is too low. You can correct errors according to the error list (see chapter 16).

## Power-Up Teach

After applying operating voltage, the "Power-Up Teach" function performs a teach event. The structure of the configuration in the receiver control panel menu is as follows:

$\stackrel{4}{4}$ Select Main Settings > Operation Settings > Power-Up Teach > Active.

### 8.2.2 Teaching via a control signal from the control

## Teach input (Teach In)

This input can be used to perform a teach following initial commissioning, change of the alignment or during operation. During this procedure, the transmitter and receiver adjust themselves to the maximum function reserve according to the distance.

To trigger a teach, a pulse must be applied on connection X1 on the receiver IO1 = pin 2 (factory setting) for longer than $20 \mathrm{~ms} \ldots$ but less than 80 ms .
Depending on the configuration (PNP or NPN), this corresponds to the following signal response:


Figure 8.5: Control signals for line teach with PNP configuration


Figure 8.6: Control signals for line teach with NPN configuration

## Performing a teach via the line input

Prerequisites:

- The light curtain must be correctly aligned (see chapter 8.1).
- A connection must be established between PLC and the line input (teach-in).
${ }^{4}$ ) Send a teach signal to the teach input via the control (see chapter "Teach input (Teach In)" for the data) to trigger a teach.
The display on the receiver control panel shows

Wait...
Following a successful teach, the display switches back to the bar graph (alignment mode). If teach is successful, both bars display the maximum value.

## ALeuze electronic



Figure 8.7: Display after successful teach
The next configuration step is to check the alignment.

### 8.3 Check alignment

## Prerequisites:

- The light curtain must first be correctly aligned and a teach must be performed.
$\stackrel{y}{*}$ Check whether the green LEDs on the receiver control panel and transmitter illuminate continuously.
$\stackrel{\Perp}{\triangleleft}$ Use the bar graph indicator to check whether the light curtain is optimally aligned, i.e., whether the maximum is reached for both the first beam (FB) and the last beam (LB) in the bar graph indicator.
$\stackrel{4}{4}$ Use the bar graph indicator to check the optimum alignment of the light curtain if you have corrected an error that occurred.

The next configuration steps:

- Perform extended configurations on the receiver control panel if necessary (see chapter 8.5)
- Start up CML 700i light curtains with analog output (see chapter 9)
- Start up CML 700i light curtains with IO-Link interface (see chapter 10)
- Start up CML 700i light curtains with CANopen interface (see chapter 11)
- Start up CML 700i light curtains with Profibus interface (see chapter 12)
- Start up CML 700i light curtains with RS 485 Modbus interface (see chapter 13)


### 8.4 Setting the function reserve

The function reserve can be set to three levels:

- High function reserve (low sensitivity)
- Medium function reserve
- Low function reserve (high sensitivity)

The function reserve can be set via the receiver control panel and the Sensor Studio configuration software (see chapter 15).
The function reserve can be set via the receiver control panel, via the respective fieldbus interface (see chapter 10 et seq.) or via the Sensor Studio configuration software (see chapter 15).

The sensitivity levels (e.g., high function reserve for stable operation, medium function reserve and low function reserve) are configured ex works with "high function reserve for stable operation". The "low function reserve" configuration enables the detection of partially transparent objects.

The structure of the configuration in the receiver control panel menu is as follows:


## ${ }^{\text {r }}$ S Select Main Settings > Operational Settings > Function Reserve

### 8.5 Extended configurations on the receiver control panel menu

It is not mandatory that extended configurations be performed on the receiver control panel menu in order to start up a light curtain.

### 8.5.1 Define digital inputs/outputs

The digital IOs, IO pin x configurations (IO function, inversion, area logic, start beam, end beam, etc.) are used to configure the parameters for the switching outputs.

The individual configuration steps for the extended configuration combinations are not described separately.

When configuring start and end beam, you can configure values of up to 1774. Values above 1774 (to 1999) are not accepted and must be entered again.

The structure of these configurations in the receiver control panel menu is as follows (multiple configurations displayed simultaneously):

## Examples

Configuration of pin 2 as PNP switching output
The following example shows a configuration of pin 2 as PNP switching output with additional configurations, such as area logic "OR" with a beam area of $1 \ldots 32$ and beam 1 as start beam according to the following table.

|  | OR |
| :--- | :--- |
| Start Beam | 1 |
| End Beam | 32 |
| Switch-on condition | 1 beam interrupted |
| Switch-off condition | 0 beams interrupted |


4) Select Digital IOs $>$ IO Logic $>$ Positive PNP.
$\Leftrightarrow$ Select Digital IOs $>$ IO Pin $2>$ IO Function $>$ Area Out.
4. Select Digital IOs $>$ IO Pin $2>$ Inversion $>$ Inverted.
4) Select Digital IOs $>$ IO Pin $2>$ Area Logic $>$ OR.

4 Select Digital IOs > IO Pin $2>$ Start Beam > 001 .
4. Select Digital IOs $>$ IO Pin $2>$ End Beam $>032$.

Configuration of pin 2 as PNP warning output
The following example shows the configuration of pin 2 as PNP warning output.

| Level 0 | Level 1 | Level 2 | Description |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Digital IOs |  |  |  |  |  |  |  |
|  | IO Logic |  | Positive PNP | Negative NPN |  |  |  |
|  | 10 Pin 2 |  |  |  |  |  |  |
|  |  | IO Function | Trigger In | Teach In | Area Out | Warn Out | Trigger Out |
|  |  | Inversion | Normal | Inverted |  |  |  |
|  |  | Teach height | Execute | Exit |  |  |  |
|  |  | Area Logic | AND | OR |  |  |  |
|  |  | Start Beam | (enter value) |  |  |  |  |
|  |  | End Beam | (enter value) |  |  |  |  |

4) Select Digital IOs $>$ IO Logic $>$ Positive PNP.

4 $)$ Select Digital IOs $>$ IO Pin $2>$ IO Function $>$ Warn Out.

Configuration of pin 2 as PNP trigger input
The following example shows the configuration of pin 2 as PNP trigger input.

4) Select Digital IOs $>$ IO Logic $>$ Positive PNP.
4) Select Digital IOs $>\mathrm{IO}$ Pin $2>\mathrm{IO}$ Function $>$ Trigger In.

Trigger input and output are only active if cascading (triggered operation) was activated via the configuration interface or process interface.

A teach input is configured according to the same principle.
4) Select Digital IOs > IO Logic > Positive PNP.

ヶ Select Digital IOs $>$ IO Pin $2>$ IO Function $>$ Teach input.

## Configuration of pin 5 as PNP height area

The following example shows the configuration of pin 5 as PNP height area.

| Level 0 | Level 1 | Level 2 | Description |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Digital IOs |  |  |  |  |  |  |  |
|  | IO Logic |  | Positive PNP | Negative NPN |  |  |  |
|  | 10 Pin 5 |  |  |  |  |  |  |
|  |  | 10 Function | Trigger In | Teach In | Area Out | Warn Out | Trigger Out |
|  |  | Inversion | Normal | Inverted |  |  |  |
|  |  | Teach height | Execute | Exit |  |  |  |
|  |  | Area Logic | AND | OR |  |  |  |
|  |  | Start Beam | (enter value) |  |  |  |  |
|  |  | End Beam | (enter value) |  |  |  |  |

4. Select Digital IOs $>1 \mathrm{IO}$ Logic $>$ Positive PNP.
$\Leftrightarrow$ Select Digital IOs $>\mathrm{IO}$ pin $5>$ Teach height $>$ Execute.

The height area is automatically configured as an area output.
IO Function > Area Out must also be selected.

### 8.5.2 Inversion of the switching behavior (light/dark switching)

Light/dark switching is configured with this configuration.

For all digital process interfaces, the configuration can also be performed via the respective fieldbus interface (see chapter 10 et seq.) or via the Sensor Studio configuration software (see chapter 15).

The following example shows how the switching output is switched from light switching (normal) to dark switching (inverted).
The structure of the configuration in the receiver control panel menu is as follows:

| Level 0 | Level 1 | Level 2 | Description |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Digital IOs |  |  |  |  |  |  |  |
|  | IO Logic |  | Positive PNP | Negative NPN |  |  |  |
|  | 10 Pin 2 |  |  |  |  |  |  |
|  |  | IO Function | Trigger In | Teach In | Area Out | Warn Out | Trigger Out |
|  |  | Inversion | Normal | Inverted |  |  |  |
|  |  | Teach height | Execute | Exit |  |  |  |
|  |  | Area Logic | AND | OR |  |  |  |
|  |  | Start Beam | (enter value) |  |  |  |  |
|  |  | End Beam | (enter value) |  |  |  |  |

## $\stackrel{y}{c}$ Select Digital IOs > IO Pin 2 > Inversion > Inverted.

### 8.5.3 Defining the filter depth

The filter depth is used to specify that an evaluation of the measurement values occurs only once the beam states are stable over multiple measurement cycles.
Example: with a filter depth of " 5 ", five measurement cycles must be consistent before an evaluation is performed. For further information, see also the description of interference suppression (see chapter 4.12).

For all digital process interfaces, the configuration can also be performed via the respective fieldbus interface (see chapter 10 et seq.) or via the Sensor Studio configuration software (see chapter 15).

When configuring the filter depth, you can enter values of up to 255 . Values above 255 (to 299) are not accepted and must be entered again.

The structure of the configuration in the receiver control panel menu is as follows:


## $\stackrel{\Perp}{\wedge}$ Select Main Settings > Operational Settings > Filter Depth.

### 8.5.4 Defining the display properties

With these configurations for the display, the brightness and a time unit for darkening the display are defined.

## Visibility:

- Off: no display; the display remains dark until a button is pressed.
- Dark: text is only slightly visible.
- Normal: text is visible with good contrast.
- Bright: text appears very bright.
- Dynamic: The display darkens gradually over the number of seconds configured under Time Unit (s). During this time span, the display passes through all levels, from bright to off.

After approx. 5 minutes without button actuation, configuration mode is exited and the display changes to the previous mode.

When configuring the Visibility in the dark, normal and bright modes, the display is completely inverted after approx. 15 minutes to prevent the LEDs from burning in.

When configuring the Time Unit (s), you can enter values of up to 240 seconds. Values above 240 (to 299) are not accepted and must be entered again.

The structure of these configurations in the receiver control panel menu is as follows:

| Level 0 | Level 1 | Level 2 |
| :---: | :---: | :---: |
| Display |  |  |
|  | Language |  |
|  | Mode |  |
|  | Visibility |  |
|  | Time Unit (s) |  |

Description

| English | German | French | Italian | Spanish |
| :--- | :--- | :--- | :--- | :--- |
| Process mode | Alignment |  |  |  |
| Off | Dark | Normal | Bright | Dynamic |

(enter value)
$\min =1$
$\max =240$

```
M}\mathrm{ Select Display > Visibility.
& Select Display > Time Unit (s).
```


### 8.5.5 Changing the language

The system language can be configured with this configuration.
The structure of the configuration in the receiver control panel menu is as follows:

| Level 0 | Level 1 | Level 2 | Description |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Display |  |  |  |  |  |  |  |
|  | Language |  | English | German | French | Italian | Spanish |

## ${ }^{\text { }}$ ) Select Display > Language.

### 8.5.6 Product information

With this configuration, you can read out product data (part number, type designation and other produc-tion-specific data) of the light curtain.
The structure of the configuration in the receiver control panel menu is as follows:

| Level 0 | Level 1 | Level 2 | Description |
| :---: | :---: | :---: | :---: |
| Information |  |  |  |
|  | Product name |  | CML 720i |
|  | Product ID |  | Receiver part no. (e.g., 50119835) |
|  | Serial number |  | Receiver serial number (e.g., 01436000288) |


$\stackrel{\text { r }}{ }$ Select Information.

### 8.5.7 Reset to factory settings

Factory settings can be restored with this configuration.
The structure of this menu item in the receiver control panel menu is as follows:

| Level 0 | Level 1 | Level 2 | Description |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Main Settings     <br>  Command  Teach Reset | Factory Settings |  |  |  |  |

« Select Main Settings > Command > Factory Settings.

## 9 Starting up the device - Analog output

### 9.1 Analog output configuration on the receiver control panel

The configuration of the analog output involves the following steps on the receiver control panel.
$\xrightarrow{\circ}$
The configurations can be performed via the receiver control panel or the Sensor Studio configuration software (see chapter 15). These configurations are stored in non-volatile memory so that they are retained the next time the device is switched on.

It is always the last-made settings which are active.
General prerequisites:

- The measuring light curtain has been mounted (see chapter 6) and connected (see chapter 7 "Electrical connection") correctly.
- The basic configuration has been performed (see chapter 8).


## Configuration of analog signal, analog function, characteristic curve (start beam / end beam)

The following example shows the configuration of an analog output to $4 \ldots 20 \mathrm{~mA}$. Current output pin 7 supplies an analog output signal depending on the first (FIB) interrupted beam. The measurement range goes from beam no. 1 ... 32.
Structure of the analog signal, analog function, characteristic curve (start beam, end beam) settings in the receiver control panel menu (multiple settings shown simultaneously):
Level 0 Level 1 Level $2 \quad$ Description

| Analog Output | Analog Signal | Off | U: $0 \ldots 5 \mathrm{~V}$ | U: $0 \ldots 10 \mathrm{~V}$ | U: $0 \ldots 11 \mathrm{~V}$ | $\mathrm{I}: 4 \ldots 20 \mathrm{~mA}$ | $\mathrm{I}: 0 \ldots 20 \mathrm{~mA}$ | $\mathrm{I}: 0 . .24 \mathrm{~mA}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Analog Function | Off | FIB | FNIB | LIB | LNIB | TIB | TNIB |
|  | Start Beam | 001 |  |  |  |  |  |  |
|  | End Beam | 032 |  |  |  |  |  |  |

$\stackrel{y}{>}$ Select the type of analog signal.
Off, or a defined voltage level and/or current level.
$\left.{ }^{4}\right)$ Select the evaluation function whose result is to be depicted on the analog output. Off, or FIB; FNIB; LIB; LNIB; TIB; TNIB.
$\stackrel{\wedge}{\wedge}$ Set the start of the characteristic curve.
The start of the characteristic curve is defined by the start beam.
${ }^{4}$ ) Set the end of the characteristic curve.
The end of the characteristic curve is defined by the end beam.

O By entering End Beam < Start Beam, the characteristic curve of the analog output can be invert] ed.

The analog-device-specific configuration is concluded. The CML 700i is ready for process mode.

### 9.2 Analog output configuration via the Sensor Studio configuration software

The configuration of the analog output involves the following steps in the Sensor Studio configuration software (see chapter 15).

The configurations that are available in the IODD file via the Sensor Studio configuration software (see chapter 15) can, in part, also be performed via the receiver control panel. Both configuration types are stored in non-volatile memory so that they are retained the next time the device is switched on.

It is always the last set configurations which are active. If the last changes to the configuration were made via the receiver control panel, any settings changed via, e.g., the control or PC are overwritten.

General prerequisites:

- The measuring light curtain has been mounted (see chapter 6) and connected (see chapter 7) correctly.
- The measuring light curtain is connected to a PC via an IO-Link USB master (see chapter 15).
- Sensor Studio (incl. device-specific IODD file) is installed on the PC (see chapter 15).
- The basic configuration has been performed (see chapter 8).

The IO Device Description (IODD) can be used both with connected light curtain for direct configuration or without connected light curtain for creating device configurations.

The IODD file is supplied with the product CD. An updated version can also be downloaded from the Internet at www.leuze.com.
$\stackrel{\leftrightarrow}{\wedge}$ Open the Sensor Studio configuration software on the PC (see chapter 15).
( ) Configure the following parameters:

- Smoothing (definition of a beam number for which no object detection is yet detected)
- Type of analog signal (off; or selection of defined voltage level and/or current level) (see chapter 9)
- Type of analog function (off; or FIB; FNIB; LIB; LNIB; TIB; TNIB) (see chapter 9)
- Characteristic curve configuration (start beam and end beam) (see chapter 9.3)
- Filter depth (definition of a minimum number of measurement cycles after which beam evaluation is performed)
${ }^{4}$ If necessary, configure additional parameter/process data with the aid of the process data table (see chapter 10.3).
${ }^{4}$ S Save the configuration in the CML 700i.
The CML 700i is ready for process mode.


### 9.3 Behavior of the analog output

The output logic of the CML 700i returns the output signals to the programmable logic control (PLC). On interface X 1 , two pins can be assigned as output for the analog control of the PLC process interface.
The selected beam area (start beam/end beam) is mapped to the analog output of the CML 700i. The conversion is by means of a 12-bit D/A converter, whereby the 12-bit value (4096) is divided by the selected number of beams. The resulting values, mapped to the respective, configured analog values, yield the characteristic curve. If there are only a few beams, this results in an erratic characteristic curve.

The beams used for the measurement can be freely defined via the receiver control panel. It is also possible to specify that only a part of the beam area be used for the measurement.


Figure 9.1: Characteristic curve of analog output (default characteristic curve)
If a higher beam number is selected for the beginning of the measurement range than for the end of the measurement range, the characteristic curve is inverted.


Figure 9.2: Characteristic curve of analog output (inverted characteristic curve)
Overview: states of the analog output

| Configuration for height and edge measurement |  |  | Analog value corresponding to the beam state |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | All free | All or end beam interrupted |
| Standard | Start Beam | End Beam | 4 mA | 20 (24) mA |
|  |  |  | 0 V | (5) 10 (11) V |
| Inverted | End Beam | Start Beam | 20 (24) mA | 4 mA |
|  |  |  | (5) 10 (11) V | 0 V |

The rise time of the analog output from $0 \%$ to $100 \%$ can take up to 2 ms . To keep the control from evaluating the analog value of a rising edge, configure the control so that a value is detected as valid if it remains unchanged for a certain length of time.

## 10 Starting up the device - IO-Link interface

The configuration of an IO-Link interface involves the following steps on the receiver control panel and the IO-Link master module of the control-specific configuration software.

General prerequisites:

- The measuring light curtain has been mounted (see chapter 6) and connected (see chapter 7) correctly.
- The basic configuration has been performed (see chapter 8).


### 10.1 Defining IO-Link device configurations on the receiver control panel

The parameters for the IO-Link interface are configured with the bit rate and process data length (PD length) configurations. By changing the bit rate and/or the process data length, the light curtain receives a new IO-Link device ID and must be operated with the compatible IO Device Description (IODD).

## NOTICE

Changes take effect immediately!
${ }^{4}$ ) The changes take effect immediately (without restarting).
$\stackrel{\Perp}{ }$ The IODD file is supplied with the device and is available for download at www.leuze.com.


Factory Settings:
Bit rate $(\mathrm{COM} 2)=38.4 \mathrm{kbit} / \mathrm{s}$
$P D$ length: 2 bytes
The structure of these configurations in the receiver control panel menu is as follows:

Level 0
Level 1
Level 2
Description

() Select Main Settings $>$ IO-Link $>$ Bit rate.
$\stackrel{y}{*}$ Select Main Settings $>$ IO-Link $>$ PD-Length.

The bit rate and PD length are configured.
Other possible configuration steps are performed via the Sensor Studio configuration software (see chapter 15).
Process mode is configured via the IO-Link master module of the control-specific software.

### 10.2 Defining configurations via the IO-Link master module of the PLC-specific software

General prerequisites:

- The measuring light curtain has been mounted (see chapter 6) and connected (see chapter 7) correctly.
- The basic configuration has been performed (see chapter 8).
- IO-Link-specific basic configurations have been performed.
- IO-Link bit rate selected
- IO-Link PD length selected

The IO Device Description (IODD) can be used both with connected light curtain for direct con-
figuration or without connected light curtain for creating device configurations.
The IODD files are supplied with the product. The IODD can also be downloaded from the Internet at www.leuze.com.
${ }^{4}$ Open the configuration software of the IO-Link master module.
$\stackrel{\wedge}{ }{ }^{\wedge}$ Configure the following parameters:

- Beam mode (parallel-, diagonal-, crossed-beam)
- Blanking settings
- Teach settings
$\stackrel{y}{ } \Rightarrow$ Perform a teach. This is possible via the receiver control panel or the control group in the IO-Link process data (IO-Link object 2).
${ }^{〔}$ If necessary, configure additional parameter/process data (see chapter 10.3).
$\stackrel{\leftrightarrow}{\wedge}$ Save the configuration via the control group in the IO-Link process data (IO-Link object 2).
The IO-Link-specific configurations are performed and copied to the device. The device is prepared for process mode.


### 10.3 Parameter/process data for IO-Link

The parameter data and process data are described in the IO-Link Device Description (IODD) file.
Details on the parameters and on the structure of the process data can be found in the .html document, which is contained in the IODD zip file.

## $\ddagger$ Sub-index access is not supported.

## Overview

| Group | Group name |
| :--- | :--- |
| Group 1 | System commands (see page 78) |
| Group 2 | CML 700i status information (see page 78) |
| Group 3 | Device description (see page 78) |
| Group 4 | General configurations (see page 80) |
| Group 5 | Extended settings (see page 81) |
| Group 6 | Process data settings (see page 81) |
| Group 7 | Cascading/trigger settings (see page 82) |
| Group 8 | Blanking settings (see page 83) |
| Group 9 | Teach settings (see page 84) |
| Group 10 | Digital IO pin N settings (N = 2, 5, 6, 7) (see page 85) |
| Group 11 | Time module settings for digital outputs (see page 85) |
| Group 12 | Analog device settings (see page 87) |
| Group 13 | Autosplitting (see page 88) |
| Group 14 | Configuration for block evaluation of beam areas (see page 88) |
| Group 15 | Evaluation functions (see page 90) |

## System commands (group 1)

$\stackrel{O}{\square}$
The system commands trigger a direct action in the device.

| Parameter | Index | Sub- <br> index | Data type | Ac- <br> cess | Value range | Default | Description |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| System command | 2 |  | unsigned 8 | Wo | $128,130,162$, <br> 163 | 128: Reset device <br> $130:$ Factory reset <br> 162: Perform teach <br> 163: Save settings <br> Notice: |  |
| Processing of the Save command takes up to |  |  |  |  |  |  |  |
| 600 ms. During this time, no other data/telegrams |  |  |  |  |  |  |  |
| are accepted. |  |  |  |  |  |  |  |

## CML 700i status information (group 2)

O. The status information consists of operating state information or error messages.

| Parameter | Index | Sub- <br> index | Data type | Access | Value range | Default | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CML 700i status information | 162 | 0 | unsigned 16 | RO |  |  | Operating state information or error messages |
| Parameter | Index | Subindex | Data type | Access | Value range | Default | Description |
| Status of teach event | 69 | 0 | unsigned 8 | RO | 0, 1, 128 | 0 | Status information on teach event <br> 0 : Teach successful <br> 1: Teach running <br> 128: Teaching error |
| Alignment | 70 | 0 | record 32 bit, isolated access to sub-index not possible | RO |  |  | Information on the signal level of the first and last beam. The value changes depending on the selected function reserve. |
| Signal level of last beam | 70 | 1 (bit offset = 16) | unsigned 16 | RO |  | 0 |  |
| Signal level of first beam | 70 | 2 (bit offset = 0) | unsigned 16 | RO |  | 0 |  |

## Device description (group 3)

O The device description specifies the device characteristics, e.g., beam spacing, the number of
$\pi$ physical/logical individual beams, the number of cascades (16 individual beams) in the device and the cycle time.

| Parameter | Index | Subindex | Data type | Access | Value range | Default | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Manufacturer name | 16 | 0 | string 32 bytes | RO |  |  | Leuze electronic GmbH + Co. KG |
| Manufacturer text | 17 | 0 | string 64 bytes | RO |  |  | Leuze electronic - the sensor people |
| Product name | 18 | 0 | string 64 bytes | RO |  |  | Receiver type designation |
| Product ID | 19 | 0 | string 20 bytes | RO |  |  | Order number of the receiver (8-digit) |
| Product text | 20 | 0 | string 64 bytes | RO |  |  | "Measuring Light Curtain CML 720i" |
| Serial number Receiver | 21 | 0 | string 16 bytes | RO |  |  | Serial number of the receiver for unique product identification |
| Hardware version | 22 | 0 | string 20 bytes | RO |  |  |  |
| Firmware version | 23 | 0 | string 20 bytes | RO |  |  |  |
| User-specific name | 24 | 0 | string 32 bytes | RW |  | *** | Device designation defined by the user |
| Device status | 36 | 0 | unsigned 8 | R | $0 \ldots 4$ |  | Value: 0 device is OK <br> Value: 1 maintenance required <br> Value: 2 outside of specifications <br> Value: 3 function test <br> Value: 4 error |
| Receiver part no. | 64 | 0 | string 20 bytes | RO |  |  | Order number of the receiver (8-digit) |
| Transmitter product designation | 65 | 0 | string 64 bytes | RO |  |  | Type designation |
| Transmitter part no. | 66 | 0 | string 20 bytes | RO |  |  | Order number of the transmitter (8-digit) |
| Transmitter serial number | 67 | 0 | string 16 bytes | RO |  |  | Transmitter serial number for unique product identification |
| Device characteristics | 68 | 0 | record 80 bit, isolated access to sub-index not possible | RO |  |  | The device characteristics specify the beam spacing, the number of physical/logical individual beams, the number of cascades (16 individual beams) in the device and the cycle time. |
| Beam spacing | 68 | 1 (bit offset = 64) | unsigned 16 | RO | 5, 10, 20, 40 | 5 | Distance between two adjacent optical individual beams. |
| Number of physical individual beams | 68 | 2 (bit offset = 48) | unsigned 16 | RO |  | 16 |  |
| Number of configured logical individual beams | 68 | 3 (bit offset = 32) | unsigned 16 | RO |  | 16 | The number of logical individual beams is dependent on the selected operating mode. <br> The evaluation functions of the CML 700i are calculated on the basis of the logical individual beams. |
| Segment number of a beam-stream with 16 beams | 68 | 4 (bit offset = 16) | unsigned 16 | RO |  | 1 | The CML 700i has a modular structure. 16 or 32 individual beams are always grouped into a cascade. |
| Device cycle time | 68 | 5 (bit offset =0) | unsigned 16 | RO |  | 1000 | The device cycle time defines the duration of a measurement cycle of the CML 700i. |


| Parameter | Index | Subindex | Data type | Access | Value range | Default | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Device version | 90 | 0 | unsigned 32 | RW | 1... 6 | 1 | Interfaces: <br> 1: Reserved <br> 2: Analog device with $2 x$ inputs/outputs <br> 3: IO-Link device with $4 x$ inputs/outputs <br> 4: CANopen device with $2 x$ inputs/outputs <br> 5: Profibus device with $2 x$ inputs/outputs <br> 6: RS 485 Modbus device with $2 x$ inputs/outputs |
| CANopen settings | 91 | 0 | record 16 bit, isolated access to sub-index not possible |  |  |  | Node ID and bit rate are set under CANopen settings. |
| CANopen bit rate | 91 | $\begin{aligned} & 1 \text { (bit } \\ & \text { offset } \\ & =8) \end{aligned}$ | unsigned 8 |  | $0 \ldots 3$ | 0 | 0: $1000 \mathrm{kbit} / \mathrm{s}$ <br> 1: $500 \mathrm{kbit} / \mathrm{s}$ <br> 2: $250 \mathrm{kbit} / \mathrm{s}$ <br> 3: $125 \mathrm{kbit} / \mathrm{s}$ |
| CANopen node ID | 91 | 2 (bit offset = 0) | unsigned 8 | RW | $1 . . .127$ | 10 |  |
| Profibus settings | 92 | 0 | record 32 bit, isolated access to sub-index not possible |  |  |  | Profibus settings: bus address, bit rate |
| Profibus bit rate | 92 | 1 (bit offset = 8) | unsigned 8 |  | $0 \ldots 3$ | 6 | 0: 9.6 kbit/s <br> 1: $19.2 \mathrm{kbit} / \mathrm{s}$ <br> 2: $45.45 \mathrm{kbit} / \mathrm{s}$ <br> 3: $93.75 \mathrm{kbit} / \mathrm{s}$ <br> 4: $187.5 \mathrm{kbit} / \mathrm{s}$ <br> 5: $500 \mathrm{kbit} / \mathrm{s}$ <br> 6: $1500 \mathrm{kbit} / \mathrm{s}$ <br> 7: $3000 \mathrm{kbit} / \mathrm{s}$ |
| Bus address | 92 | 2 (bit offset = 8) | unsigned 8 | RW | $1 . .126$ | 126 |  |

## General configurations (group 4)

- Configured under group 4 "General configurations" are the type of scanning (parallel-/diagonal-/crossed-beam), counting direction and minimum object diameter for the evaluation (smoothing). The minimum hole size for the evaluation, e.g., with web material, is configured via inverted smoothing.

| Parameter | Index | Sub- <br> index | Data type | Ac- <br> cess | Value range | Default | Description |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| General settings | 71 | 0 | record 32 bit, <br> isolated <br> access to <br> sub-index not <br> possible | RW |  |  |  |
| Beam mode | 71 | 1 <br> (bit <br> offset <br> $=24)$ | unsigned 8 | RW | $0 \ldots 2$ | 0 | 0: Parallel-beam scanning <br> 1: Diagonal-beam scanning <br> 2: Crossed-beam scanning |


| Parameter | Index | Sub- <br> index | Data type | Ac- <br> cess | Value range | Default | Description |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Counting direction | 71 | 2 <br> (bit <br> offset <br> $=16)$ | unsigned 8 | RW | $0 \ldots 1$ | 0 | 0: Normal - beginning at the connection side, <br> : Inverted - beginning opposite the connection <br> side |
| Smoothing | 71 | 3 <br> (bit <br> offset <br> $=8)$ | unsigned 8 | RW | $1 \ldots 255$ | 1 | Smoothing: <br> Less than interrupted beams are ignored. |
| Inverted smoothing | 71 | 4 <br> (bit <br> offset <br> 0) | unsigned 8 | RW | $1 \ldots 255$ | 1 | Inverted smoothing: <br> Less than i free beams are ignored. |

## Extended settings (group 5)

O The extended settings specify the filter depth, integration time (hold function) and button lock on the receiver control panel.

| Parameter | Index | Sub- <br> index | Data type | Ac- <br> cess | Value range | Default | Description |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Extended settings | 74 | 0 | record 32 bit, <br> isolated <br> access to <br> sub-index not <br> possible | RW |  |  |  |
| Filter Depth | 74 | 2 <br> (bit <br> offset <br> $=16)$ | unsigned 8 | RW | $1 \ldots 255$ | 1 | The filter depth indicates the necessary number of <br> consistent beam states before the evaluation of the <br> measurement values. The filter depth corresponds <br> to the number of passes with interrupted beam so <br> that the result leads to switching. |
| Integration time | 74 | 3 <br> (bit <br> offset <br> 0) | unsigned 8 | RW | $0 \ldots 65535$ | 0 | All measurement values are accumulated and <br> retained over the duration of the integration time. <br> Hold function in ms. |

## Process data settings (group 6)

T The process data settings describe the cyclically transmitted process data.

The process data extension permits the serial output of the individual pieces of beam data. Each individual beam can be processed and transferred as a bit independent of measurement field length, resolution and beam mode (beginning with firmware version v2.10).

## NOTICE

A maximum of 256 beams can be processed as a bit!
${ }^{4}$ ) The IO-Link specification only permits 32 bytes as process data; i.e., up to 256 beams can each be processed and transmitted as a bit.
${ }^{4}$ ) Through the limitation of the process data length, the beams, depending on the resolution, can only be processed and transmitted up to a certain measurement field length as a bit.

Examples for the limitation of the measurement field length:

- Resolution of 5 mm : Measurement field length up to 1280 mm
- Resolution of 10 mm : Measurement field length up to 2560 mm
- Resolution of $20 \mathrm{~mm}, 40 \mathrm{~mm}$ : No limitation of the measurement field length

| Parameter | Index | Sub- <br> index | Data type | Ac- <br> cess | Value range | Default | Description |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Process data settings | 72 | 0 | record <br> 128 bit, iso- <br> lated access <br> to sub-index <br> not possible | RW |  |  |  |

## Cascading/trigger settings (group 7)

To prevent mutual interference, multiple light curtains can be operated with a time offset with re-
spect to one another (cascade). Here, the master generates the cyclical trigger signal; the slaves start their measurement after delay times, which are to be set to different values.

| Parameter | Index | Sub- <br> index | Data type | Ac- <br> cess | Value range | Default | Description |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Trigger Settings | 73 | 0 | record 64 bit, <br> isolated <br> access to <br> sub-index not <br> possible | RW |  |  |  |
| Cascading | 73 | 1 <br> (bit <br> offset <br> $=56)$ | unsigned 8 | RW | $0 \ldots 1$ | 0 | 0: Not active (constant measurement of the sensor) <br> 1: Active (sensor expects trigger signal) |
| Function type | 73 | 2 <br> (bit <br> offset <br> $=48)$ | unsigned 8 | RW | $0 \ldots 1$ | 0 | 0: Slave (expects trigger signal) <br> 1: Master (sends trigger signal) |
| Trigger delay time $\rightarrow$ | 73 | 3 <br> Start measurement <br> (bit <br> offset <br> $=32)$ | unsigned 16 | RW | $500 \ldots 65535$ | 500 | Unit: $\mu \mathrm{s}$ |
| Master cycle time | 73 | 5 <br> (bit <br> offset <br> =0) | unsigned 16 | RW | $1 \ldots 6500$ | 1 | Unit: ms |

## Blanking settings (group 8)

$\xrightarrow{\circ}$
Up to four beam areas can be deactivated. Deactivated beams can be assigned the logical values 0,1 or the value of the adjacent beam. With auto blanking activated, up to four beam areas are automatically suppressed during teaching.

Auto blanking should only be activated during commissioning of the CML 700i to suppress interfering objects. In process mode, auto blanking should be deactivated.

For details on this topic see chapter 14.4.

## NOTICE

## Perform teach after changing the blanking configuration!

4) Perform a teach after changing the blanking configuration.

A teach can be performed via the receiver control panel or via the teach command.

| Parameter | Index | Sub- <br> index | Data type | Ac- <br> cess | Value range | Default | Description |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Blanking settings | 76 | 0 | record <br> 208 bit, iso- <br> lated access <br> to sub-index <br> not possible | RW |  |  |  |
| Number of auto-blanking <br> areas | 76 | 1 <br> (bit <br> offset <br> $=200)$ | unsigned 8 | RW | $0 \ldots 4$ | 0 | Permissible number of auto-blanking areas <br> $0: 0$ auto-blanking areas <br> $1: 1$ auto-blanking area <br> $2: 2$ auto-blanking areas <br> $3: 3$ auto-blanking areas <br> $4: 4$ auto-blanking areas |
| Auto blanking (during <br> teaching) | 76 | 2 <br> (bit <br> offset <br> $=192)$ | unsigned 8 | RW | $0 \ldots 1$ | 0 | 0: Not active (manual blanking area configuration) <br> $1:$ Active (automatic area configuration through <br> teach) |
| Logical value for blanking <br> area 1 | 76 | 3 <br> (bit <br> offset <br> $=176)$ | unsigned 16 | RW | $0 \ldots 4$ | 0 | 0: No beams blanked <br> $1:$ Logical value 0 for blanked beams <br> : Logical value 1 for blanked beams |
| $3:$ Logical value same as adjacent beam with |  |  |  |  |  |  |  |
| lower beam number |  |  |  |  |  |  |  |
| $4:$ Logical value same as adjacent beam with |  |  |  |  |  |  |  |
| higher beam number |  |  |  |  |  |  |  |


| Parameter | Index | Subindex | Data type | Access | Value range | Default | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Start beam of blanking area 1 | 76 | 4 (bit offset = 160) | unsigned 16 | RW | 1... 1774 | 1 |  |
| End beam of blanking area 1 | 76 | 5 <br> (bit offset $=160$ ) | unsigned 16 | RW | 1... 1774 | 1 |  |
| Logical value for blanking area 2 | 76 | 6 <br> (bit offset = 128) | unsigned 16 | RW | $0 \ldots 4$ | 0 | 0 : No beams blanked <br> 1: Logical value 0 for blanked beams <br> 2: Logical value 1 for blanked beams <br> 3: Logical value = same as adjacent beam with lower beam number <br> 4: Logical value = same as adjacent beam with higher beam number |
| Start beam of blanking area 2 | 76 | $\begin{aligned} & 7 \\ & \text { (bit } \\ & \text { offset } \\ & =112 \text { ) } \end{aligned}$ | unsigned 16 | RW | 1... 1774 | 1 |  |
| End beam of blanking area 2 | 76 | 8 (bit offset = 96) | unsigned 16 | RW | 1... 1774 | 1 |  |
| ...... | .... |  | .... | . | . | .. | ....... |
| ...... | .... |  | .... | .. | .. | .. | ....... |
| Logical value for blanking area 4 | 76 | 12 (bit offset = 32) | unsigned 16 | RW | 0... 4 | 0 | 0: No beams blanked <br> 1: Logical value 0 for blanked beams <br> 2: Logical value 1 for blanked beams <br> 3: Logical value = same as adjacent beam with lower beam number <br> 4: Logical value = same as adjacent beam with higher beam number |
| Start beam of blanking area 4 | 76 | 13 (bit offset = 16) | unsigned 16 | RW | 1... 1774 | 1 |  |
| End beam of blanking area 4 | 76 | 14 (bit offset = 0) | unsigned 16 | RW | 1... 1774 | 1 |  |

## Teach settings (group 9)

In most applications, it is recommended that teach values be stored in non-volatile memory (remanent).

Depending on the function reserve selected for the teach event, the sensitivity is higher or lower (high function reserve = low sensitivity; low function reserve = high sensitivity).
$\left.\begin{array}{|l|l|l|l|l|l|l|l|}\hline \text { Parameter } & \text { Index } & \begin{array}{l}\text { Sub- } \\ \text { index }\end{array} & \text { Data type } & \begin{array}{l}\text { Ac- } \\ \text { cess }\end{array} & \text { Value range } & \text { Default } & \text { Description } \\ \hline \text { Teach Settings } & 79 & 0 & \begin{array}{l}\text { record } 32 \text { bit, } \\ \text { isolated } \\ \text { access to } \\ \text { sub-index not } \\ \text { possible }\end{array} & \text { RW } & & \\ \hline \begin{array}{l}\text { Type of storage for teach } \\ \text { values }\end{array} & 79 & \begin{array}{l}2 \\ \text { (bit } \\ \text { offset } \\ =16 \text { ) }\end{array} & \text { unsigned 8 } & \text { RW } & 0 \ldots 1 & 0 & \begin{array}{l}\text { 0: Non-volatile storage of teach values } \\ \text { 1: Teach values stored only while voltage is ON }\end{array} \\ \hline \begin{array}{l}\text { Sensitivity adjustment for } \\ \text { teach event }\end{array} & 79 & \begin{array}{l}3 \\ \text { (bit } \\ \text { offset } \\ =8)\end{array} & \text { unsigned } 8 & \text { RW } & 0 \ldots 2 & 0 & \begin{array}{l}\text { Sensitivity of the measurement system: } \\ \text { 0: High function reserve (for stable operation) }\end{array} \\ \text { 1: Medium function reserve } \\ \text { 2: Low function reserve }\end{array}\right]$

## Digital IO pin N settings $(\mathrm{N}=2,5,6,7)$ (group 10)

O In this group, the inputs/outputs can be set to positive switching (PNP) or to negative switching ! (NPN). The switching behavior applies the same for all inputs/outputs.

Moreover, the inputs/outputs can be configured via this group: pin 2, 5, 6, 7 for IO-Link devices, pin 2, 5 for analog or fieldbus devices.

| Parameter | Index | Subindex | Data type | Access | Value range | Default | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Switching level of the inputs/outputs | 77 | 0 | unsigned 8 | RW | $0 \ldots 1$ | 1 | 0: Transistor, NPN <br> 1: Transistor, PNP |
| Configuration of pin 2 |  |  |  |  |  |  |  |
| Digital IO Pin 2 Settings | 80 | 0 | record 32 bit, isolated access to sub-index not possible | RW |  |  |  |
| Input/output selection | 80 | 1 (bit offset $=24)$ | unsigned 8 | RW | $0 \ldots 1$ | 0 | 0 : Output <br> 1: Input |
| Switching behavior | 80 | 2 (bit offset $=16)$ | unsigned 8 | RW | $0 \ldots 1$ | 0 | 0: Normal - light switching <br> 1: Inverted - dark switching |
| Input function | 80 | $\begin{aligned} & 3 \\ & \text { (bit } \\ & \text { offset } \\ & =8 \text { ) } \end{aligned}$ | unsigned 8 | RW | $0 \ldots 2$ | 0 | 0 : Not active <br> 1: Trigger input <br> 2: Teach input |
| Output function | 80 | 4 (bit offset $=0$ ) | unsigned 8 | RW | $0 \ldots 3$ | 0 | 0 : Not active <br> 1: Switching output (area $1 \ldots 32$ ) <br> 2: Warning output <br> 3: Trigger output |
| Configuration of pin 7 |  |  |  |  |  |  |  |
| Digital IO Pin 7 Settings | 83 | 0 | record 32 bit, isolated access to sub-index not possible | RW |  |  |  |
| Input/output selection | 83 | 1 (bit offset = 24) | unsigned 8 | RW | $0 \ldots 1$ | 0 | 0 : Output <br> 1: Input |
| Switching behavior | 83 | 2 (bit offset = 16) | unsigned 8 | RW | $0 \ldots 1$ | 0 | 0: Normal - light switching <br> 1: Inverted - dark switching |
| Input function | 83 | $\begin{aligned} & 3 \\ & \text { (bit } \\ & \text { offset } \\ & =8 \text { ) } \end{aligned}$ | unsigned 8 | RW | $0 \ldots 2$ | 0 | 0 : Not active <br> 1: Trigger input <br> 2: Teach input |
| Output function | 83 | 4 (bit offset $=0$ ) | unsigned 8 | RW | $0 \ldots 3$ | 0 | 0 : Not active <br> 1: Switching output (area $1 \ldots 32$ ) <br> 2: Warning output <br> 3: Trigger output |

## Settings for digital switching outputs (group 11)

O In this group, the beam areas can be mapped to the switching outputs and assigned a time func-
! tion.

| Parameter | Index | Subindex | Data type | Access | Value range | Default | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Configuration of pin 2 |  |  |  |  |  |  |  |
| Configuration of switching output pin 2 | 84 | 0 | record 56 bit, isolated access to sub-index not possible | RW |  |  | Four different time functions can be set. Max. time duration that can be set is 65 s . Map the output to switching areas $1 \ldots 32$. |
| Operating mode of the time module | 84 | 1 (bit offset = 48) | unsigned 8 | RW | $0 \ldots 4$ | 0 | 0: Not active <br> 1: Start-up delay <br> 2: Switch-off delay <br> 3: Pulse stretching <br> 4: Pulse suppression |
| Time constant for selected function | 84 | 2 (bit offset = 32) | unsigned 8 | RW | 0 ... 65,000 | 0 | Unit: ms |
| Area mapping $32 . . .25$ | 84 | 3 (bit offset = 24) | unsigned 8 | RW |  | $\begin{aligned} & 0 b 000 \\ & 00000 \end{aligned}$ |  |
| Area mapping $24 . . .17$ | 84 | 4 (bit offset = 16) | unsigned 8 | RW |  | $\begin{aligned} & 0 b 000 \\ & 00000 \end{aligned}$ |  |
| Area mapping $16 . . .9$ | 84 | 5 (bit offset = 8) | unsigned 8 | RW |  | $\begin{aligned} & 0 b 000 \\ & 00000 \end{aligned}$ |  |
| Area mapping 8 ... 1 | 84 | 6 (bit offset =0) | unsigned 8 | RW |  | $\begin{aligned} & \text { Ob000 } \\ & 00001 \end{aligned}$ |  |
| ...... | .... |  | .... | .. | .. | .. | ....... |
| ...... | $\ldots$ |  | $\ldots$ | .. | .. | .. | ... |
| Configuration of pin 7 |  |  |  |  |  |  |  |
| Configuration of switching output pin 7 | 87 | 0 | record 56 bit, isolated access to sub-index not possible | RW |  |  | Four different time functions can be set. Max. time duration that can be set is 65 s . Map the output to switching areas $1 \ldots 32$. |
| Operating mode of the time module | 87 | 1 (bit offset = 48) | unsigned 8 | RW | $0 \ldots 4$ | 0 | 0: Not active <br> 1: Start-up delay <br> 2: Switch-off delay <br> 3: Pulse stretching <br> 4: Pulse suppression |
| Time constant for selected function | 87 | 2 (bit offset = 32) | unsigned 16 | RW | 0 ... 65,000 | 8 | Unit: ms |
| Area mapping $32 . . .25$ | 87 | 3 (bit offset $=24$ ) | unsigned 8 | RW |  | $\begin{aligned} & 0 b 000 \\ & 00000 \end{aligned}$ |  |
| Area mapping $24 . . .17$ | 87 | 4 (bit offset = 16) | unsigned 8 | RW |  | $\begin{aligned} & 0 b 000 \\ & 00000 \end{aligned}$ |  |
| Area mapping $16 . . .9$ | 87 | 5 (bit offset = 8) | unsigned 8 | RW |  | $\begin{aligned} & 0 b 000 \\ & 00000 \end{aligned}$ |  |
| Area mapping $8 . . .1$ | 87 | 6 (bit offset =0) | unsigned 8 | RW |  | $\begin{aligned} & 0 b 000 \\ & 00001 \end{aligned}$ |  |

## Analog device settings (group 12)



In this group, various parameters can be used to set the analog device configurations, e.g, the configuration of the analog output level and how the evaluation function that is represented on the analog output is selected.

| Parameter | Index | Subindex | Data type | Access | Value range | Default | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Signal level | 88 | 0 | unsigned 8 | RW | $0 \ldots 6$ | 0 | Configuration of the analog output level: voltage: $0 \ldots 5 \mathrm{~V}$ voltage: $0 \ldots 10 \mathrm{~V}$ voltage: $0 \ldots 11 \mathrm{~V}$ current: $4 \ldots 20 \mathrm{~mA}$ current: $0 \ldots 20 \mathrm{~mA}$ current: 0 ... 24 mA <br> 0: Not active <br> 1: Voltage: $0 \ldots 5 \mathrm{~V}$ <br> 2: Voltage: $0 \ldots 10 \mathrm{~V}$ <br> 3: Voltage: $0 \ldots 11 \mathrm{~V}$ <br> 4: Current: $4 \ldots 20 \mathrm{~mA}$ <br> 5: Current: $0 \ldots 20 \mathrm{~mA}$ <br> 6: Current: 0 ... 24 mA |
| Evaluation function | 89 | 0 | record 48 bit, isolated access to sub-index not possible | RW |  |  | Selection of the evaluation function that is represented on the analog output: first interrupted/uninterrupted beam (FIB/FNIB), last interrupted/ uninterrupted beam (LIB/LNIB), number of interrupted/uninterrupted beams (TIB/TNIB) |
| Analog Function | 89 | 1 (bit offset = 40) | unsigned 8 | RW | $0 \ldots 6$ | 0 | 0 : No evaluation (NOP) <br> 1: First interrupted beam (FIB) <br> 2: First uninterrupted beam (FNIB) <br> 3: Last interrupted beam (LIB) <br> 4: Last uninterrupted beam (LNIB) <br> 5: Number of interrupted beams (TIB) <br> 6: Number of uninterrupted beams (TNIB) |
| Start beam for analog measurement range | 89 | 2 (bit offset = 16) | unsigned 16 | RW | 1... 1774 | 1 |  |
| End beam for analog measurement range | 89 | $\begin{aligned} & 3 \\ & \text { (bit } \\ & \text { offset } \\ & =16 \text { ) } \end{aligned}$ | unsigned 16 | RW | 1... 1774 | 1 |  |

## Autosplitting (group 13)

O In this group, it is possible to split all logical beams into areas of identical size. The fields of areas
] $01 \ldots 32$ are thereby automatically configured.

| Parameter | Index | Subindex | Data type | Access | Value range | Default | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Automatic splitting | 98 | 0 | unsigned 1 <br> 6 | RW | 1... 32 <br> 1: (active: all beams free - not active: = one beam interrupted) <br> 257 ... 288 <br> 2: (active: one beam free - not active: = all beams interrupted) | 1: <br> (active all beams free not active: = one beam interrupted) | Splitting of all logical beams into areas of identical size according to the number of areas set under "Number of areas". The fields of areas $01 \ldots 32$ are thereby automatically configured. <br> 1: (active: all beams free not active: $\geq$ one beam interrupted) <br> 1: One area <br> 32: Thirty-two areas <br> 2: (active: one beam free not active: = all beams interrupted) <br> 257: One area <br> 288: Thirty-two areas |
| Evaluation of the beams in the area | 98 | $\begin{aligned} & 1 \\ & \text { (bit } \\ & \text { offset } \\ & =8 \text { ) } \end{aligned}$ | unsigned 8 | RW | $0 \ldots 1$ | 0 | 0 : OR combination <br> 1: AND combination |
| Number of areas (evenly split) | 98 | 2 <br> (bit offset =0) | unsigned 8 | RW | 1... 32 | 1 |  |

## Configuration for block evaluation of beam areas (group 14)

O In this group, a detailed area configuration can be displayed and a beam area configured for the block evaluation.

| Parameter | Index | Subindex | Data type | Access | Value range | Default | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Display detailed area configuration | 99 | 0 | unsigned 8 | RW | 0... 32 | 0 | Select the desired area ( $1 \ldots 32$ ) for which the configuration is to be edited in detail. <br> 0: Area 01 <br> 1: Area 02 <br> 2: Area 03 <br> 31: Area 32 |
|  |  |  |  |  |  |  |  |
| Configuration of area 1 |  |  |  |  |  |  |  |
| Configuration of area 01 | 100 | 0 | record 112 bit, isolated access to sub-index not possible | RW |  |  | Configuration of the area: definition of the status conditions so that the area takes on a logical 1 or 0. For diagonal- or crossed-beam scanning, the numbers of the logical beams are to be entered. |
| Area | 100 | $\begin{aligned} & 1 \\ & \text { (bit } \\ & \text { offset } \\ & =104 \text { ) } \end{aligned}$ | unsigned 8 | RW | $0 \ldots 1$ | 0 | 0: Not active <br> 1: Active |
| Active beam | 100 | 2 <br> (bit <br> offset $=96 \text { ) }$ | unsigned 8 | RW | $0 \ldots 1$ | 0 | 0 : Light switching (beam is active if light path is free) <br> 1: Dark switching (beam is active if light path is interrupted) |
| Start beam of the area | 100 | $\begin{aligned} & 3 \\ & \text { (bit } \\ & \text { offset } \\ & =80 \text { ) } \end{aligned}$ | unsigned 8 | RW | $\begin{aligned} & 1 \ldots 1774 \\ & 65534 \\ & 65533 \\ & 65532 \\ & 65531 \end{aligned}$ | 1 | 65534: First interrupted beam (FIB) <br> 65533: First uninterrupted beam (FNIB) <br> 65532: Last interrupted beam (LIB) <br> 65531: Last uninterrupted beam (LNIB) |


| Parameter | Index | Subindex | Data type | Access | Value range | Default | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| End beam of the area | 100 | 4 (bit offset = 64) | unsigned 8 | RW | $\begin{aligned} & 1 \ldots 1774 \\ & 65534 \\ & 65533 \\ & 65532 \\ & 65531 \end{aligned}$ | 1 | 65534: First interrupted beam (FIB) <br> 65533: First uninterrupted beam (FNIB) <br> 65532: Last interrupted beam (LIB) <br> 65531: Last uninterrupted beam (LNIB) |
| Number of active beams for area ON | 100 | 5 <br> (bit offset = 48) | unsigned 16 | RW | $0 . . .1774$ | 0 |  |
| Number of active beams for area OFF | 100 | 6 <br> (bit offset = 32) | unsigned 16 | RW | 0 ... 1774 | 0 |  |
| Specified middle of the area | 100 | 7 <br> (bit offset = 16) | unsigned 16 | RW | 0 ... 1774 | 0 |  |
| Specified width of the area | 100 | 8 (bit offset =0) | unsigned 16 | RW | 0... 1774 | 0 |  |
| ...... | .... |  | .... | .. | .. | .. | ...... |
| ...... | .... |  | .... | .. | .. | .. | ....... |
| Configuration of area 32 |  |  |  |  |  |  |  |
| Configuration of area 32 | 131 | 0 | record 112 bit, isolated access to sub-index not possible | RW |  |  | Configuration of the area: definition of the status conditions so that the area takes on a logical 1 or 0. For diagonal- or crossed-beam scanning, the numbers of the logical beams are to be entered. |
| Area | 131 | 1 <br> (bit offset = 104) | unsigned 8 | RW | $0 \ldots 1$ | 0 | 0: Not active <br> 1: Active |
| Active beam | 131 | 2 <br> (bit offset = 96) | unsigned 8 | RW | $0 \ldots 1$ | 0 | 0 : Light switching (beam is active if light path is free) <br> 1: Dark switching (beam is active if light path is interrupted) |
| Start beam of the area | 131 | $\begin{aligned} & 3 \\ & \text { (bit } \\ & \text { offset } \\ & =80 \text { ) } \end{aligned}$ | unsigned 8 | RW | 1... 65534 | 1 |  |
| End beam of the area | 131 | 4 <br> (bit offset = 64) | unsigned 16 | RW | 1 ... 65534 | 1 |  |
| Number of active beams for area ON | 131 | 5 <br> (bit <br> offset <br> = 48) | unsigned 16 | RW | $1 . . .1774$ | 0 |  |
| Number of active beams for area OFF | 131 | 6 (bit offset = 32) | unsigned 16 | RW | 1... 1774 | 0 |  |
| Specified middle of the area | 131 | 7 <br> (bit offset = 16) | unsigned 16 | RW | $1 . . .1774$ | 0 |  |
| Specified width of the area | 131 | 8 <br> (bit offset =0) | unsigned 16 | RW | 1... 1774 | 0 |  |

## Evaluation functions (group 15)

$\stackrel{\circ}{\square}$
In this group, all evaluation functions can be configured.

| Parameter | Index | Sub- <br> index | Data type | Ac- <br> cess | Value range | Default | Description |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| First interrupted beam <br> (FIB) | 150 | 0 | unsigned 16 | RO |  | Logical beam number of the first darkened individ- <br> ual beam. The logical beam numbers change to the <br> "diagonal" or "crossed-beam" mode. Note any <br> changed configuration of the counting direction! |  |
| First uninterrupted beam <br> (FNIB) | 151 | 0 | unsigned 16 | RO |  |  | Logical beam number of the first undarkened indi- <br> vidual beam. The logical beam numbers change to <br> the "diagonal" or "crossed-beam" mode. Note any <br> changed configuration of the counting direction! |
| Last interrupted beam <br> (LIB) | 152 | 0 | unsigned 16 | RO |  |  | Logical beam number of the last darkened individ- <br> ual beam. The logical beam numbers change in <br> diagonal- or crossed-beam mode. Note any <br> changed configuration of the counting direction! |
| Last uninterrupted beam <br> (LNIB) | 153 | 0 | unsigned 16 | RO |  |  | Logical beam number of the last undarkened indi- <br> vidual beam. The logical beam numbers change to <br> the "diagonal" or "crossed-beam" mode. Note any <br> changed configuration of the counting direction! |
| Number of interrupted <br> beams (TIB) | 154 | 0 | unsigned 16 | RO |  |  | Sum of all darkened individual beams. The sum <br> changes to the "diagonal" or "crossed-beam" mode. |
| Number of uninterrupted <br> beams (TNIB) | 155 | 0 | unsigned 16 | RO |  |  | Sum of all undarkened individual beams. The sum <br> changes to the "diagonal" or "crossed-beam" mode. |
| Area Out - LoWord | 158 | 0 | unsigned 16 | RO |  |  |  |
| Area Out - HiWord | 159 | 0 | unsigned 16 | RO |  |  |  |
| Status of areas 01 ... 16 as 2 bytes of process data |  |  |  |  |  |  |  |


| Result of the area evaluation mapped to pins | 160 | 0 | record 16 bit, isolated access to sub-index not possible | RO |  |  | Logical status of the area evaluations mapped to the pin |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Reserved | 160 | 1 (bit offset =4) | unsigned 16 | RO |  |  |  |
| Pin 7 | 160 | 2 (bit offset =3) | boolean | RO |  |  |  |
| Pin 6 | 160 | $\begin{aligned} & 3 \\ & \text { (bit } \\ & \text { offset } \\ & =2 \text { ) } \end{aligned}$ | boolean | RO |  |  |  |
| Pin 5 | 160 | 4 (bit offset = 1) | boolean | RO |  |  |  |
| Pin 2 | 160 | 5 (bit offset =1) | boolean | RO |  |  |  |
|  |  |  |  |  |  |  |  |
| HW analog (HWA) | 161 | 0 | unsigned 16 | RO |  |  |  |
|  |  |  |  |  |  |  |  |
| PD beam-stream | 171 | 0 | array | RO |  |  | 8 bytes |
| PD beam-stream | 172 | 0 | array | RO |  |  | 16 bytes |
| PD beam-stream | 173 | 0 | array | RO |  |  | 32 bytes |


| Parameter | Index | Sub- <br> index | Data type | Ac- <br> cess | Value range | Default | Description |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| PD beam-stream | 174 | 0 | array | RO |  |  | 64 bytes |
| PD beam-stream | 175 | 0 | array | RO |  | 128 bytes |  |
| PD beam-stream | 176 | 0 | array | RO |  | 222 bytes |  |
| Beam-stream mask | 177 | 0 | array | RO |  | 222 bytes |  |

## 11 Starting up the device - CANopen interface

The configuration of a CANopen interface involves the following steps on the receiver control panel and in the control-specific configuration software.

General prerequisites:

- The measuring light curtain has been mounted (see chapter 6) and connected (see chapter 7) correctly.
- The basic configuration has been performed (see chapter 8 ).


### 11.1 Defining the CANopen basic configuration on the receiver control panel

The parameters for the CANopen interface are defined with the node ID and bit rate configurations. The structure of these configurations in the receiver control panel menu is as follows:

## Level 0

Level 1
Level 2
Description


## Prerequisites:

- The measuring light curtain must be correctly aligned (see chapter 8.1).
- The measuring light curtain must be correctly taught (see chapter 8.2).

The following procedure describes the configurations for CANopen interfaces.
$\stackrel{4}{4}$ Select Main Settings > CANopen > Node ID > Enter value.
$\stackrel{\leftrightarrow}{\Perp}$ Select Main Settings > CANopen > Bit Rate > Enter value.
The CANopen address (Node ID) and bit rate are configured.
Other possible configuration steps are performed via the Sensor Studio configuration software (see chapter 15).
Process mode is configured via the control-specific CANopen interface of the CANopen master.

### 11.2 Defining configurations via the PLC-specific software of the CANopen master

General prerequisites:

- The measuring light curtain has been mounted (see chapter 6) and connected (see chapter 7) correctly.
- The basic configuration has been performed (see chapter 8).
- The CANopen basic configurations have been performed:
- CANopen node ID selected
- CANopen bit rate selected

Specific prerequisites:

- The CANopen-specific EDS file must be installed on the control.


The CANopen device description (EDS file) can be used for direct configuration with connected light curtain.

An EDS file is supplied with the product. It can also be downloaded from the Internet at www.leuze.com.

## NOTICE

## Configuration dependent on the control-specific software!

${ }^{\Perp}$ The sequence of the configurations is dependent on the control-specific software.
$\left.{ }^{4}\right)$ First configure the EDS file while off-line.
${ }^{\Perp}$ Once all parameters have been configured, transmit the EDS configurations to the CML 700i.

O Information on using the configuration parameters can be found in the general descriptions of the
! individual functions of the CML 700i (see chapter 4).
4) Open the interface configuration software.
${ }^{4}$ ) Configure the following parameters:

- Operating mode (parallel-beam; diagonal-beam; crossed-beam scanning)
- Blanking settings
- Teach settings
$\stackrel{\leftrightarrow}{\Perp}$ Perform a teach. This is possible via the receiver control panel or the control group in the CANopen process data (CANopen object 0x2200).
(4) If necessary, configure additional parameter/process data (see chapter 11.3).
${ }^{4}$ ) Save the configuration via the control group in the CANopen process data (CANopen object 0x2200).
The CANopen-specific configurations have been performed and the CML 700i is ready for process mode.


### 11.3 Parameter- / process data for CANopen

The configuration parameters or process data for CANopen is defined via the following object descriptions.

## NOTICE

Boundary conditions for object descriptions!
${ }^{4}$ ) Indices $0 \times 1000 \ldots 0 \times 1$ FFF contain the standard communication-specific parameters used with CANopen.
${ }^{4}$ ) The product-specific parameters begin with index 0x2000.
(4) Communication-specific parameters are automatically persistent.
${ }^{4}>$ In order for product-specific parameters to be retained following a power down/up, a save command (index 0x2200) is necessary.
$\stackrel{O}{\square}$
The following abbreviations for data types apply in the following group descriptions:
t08U = type 8 bit unsigned integer
t08S = type 8 bit signed integer
$\mathrm{t} 16 \mathrm{U}=$ type 16 bit unsigned integer
t16S = type 16 bit signed integer
$\stackrel{\circ}{几}$
The following abbreviations for max. values apply in the following group descriptions:
MAX-BEAM = maximum number of beams (max. 1774)
MAX_T08U = maximum 8 bit unsigned integer
MAX_T16U = maximum 16 bit unsigned integer
MAX_T32U = maximum 32 bit unsigned integer

Group overview

| Group | Group name |
| :--- | :--- |
| Group 1 | CANopen-specific objects (see page 94) |
| Group 2 | Device description (see page 96) |
| Group 3 | General configurations (see page 96) |
| Group 4 | Extended settings (see page 96) |
| Group 5 | Cascading configuration (see page 97) |
| Group 6 | Teach settings (see page 97) |
| Group 7 | Blanking settings (see page 98) |
| Group 8 | Switching level of the inputs/outputs (see page 100) |
| Group 9 | Area configuration (see page 101) |
| Group 10 | Commands (see page 104) |
| Group 11 | Teach status (see page 105) |
| Group 12 | Check the alignment of the light curtains (see page 105) |
| Group 13 | Process data (see page 105) |
| Group 14 | Status (see page 108) |

CANopen-specific objects (group 1)

| Parameter | Index <br> (hex) | Sub- <br> index <br> (hex) | Data <br> type | Access | Min. <br> value | Max. value | Default | Description |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Device type | 1000 |  |  | RO |  |  | 0 |  |
| Error register | 1001 |  |  | RO |  |  |  |  |
| COB-ID-SYNC | 1005 |  |  | RW |  |  | $0 \times 000$ <br> 00080 |  |
| Receiver product designation | 1008 |  |  | CONST |  |  |  |  |
| Hardware version | 1009 |  |  | CONST |  |  |  |  |
| COB-ID-SYNC EMCY | 1014 |  |  | RW |  |  |  |  |
| Firmware version | 100 A |  |  | CONST |  |  |  |  |
| Producer heartbeat time | 1017 |  |  | RW |  |  | Necessary for heartbeat <br> mechanism |  |
| Identity object | 1018 |  |  | RO |  |  |  |  |
| Transmit PDO communication parameter 1 | 1800 |  |  | RW |  |  |  |  |
| Transmit PDO communication parameter 2 | 1801 |  |  | RW |  |  |  |  |
| Transmit PDO communication parameter 3 | 1802 |  |  | RW |  |  |  |  |
| Transmit PDO communication parameter 4 | 1803 |  |  | RW |  |  |  |  |
| F... |  |  |  |  |  |  | PDO 2 properties |  |
| Transmit PDO communication <br> parameter 28 |  |  |  |  |  |  |  |  |


| Parameter | Index <br> (hex) | Sub- <br> index <br> (hex) | Data <br> type | Access | Min. <br> value | Max. value | Default | Description |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Transmit PDO mapping parameter 1 | 1A00 |  | t32U | RW |  |  |  | Mapped objects <br> in PDO 1 |
| Transmit PDO mapping parameter 2 | 1 A01 |  | t32U | RW |  |  | Mapped objects <br> in PDO 2 |  |
| Transmit PDO mapping parameter 3 | 1 A02 |  | t32U | RW |  |  | Mapped objects <br> in PDO 3 |  |
| Transmit PDO mapping parameter 4 | 1 A03 |  | t32U | RW |  |  | Mapped objects <br> in PDO 4 |  |
| $\ldots .$. | $\ldots .$. |  | $\ldots$. | $\ldots$ |  |  |  | $\ldots .$. |
| Transmit PDO mapping parameter 28 | 1 A1B |  | t32U | RW |  |  |  | Mapped objects <br> in PDO 28 |

O The following standard procedure for the TPDO mapping may vary depending on the used configuration software.

## Standard procedure for the TPDO mapping:

$\stackrel{\wedge}{\wedge}$ Set the device to the Preoperational state.
$\stackrel{4}{4}$ In the desired TPDO Transmit PDO communication parameter $1 \ldots 28$ (objects $0 \times 1800 \ldots 0 \times 181 \mathrm{~B}$ ), set the COB-ID (sub-index 1) to 0x80000xxx (where the xxx part is node-dependent) and transmit this COB-ID to the device.

This sets the invalid bit, thereby making the TPDO entry invalid.
${ }^{\wedge} \downarrow$ In the desired TPDO Transmit PDO mapping parameter $1 \ldots 28$ (objects $0 \times 1 \mathrm{~A} 00 \ldots 0 \times 1 \mathrm{~A} 1 \mathrm{~B}$ ), set the entry for the number of the following elements (sub-index 0 , numOfEntries) to 0 and transmit this to the device.
An existing mapping is thereby deleted.
$\stackrel{\wedge}{ }{ }^{4}$ Then reset this entry to the number of desired mapping elements, whereby a maximum of 4 elements per TPDO are possible.
Transmit this entry back to the device.
$\stackrel{y}{\leftrightarrows}$ Set the mapping entries to the desired values. Each of the mapping sub-indices contains a 32-bit value that is structured as follows: SDO object number, sub-index and length. Normally (depending on the used master), the respective settings can be selected from a list.
$\stackrel{4}{4}$ After completing the mapping, transmit the complete TPDO Transmit PDO mapping parameter $1 \ldots 28$ object to the device.
${ }^{4}$ ) In the TPDO Transmit PDO communication parameter $1 \ldots 28$ object (objects $0 \times 1800 \ldots 0 \times 181 \mathrm{~B}$ ), set the transmission type (sub-index 2 Transmission type) and, if applicable, the event timer (sub-index 5, Event timer).
${ }^{4}$ ) In the same TPDO object, set the COB-ID (sub-index 1 ) to 0x00000xxx (where the xxx part is nodedependent) and transmit the complete TPDO object including all sub-indices to the device. This resets the invalid bit, thereby making the TPDO entry valid.
$\stackrel{\wedge}{\wedge}$ Set the device to the Operational state.
With operating mode set to Transmission type, the device starts to send process data (PDOs).

## NOTICE

Boundary conditions for object descriptions!
${ }^{4}$ Beginning with firmware V2.16, no process data settings are automatically stored in non-volatile memory (remanent). The <Save> command is always to be used.

## Device description (group 2)

$\stackrel{\square}{\square}$
The device characteristics, beginning with index 0x200B, specify the beam spacing, the number of physical/logical individual beams, the number of cascades (16 individual beams) in the device and the cycle time.

| Parameter | Index (hex.) | Subindex (hex.) | Data type | Access | Min. value | Max. value | Default | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Manufacturer name | 2000 |  |  | RO |  |  |  | Leuze electronic |
| Manufacturer text | 2001 |  |  | RO |  |  |  | The sensor people |
| Receiver part no. | 2002 |  |  | RO |  |  |  | Receiver |
| Receiver serial number | 2003 |  |  | RO |  |  |  | Receiver |
| Transmitter product designation | 2008 |  |  | RO |  |  |  | Transmitter |
| Transmitter part no. | 2009 |  |  | RO |  |  |  | Transmitter |
| Transmitter serial number | 200A |  |  | RO |  |  |  | Transmitter |
| Beam spacing | 200B | 1 | t16U | RO |  |  |  |  |
| Number of physical individual beams | 200B | 2 | t16U | RO |  |  |  |  |
| Number of configured logical cascades | 200B | 3 | t16U | RO |  |  |  | With parallel scanning, the number of logical individual beams corresponds to the number of physical individual beams; with diagonal scanning, this number is doubled. |
| Number of optical cascades | 200B | 4 | t16U | RO |  |  |  |  |
| Device cycle time [ $\mu \mathrm{s}$ ] | 200B | 5 | t16U | RO |  |  |  | Duration for a complete measurement cycle (measurement cycle for one measurement); minimum time is 1 ms . |

## General configurations (group 3)

○ Configured in group 3 "General configurations" are the type of scanning (parallel-/diagonal-/ crossed-beam), counting direction and minimum object size for the evaluation (smoothing). The minimum hole size for the evaluation, e.g., with web material, is configured via inverted smoothing.

| Parameter | Index <br> (hex.) | Sub- <br> index <br> (hex.) | Data <br> type | Access | Min. <br> value | Max. value | Default | Description |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Mode | 2100 | 1 | t08U | RW | 0 | 2 | 0 | 0: Parallel-beam scanning <br> 1: Diagonal-beam scanning <br> 2: Crossed-beam scanning |
| Counting direction | 2100 | 2 | t08U | RW | 0 | 1 | 0 | 0: Normal - beginning at the <br> connection side <br> 1: Inverted - beginning oppo- <br> site the connection side |
| Smoothing | 2100 | 3 | t08U | RW | 1 | MAX_T08U | 1 | Less than i interrupted beams <br> are ignored |
| Smoothing inverted | 2100 | 4 | t08U | RW | 1 | MAX_T08U | 1 | Less than i free beams are <br> ignored |

## Extended settings (group 4)

$\stackrel{O}{\square}$
The filter depth indicates the necessary number of consistent beam states before the evaluation of the measurement values.

All measurement values are accumulated and retained over the duration of the integration time.

| Parameter | Index <br> (hex.) | Sub- <br> index <br> (hex.) | Data <br> type | Access | Min. <br> value | Max. value | Default | Description |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Filter Depth | 2101 | 1 | t08U | RO | 0 |  |  | Reserved |
| Integration/hold time | 2101 | 2 | t08U | RW | 0 | MAX_T08U | 1 | The necessary number of <br> consistent beam states before <br> the evaluation of the mea- <br> surement values. |
| Button lock and display | 2101 | 3 | t16U | RW | 0 | MAX_T16U | 0 | Hold function in ms <br> All measurement values are <br> accumulated and retained <br> over the duration of the inte- <br> gration time. |

## Cascading configuration (group 5)

$\stackrel{\square}{\square}$
To prevent mutual interference, multiple light curtains can be operated with a time offset with respect to one another (cascade). Here, the master generates the cyclical trigger signal; the slaves start their measurement after delay times, which are to be set to different values.

| Parameter | Index <br> (hex.) | Sub- <br> index <br> (hex.) | Data <br> type | Access | Min. <br> value | Max. value | Default | Description |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Cascading | 2102 | 1 | t08U | RW |  | 1 | 0 | 0: Not active (constant mea- <br> surement of the sensor) <br> 1: Active (sensor expects trig- <br> ger signal) |
| Notice: With cascading opera- |  |  |  |  |  |  |  |  |
| tion, the master must also be |  |  |  |  |  |  |  |  |
| set to 1 (active)! |  |  |  |  |  |  |  |  |

## Teach settings (group 6)

$\xrightarrow{\circ}$
In most applications, it is recommended that the teach values be stored in non-volatile memory.
Depending on the function reserve selected for the teach event, the sensitivity is higher or lower (high function reserve = low sensitivity; low function reserve $=$ high sensitivity).

| Parameter | Index (hex.) | Subindex (hex.) | Data type | Access | Min. value | Max. value | Default | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number of teach cycles | 2103 | 1 | t08U | Ro |  |  | 10 | Depending on the environmental conditions or application, the light curtain may have completed multiple cycles after the triggering of a teach. |
| Type of storage for teach values | 2103 | 2 | t08U | RW | 0 | 1 | 0 | 0 : Non-volatile storage of teach values <br> 1: Teach values stored only while voltage is ON |
| Sensitivity adjustment for teach event | 2103 | 3 | t08U | RW | 0 | 2 | 0 | Sensitivity of the measurement system: <br> 0 : High function reserve (for stable operation) <br> 1: Medium function reserve <br> 2: Low function reserve |
| Switching threshold | 2103 | 4 | t08U | RO | 10 | 98 | 75 | Threshold as percentage of teach threshold (50\% = function reserve 2) |
| Teach status | 2400 | 1 | t08S | RO | 0 | MAX_T08U |  | Information about the last teach: <br> 00: Teach ok <br> 01: Teach busy <br> 80: Teach error (bit $8=$ error <br> bit) |

## Blanking settings (group 7)

O Up to four beam areas can be deactivated. Deactivated beams can be assigned the logical
in values 0,1 or the value of the adjacent beam. With auto blanking activated, up to four beam areas are automatically suppressed during teaching.

Auto blanking should only be activated during commissioning of the CML 700i to suppress interfering objects. In process mode, auto blanking should be deactivated.

For details on this topic see chapter 14.4.

## NOTICE

## Perform teach after changing the blanking configuration!

4 Perform a teach after changing the blanking configuration.
A teach can be performed via the receiver control panel or via the teach command.

| Parameter | Index (hex.) | Subindex (hex.) | Data type | Access | Min. value | Max. value | Default | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number of auto-blanking areas | 2104 | 1 | t08U | RW | 0 | 4 | 0 | Permissible number of autoblanking areas <br> 0: 0 auto-blanking areas <br> 1: 1 auto-blanking area <br> 2: 2 auto-blanking areas <br> 3: 3 auto-blanking areas <br> 4: 4 auto-blanking areas |
| Auto blanking (during teaching) | 2104 | 2 | t08U | RW | 0 | 1 | 0 | 0 : Not active (manual blanking area configuration) <br> 1: Active (automatic blanking area configuration through teach) |
| Function for blanking area 1 | 2104 | 3 | t16U | RW | 0 | 4 | 0 | 0 : No beams blanked <br> 1: Logical value 0 for blanked beams <br> 2: Logical value 1 for blanked beams <br> 3: Logical value $=$ same as adjacent beam with lower beam number <br> 4: Logical value $=$ same as adjacent beam with higher beam number |
| Start beam of blanking area 1 | 2104 | 4 | t16U | RW | 1 | MAX_BEAM | 1 | Start beam of the blanking area |
| End beam of blanking area 1 | 2104 | 5 | t16U | RW | 1 | MAX_BEAM | 1 | End beam of the blanking area |
| Function for blanking area 2 | 2104 | 6 | t16U | RW | 0 | 4 | 0 | 0 : No beams blanked <br> 1: Logical value 0 for blanked beams <br> 2: Logical value 1 for blanked beams <br> 3: Logical value = same as adjacent beam with lower beam number <br> 4: Logical value = same as adjacent beam with higher beam number |
| Start beam of blanking area 2 | 2104 | 7 | t16U | RW | 1 | MAX_BEAM | 1 | Start beam of the blanking area |
| End beam of blanking area 2 | 2104 | 8 | t16U | RW | 1 | MAX_BEAM | 1 | End beam of the blanking area |
| Function for blanking area 3 | 2104 | 9 | t16U | RW | 0 | 4 | 0 | 0 : No beams blanked <br> 1: Logical value 0 for blanked beams <br> 2: Logical value 1 for blanked beams <br> 3: Logical value $=$ same as adjacent beam with lower beam number <br> 4: Logical value $=$ same as adjacent beam with higher beam number |
| Start beam of blanking area 3 | 2104 | A | t16U | RW | 1 | MAX_BEAM | 1 | Start beam of the blanking area |
| End beam of blanking area 3 | 2104 | B | t16U | RW | 1 | MAX_BEAM | 1 | End beam of the blanking area |


| Parameter | Index <br> (hex.) | Sub- <br> index <br> (hex.) | Data <br> type | Access | Min. <br> value | Max. value | Default | Description |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Function for blanking area 4 | 2104 | C | t 16 U | RW | 0 | 4 | 0 | 0: No beams blanked <br> 1: Logical value 0 for blanked <br> beams <br> 2: Logical value 1 for blanked <br> beams <br> 3: Logical value $=$ same as <br> adjacent beam with lower <br> beam number <br> 4: Logical value = same as <br> adjacent beam with higher <br> beam number |
| Start beam of blanking area 4 | 2104 | D | t 16 U | RW | 1 | MAX_BEAM | 1 | Start beam of the blanking <br> area |
| End beam of blanking area 4 | 2104 | E | t 16 U | RW | 1 | MAX_BEAM | 1 | End beam of the blanking <br> area |

## Switching level of the inputs/outputs (group 8)

O The inputs/outputs can be set to positive switching (PNP) or to negative switching (NPN). The switching behavior applies the same for all inputs/outputs.

For details on this topic see chapter 14.

| Parameter | Index <br> (hex.) | Sub- <br> index <br> (hex.) | Data <br> type | Access | Min. <br> value | Max. value | Default | Description |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Type of level | 2150 |  | Bool | RW | 0 | 1 | 1 | 0: NPN <br> 1: PNP |

$\square$
Configuration of the inputs/outputs: pin 2 and/or pin 5.

| Parameter | Index (hex.) | Subindex (hex.) | Data type | Access | Min. value | Max. value | Default | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Configuration of pin 2 |  |  |  |  |  |  |  |  |
| Pin 2: <br> Output function | 2151 | 1 | t08U | RW | 0 | 3 | 0 | 0 : Not active <br> 1: Switching output (area $1 . . .32$ ) <br> 2: Warning output <br> 3: Trigger output |
| Pin 2: Input function | 2151 | 2 | t08U | RW | 0 | 2 | 2 | 0 : Not active <br> 1: Trigger input <br> 2: Teach input |
| Pin 2: <br> Switching behavior | 2151 | 3 | t08U | RW | 0 | 1 | 0 | 0 : Normal - light switching <br> 1: Inverted - dark switching |
| Pin 2: Input/output selection | 2151 | 4 | t08U | RW | 0 | 1 | 1 | 0: Output <br> 1: Input |
| Configuration of pin 5 |  |  |  |  |  |  |  |  |
| Pin 5: <br> Output function | 2152 | 1 | t08U | RW | 0 | 3 | 0 | 0 : Not active <br> 1: Switching output (area <br> 1... 32) <br> 2: Warning output <br> 3: Trigger output |


| Parameter | Index <br> (hex.) | Sub- <br> index <br> (hex.) | Data <br> type | Access | Min. <br> value | Max. value | Default | Description |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Pin 5: <br> Input function | 2152 | 2 | t08U | RW | 0 | 2 | 1 | 0: Not active <br> 1: Trigger input <br> 2: Teach input |
| Pin 5: <br> Switching behavior | 2152 | 3 | t08U | RW | 0 | 1 | 0 | 0: Normal - light switching <br> 1: Inverted - dark switching |
| Pin 5: <br> Input/output selection | 2152 | 4 | t08U | RW | 0 | 1 | 1 | 0: Output <br> 1: Input |

Procedure for the four time ranges:
Four different time functions can be set; the maximum duration that can be set is 65 s .
Mapping of the area $1 \ldots 32$ to output pin $2=$ index $0 \times 2155$ sub 3 or index $0 \times 2156$ sub 3 for pin 5 .
$\stackrel{\Perp}{\wedge}$ Activate the area by entering a 1 at the corresponding position in the 32 -bit word. Area $1 \ldots 32$ increasing from right.
$\square$
For details on this topic see chapter 14.

| Parameter | Index (hex.) | Subindex (hex.) | Data type | Access | Min. value | Max. value | Default | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Digital Output Pin 2 Settings |  |  |  |  |  |  |  |  |
| Operating mode of the time module | 2155 | 1 | t08U | RW | 0 | 4 | 0 | 0: Not active <br> 1: Start-up delay <br> 2: Switch-off delay <br> 3: Pulse stretching <br> 4: Pulse suppression |
| Delay time for selected function | 2155 | 2 | t16U | RW | 0 | MAX_T16U | 0 | $0 \ldots 65535 \mathrm{~ms}$ |
| Area mapping $32 . .1$ | 2155 | 3 | t32U | RW | 0 | MAX_T32U | 0 | Logical OR link mask of the switching outputs |
| Digital Output Pin 5 Settings |  |  |  |  |  |  |  |  |
| Operating mode of the time module | 2156 | 1 | t08U | RW | 0 | 4 | 0 | 0 : Not active <br> 1: Start-up delay <br> 2: Switch-off delay <br> 3: Pulse stretching <br> 4: Pulse suppression |
| Delay time for selected function | 2156 | 2 | t16U | RW | 0 | MAX_T16U | 0 | 0... 65535 ms |
| Area mapping $32 . . .1$ | 2156 | 3 | t32U | RW | 0 | MAX_T32U | 0 | Logical OR link mask of the switching outputs |

## Area configuration (group 9)

Procedure for manual area splitting of the maximum 32 areas:
$\stackrel{4}{ }{ }^{\wedge}$ Definition of the status conditions so that the area takes on a logical 1 or 0.
For diagonal- or crossed-beam mode, the numbers of the logical beams are to be entered.
$\stackrel{O}{\square}$
For details on this topic see chapter 14.

| Parameter | Index <br> (hex.) | Subindex (hex.) | Data type | Access | Min. value | Max. value | Default | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Configuration of area 1 | 2170 |  |  |  |  |  |  |  |
| Area | 2170 | 1 | t08U | RW | 0 | 1 | 0 | 0 : Not active <br> 1: Active |
| Logical behavior of the area | 2170 | 2 | t08U | RW | 0 | 1 | 0 | 0 : Normal - light switching <br> 1: Inverted - dark switching |
| Start beam of the area | 2170 | 3 | t16U | RW | 1 | FFFE | 1 | 1... 1774 <br> 65534: First interrupted beam <br> (FIB) <br> 65533: First uninterrupted <br> beam (FNIB) <br> 65532: Last interrupted beam <br> (LIB) <br> 65531: Last uninterrupted beam (LNIB) |
| End beam of the area | 2170 | 4 | t16U | RW | 1 | FFFE | 1 | 1... 1774 <br> 65534: First interrupted beam <br> (FIB) <br> 65533: First uninterrupted <br> beam (FNIB) <br> 65532: Last interrupted beam <br> (LIB) <br> 65531: Last uninterrupted <br> beam (LNIB) |
| Number of active beams for area ON | 2170 | 5 | t16U | RW | 0 | $\begin{aligned} & \text { MAX_BEA } \\ & M \end{aligned}$ | 0 | $0 . . .1774$ |
| Number of active beams for area OFF | 2170 | 6 | t16U | RW | 0 | $\begin{aligned} & \text { MAX_BEA } \\ & M \end{aligned}$ | 0 | $0 . . .1774$ |
| Specified middle of the area | 2170 | 7 | t16U | RW | 0 | $\begin{aligned} & \text { MAX_BEA } \\ & M \end{aligned}$ | 0 | 0... 1774 |
| Specified width of the area | 2170 | 8 | t16U | RW | 0 | $\begin{aligned} & \text { MAX_BEA } \\ & M \end{aligned}$ | 0 | $0 . . .1774$ |
| Configuration of area 2 | 2171 |  |  |  |  |  |  |  |
| Area | 2171 | 1 | t08U | RW | 0 | 1 | 0 | 0 : Not active <br> 1: Active |
| Logical behavior of the area | 2171 | 2 | t08U | RW | 0 | 1 | 0 | 0 : Normal - light switching <br> 1: Inverted - dark switching |
| Start beam of the area | 2171 | 3 | t16U | RW | 1 | FFFE | 1 | 1... 1774 <br> 65534: First interrupted beam (FIB) <br> 65533: First uninterrupted beam (FNIB) <br> 65532: Last interrupted beam (LIB) <br> 65531: Last uninterrupted beam (LNIB) |
| End beam of the area | 2171 | 4 | t16U | RW | 1 | FFFE | 1 | 1 ... 1774 <br> 65534: First interrupted beam <br> (FIB) <br> 65533: First uninterrupted <br> beam (FNIB) <br> 65532: Last interrupted beam <br> (LIB) <br> 65531: Last uninterrupted <br> beam (LNIB) |
| Number of active beams for area ON | 2171 | 5 | t16U | RW | 0 | $\begin{aligned} & \text { MAX_BEA } \\ & M \end{aligned}$ | 0 | $0 . . .1774$ |
| Number of active beams for area OFF | 2171 | 6 | t16U | RW | 0 | $\begin{aligned} & \text { MAX_BEA } \\ & M \end{aligned}$ | 0 | 0 ... 1774 |
| Specified middle of the area | 2171 | 7 | t16U | RW | 0 | $\begin{aligned} & \text { MAX_BEA } \\ & M \end{aligned}$ | 0 | 0... 1774 |
| Specified width of the area | 2171 | 8 | t16U | RW | 0 | $\begin{aligned} & \text { MAX_BEA } \\ & M \end{aligned}$ | 0 | 0... 1774 |

All other 30 areas are configured in the same way as described for 2170 and 2171:


## Commands (group 10)

Procedure for "automatic" area splitting:
${ }^{\Perp}$ Send the desired number of areas to the command argument (index 0x2200, sub 2).
$\stackrel{4}{4}$ Perform area splitting: set command argument (index $0 \times 2200$, sub 1 ) to value 8.
$\stackrel{O}{\square}$
For all commands, first the command argument must be written and then the command identifier.

| Parameter | Index (hex.) | Subindex (hex.) | Data type | Access | Min. value | Max. value | Default | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Command Identifier | 2200 | 1 | t16U | WO |  |  |  | Command to be executed for write access <br> 0: Reserved <br> 1: Reserved <br> 3: Teach <br> 4: Reboot <br> 5: Reset <br> Note <br> Reset deletes the user settings. On the next PowerOn, the factory settings are applied. To reset to factory settings, a reboot must follow a reset. <br> 6: Save <br> Notice: <br> Processing of the Save command takes up to 600 ms . During this time, no other data/telegrams are accepted. <br> 7: Reserved <br> 8: Splitting, division of the evaluation areas |
| Command argument | 2200 | 2 | t16U | Wo |  |  |  | Argument for command 8 (splitting): <br> Into how many areas should the beams be split? <br> Number of areas 1 ... i <br> Enter value (max. 32): <br> 1: $i=1$ : All beams of the light curtain form one area <br> 2: $\mathrm{i}=2$ : Beams are split into 2 equally large areas <br> 3: $i=3$ : Beams are split into 3 equally large areas, etc. <br> (bit $0 \ldots 7$ ) <br> Notice on splitting: <br> The result of the splitting function is written in the Configuration of area ... objects with indices 2170 ... 218F. <br> 0: Area result active if a beam is interrupted (AND) <br> 1: Area result active if all beams are interrupted (OR) (bit 8) |

Teach status (group 11)

| Parameter | Index <br> (hex.) | Sub- <br> index <br> (hex.) | Data <br> type | Access | Min. <br> value | Max. value | Default | Description |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Teach status | 2400 | 1 | t08U | RO |  | MAX_T08U |  | Information about the last <br> teach event: <br> 00: Teach ok <br> 01: Teach busy <br> 80: Teach error (bit $8=$ error <br> bit) |
| Status/state of a beam | 2191 |  | t08U | RO | 0 | 255 | Reading out of the switch-on <br> thresholds of the individual <br> beams. |  |
| Status/state of a beam |  |  |  |  |  |  |  |  |

Check the alignment of the light curtains (group 12)
O Information on the signal level of the first and last beam.
$\pi$
The value changes depending on the selected function reserve.

| Parameter | Index <br> (hex.) | Sub- <br> index <br> (hex.) | Data <br> type | Access | Min. <br> value | Max. value | Default | Description |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Signal level of first beam | 2404 | 1 | t 16 U | RO |  |  |  | Signal level on beam no. 1 |
| Signal level of last beam | 2404 | 2 | t 16 U | RO |  |  |  | Signal level on beam no. i |

Process data (group 13)
$\stackrel{\square}{\square}$
Configuration of the process data:

- First interrupted/uninterrupted beam (FIB/FNIB),
- Last interrupted/uninterrupted beam (LIB/LNIB),
- Number of interrupted/uninterrupted beams (TIB/TNIB);
- Area Out 1 ... 16 or $17 \ldots 32$; digital inputs/outputs

| Parameter | Index (hex.) | Subindex (hex.) | Data type | Access | Min. value | Max. value | Default | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| First interrupted beam (FIB) | 2405 |  | t16U | RO |  |  |  | First interrupted beam |
| First uninterrupted beam (FNIB) | 2406 |  | t16U | RO |  |  |  | First uninterrupted beam |
| Last interrupted beam (LIB) | 2407 |  | t16U | RO |  |  |  | Last interrupted beam |
| Last uninterrupted beam (LNIB) | 2408 |  | t16U | RO |  |  |  | Last uninterrupted beam |
| Number of interrupted beams (TIB) | 2409 |  | t16U | RO |  |  |  | Sum of interrupted beams |
| Number of uninterrupted beams (TNIB) | 240A |  | t16U | RO |  |  |  | Sum of uninterrupted beams |
| Area Out - LoWord | 240D |  | t16U | RO |  |  |  | Logical value of areas $1 . . .16$ |
| Area Out - HiWord | 240E |  | t16U | RO |  |  |  | Logical value of areas $17 \ldots 32$ |
| Status of the digital inputs/outputs | 240F |  | t16U | RO |  |  |  | Representation of the hardware switching outputs; these are mapped to the areas |
| CML 700i status information | 2411 |  | t16U | RO |  |  |  | Bits $0 \ldots$ 11: measurement cycle number of a measurement; <br> Bits 12 ... 13: reserved; Bit 14: $1=$ event (is set if the status changes) Cause/reason for event can be seen in index 2162. Bit 15: 1 = valid measurement result exists |


| Parameter | Index <br> (hex.) | Subindex (hex.) | Data type | Access | Min. value | Max. value | Default | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Beam-stream | 2412 | 1 | t16U | RO |  |  |  | Reading out of the beam states of all existing individual beams: <br> One bit per interrupted or uninterrupted beam in inverted operation (i.e., bit $\mathrm{i}=1$ corresponds to "light path is free"). <br> An object contains 16 individual beams, i.e., beam ito (i+15). <br> Read out beam 1 ... 16 |
|  |  | 2 | t16U | RO |  |  |  | Read out beam $17 . . .32$ |
|  |  | 3 | t16U | RO |  |  |  | Read out beam $33 . . .48$ |
|  |  | ... | .... | . |  |  |  | ........ |
|  |  | 6F | t16U | RO |  |  |  | Read out beam 1761 ... 1774 |
| Status/state of a beam | 2402 |  | t18U | RO |  |  |  | Reading out the beams states according to the blanking settings: 0: Beam is interrupted; no blanking settings <br> 1: Beam is interrupted; blanking setting: beam $=0$ (interrupted) <br> 2: Beam is interrupted; blank ing setting: beam = 1 (free light path) <br> 3: Beam is interrupted; blanking setting: suppressed beam <br> = adjacent beam with smaller beam number <br> 4: Beam is interrupted; blanking setting: suppressed beam = adjacent beam with larger beam number <br> 128: Free light path; no blank ing settings <br> 129: Free light path; blanking setting: beam $=0$ (interrupted) <br> 130: Free light path; blanking setting: beam $=1$ (free light path) <br> 131: Free light path; blanking setting: suppressed beam = adjacent beam with smaller beam number <br> 132: Free light path; blanking setting: suppressed beam = adjacent beam with larger beam number <br> Notice: <br> The data can be read for 64 beams. The first beam of this block output is selected via the "index for block access for the extended beam data" (0x2912). |
| Index for block access (for the extended beam data) | 2912 |  | t16U | RW | 1 | 1774 | 1 | Defines the first logical beam for the evaluation of extended beam data. |

## Status (group 14)

$\stackrel{O}{\square}$
Information on the status of the light curtain.

| Parameter | Index (hex.) | Subindex | Data type | Access | Min. value | Max. value | Default | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Device status | 2162 |  | t16S | RO |  |  |  | 0 : Normal function <br> 1: Teaching error <br> 2: Internal temperature/voltage monitoring <br> 3: Invalid configuration <br> 4: Hardware error <br> 5: 24 V voltage error (supply voltage $U_{B}$ ) <br> 6: Transmitter and receiver incompatible <br> 7: No connection to transmitter <br> 8: Soiling <br> 9: Teaching necessary <br> 10: Measurement not active. <br> The device <br> - reconfigures itself <br> - (re)starts <br> - waits for the first trigger pulse <br> - was manually stopped |
| $\mathrm{R}_{\mathrm{X}}$ error field | 2600 |  | t16U | RO |  |  |  | For internal diagnosis only |
| $\mathrm{K}_{\mathrm{x}}$ error field | 2601 |  | t16U | RO |  |  |  | For internal diagnosis only |

## 12 Starting up the device - Profibus interface

The configuration of a Profibus interface involves the following steps on the receiver control panel and in the control-specific configuration software.

General prerequisites:

- The measuring light curtain has been mounted (see chapter 6) and connected (see chapter 7) correctly.
- The basic configuration has been performed (see chapter 8 ).


### 12.1 Defining the Profibus basic configuration on the receiver control panel

The parameters for the Profibus interface are defined with the slave address and bit rate configurations. The structure of these configurations in the receiver control panel menu is as follows:

| Level 0 | Level 1 | Level 2 | Description |
| :--- | :--- | :--- | :--- |



Prerequisites:

- The measuring light curtain must be correctly aligned (see chapter 8.1).
- The measuring light curtain must be correctly taught (see chapter 8.2).

The following procedure describes the configurations for Profibus interfaces.
$\stackrel{y}{\wedge}$ Select Main Settings > Profibus > Slave Address > Enter value.
(4) Select Main Settings > Profibus > Bit rate $>$ Enter value.

The bus address and bit rate are configured.
Other possible configuration steps are performed via the Sensor Studio configuration software (see chapter 15).
Process mode is configured via the control-specific Profibus interface.

### 12.2 Defining configurations via the PLC-specific software

General prerequisites:

- The measuring light curtain has been mounted (see chapter 6) and connected (see chapter 7) correctly.
- The basic configuration has been performed (see chapter 8).
- The Profibus basic configurations have been performed:
- Slave address selected
- Bit rate selected

Specific prerequisites:

- The Profibus-specific GSD file must be installed on the control.

The Profibus device master data file (GSD) can be used both with connected light curtain for direct configuration as well as "off-line" without connected CML 700i for creating device configurations.

The GSD file is supplied with the product. It can also be downloaded from the Internet at www.leuze.com.

## NOTICE

Configuration dependent on the control-specific software!
${ }^{4}$ The sequence of the configurations is dependent on the control-specific software.
$\left.{ }^{\wedge}\right)$ First configure the GSD file while off-line
$\stackrel{\Perp}{\Perp}$ Once all parameters have been configured, transmit the GSD configuration to the CML 700i.

O Information on using the configuration parameters can be found in the general descriptions of the individual functions of the CML 700i (see chapter 4).
$\left.{ }^{\wedge}\right)$ Open the interface software.
${ }^{\wedge}$ ) Configure the following parameters:

- Beam mode (parallel-beam, diagonal-beam, crossed-beam scanning)
- Blanking settings
- Teach settings
$\stackrel{4}{4}$ Perform a teach. This is possible via the receiver control panel or the control module in the Profibus process data.
$\left.{ }^{4}\right)$ If necessary, configure additional parameter/process data (see chapter 12.3.2).

O The configuration does not need to be stored separately, but is rather automatically transfered from the control to the CML 700i on machine start-up.

The Profibus-specific configurations have been performed and the CML 700i is ready for process mode.

### 12.3 Parameter/process data for Profibus

### 12.3.1 General information on Profibus

In addition to the basic configurations (see chapter 8), the functionality of the CML 700i is defined via the GSD modules. The necessary modules are linked and appropriately configured for the given measurement application with a user-specific PLC configuration software program.
$\stackrel{\circ}{\square}$
During operation of the CML 700i on the Profibus, all configuration parameters are set with adjustment values ex works (see default adjustment values in the following module descriptions). As long as these configuration parameters are not changed, the CML 700i operates with these default parameter values.

## NOTICE

## Working with the GSD file modules!

${ }^{4}$ ) At least one module must be configured with input data from the GSD file in the control-specific configuration software, e.g., module 1 "evaluation functions (16 bit)".
$\stackrel{\leftrightarrow}{\Perp}$ Some programmable logic controls make available a so-called "universal module". This module is used for control purposes and must not be activated for the CML 700i.

### 12.3.2 Configuration parameters or process data

The configuration parameters or process data for Profibus is defined via the following module descriptions.
Module overview

| Module no. | Module name | ID (hex) | Parameter | Inputs | Outputs |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Module 0 | Sensor control module (see page 111) | C0 | 0 | 0 | 2 |
| Module 1 | Evaluation functions (16 bit) (see page 112) | F0 | 1 | 2 | 0 |
| Module 2 | Beam-stream (16 bit) (see page 112) | B0 | 1 | 2 | 0 |
| Module 3 | Beam-stream (32 bit) (see page 112) | B1 | 1 | 4 | 0 |
| Module 4 | Beam-stream (64 bit) (see page 113) | B2 | 1 | 8 | 0 |
| Module 5 | Beam-stream (128 bit) (see page 113) | B3 | 1 | 16 | 0 |
| Module 6 | Beam-stream (256 bit) (see page 113) | B4 | 1 | 32 | 0 |
| Module 7 | Beam-stream (512 bit) (see page 113) | B5 | 1 | 64 | 0 |
| Module 8 | Beam-stream (1024 bit) (see page 113) | B6 | 1 | 128 | 0 |
| Module 9 | Beam-stream (1774 bit) (see page 114) | B7 | 0 | 222 | 0 |
| Module 10 | Read device parameters (see page 114) | E0 | 1 | 0 | 0 |
| Module 11 | General settings (see page 115) | D0 | 3 | 0 | 0 |
| Module 12 | Extended settings (see page 115) | D1 | 4 | 0 | 0 |
| Module 13 | Configuration of digital I/Os (see page 115) | D2 | 16 | 0 | 0 |
| Module 14 | Teach settings (see page 117) | D3 | 3 | 0 | 0 |
| Module 15 | Cascading configuration (see page 117) | D4 | 7 | 0 | 0 |
| Module 16 | Blanking configuration (see page 117) | D6 | 21 | 0 | 0 |
| Module 17 | Autosplitting configuration (see page 118) | D7 | 1 | 0 | 0 |
| Module 18 | Area settings (see page 119) | D8 | 13 | 0 | 0 |

## Sensor control module (module 0)

O The sensor control module allows to control the CML 700i via the process data with byte 1 and
$\rfloor$ byte 2 . In both cases, the command is triggered in the device by incrementing the data value.

| Parameter | Rel. <br> Adr. | Data type | Value range | Default | Description |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Sensor control module |  |  | Trigger = byte 1 <br> Teach = byte 2 |  |  |

## Evaluation function (16 bit) (module 1)

$\xrightarrow{\circ}$
Configuration of the process data module (16 bit):

- First interrupted/uninterrupted beam (FIB/FNIB),
- Last interrupted/uninterrupted beam (LIB/LNIB),
- Number of interrupted/uninterrupted beams (TIB/TNIB);
- Status area 1 ... 32

| Parameter | Rel. Adr. | Data type | Value range | Default | Description |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Evaluation function | 0 | Unsigned16 | $0 . .13$ | 0 | Process data module (16 bit) <br> 0: No evaluation (NOP) <br> 1: 1st interrupted beam <br> 2: 1st uninterrupted beam <br> 3: Last interrupted beam <br> 4: Last uninterrupted beam <br> 5: Number of interrupted beams <br> 6: Number of uninterrupted beams <br> 9: Status of beam area 16 ... 1 <br> 10: Status of beam area $32 \ldots 17$ <br> 11: Status digital inputs/outputs <br> 12: Reserved <br> 13: CML 700i status information <br> - Bits 0 ... 11: measurement cycle number of a measurement <br> - Bits $12 \ldots$ 13: reserved <br> - Bit 14: 1 = event (is set if the status changes) Cause/reason for event can be seen in index 2162 <br> - Bit 15: 1 = valid measurement result exists |

To set different evaluation functions, you must configure the same module multiple times.

## Beam-stream (16 bit) (module 2)

$\stackrel{\bigcirc}{\square}$
Reading out of the beam states of all existing individual beams. The object transmits 16 logical beams beginning with the configured optical cascade. One bit is transmitted for each interrupted or uninterrupted beam.

| Parameter | Rel. <br> Adr. | Data type | Value range | Default | Description |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Number of the optical cascade | 0 | Unsigned16 | $1 \ldots 111$ | 1 | Number of the optical cascade beginning with which the <br> beam-stream data is to be transmitted. |

## Beam-stream (32 bit) (module 3)

Reading out of the beam states of all existing individual beams. The object transmits 32 logical beams beginning with the configured optical cascade. One bit is transmitted for each interrupted or uninterrupted beam.

| Parameter | Rel. <br> Adr. | Data type | Value range | Default | Description |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Number of the optical cascade | 0 | Unsigned32 | $1 \ldots 110$ | 1 | Number of the optical cascade beginning with which the <br> beam-stream data is to be transmitted. |

## Beam-stream (64 bit) (module 4)



Reading out of the beam states of all existing individual beams. The object transmits 64 logical beams beginning with the configured optical cascade. One bit is transmitted for each interrupted or uninterrupted beam.

| Parameter | Rel. <br> Adr. | Data type | Value range | Default | Description |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Number of the optical cascade | 0 | Unsigned64 | $1 \ldots 108$ | 1 | Number of the optical cascade beginning with which the <br> beam-stream data is to be transmitted. |

## Beam-stream (128 bit) (module 5)

O Reading out of the beam states of all existing individual beams. The object transmits 128 logical
! beams beginning with the configured optical cascade. One bit is transmitted for each interrupted or uninterrupted beam.

| Parameter | Rel. <br> Adr. | Data type | Value range | Default | Description |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Number of the optical cascade | 0 | Unsigned128 | $1 \ldots 104$ | 1 | Number of the optical cascade beginning with which the <br> beam-stream data is to be transmitted. |

## Beam-stream (256 bit) (module 6)



Reading out of the beam states of all existing individual beams. The object transmits 256 logical beams beginning with the configured optical cascade. One bit is transmitted for each interrupted or uninterrupted beam.

| Parameter | Rel. <br> addr. | Data type | Value range | Default | Description |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Number of the optical cascade | 0 | Unsigned256 | $1 \ldots 96$ | 1 | Number of the optical cascade beginning with which the <br> beam-stream data is to be transmitted. |

## Beam-stream (512 bit) (module 7)



Reading out of the beam states of all existing individual beams. The object transmits 512 logical beams beginning with the configured optical cascade. One bit is transmitted for each interrupted or uninterrupted beam.

| Parameter | Rel. <br> Adr. | Data type | Value range | Default | Description |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Number of the optical cascade | 0 | Unsigned512 | $1 \ldots 80$ | 1 | Number of the optical cascade beginning with which the <br> beam-stream data is to be transmitted. |

## Beam-stream (1024 bit) (module 8)



Reading out of the beam states of all existing individual beams. The object transmits 1024 logical beams beginning with the configured optical cascade. One bit is transmitted for each interrupted or uninterrupted beam.

| Parameter | Rel. <br> Adr. | Data type | Value range | Default | Description |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Number of the optical cascade | 0 | Unsigned1024 | $1 \ldots 48$ | 1 | Number of the optical cascade beginning with which the <br> beam-stream data is to be transmitted. |

## Beam-stream (1774 bit) (module 9)



Reading out of the beam states of all existing individual beams. The object transmits 1774 logical beams beginning with the configured optical cascade. One bit is transmitted for each interrupted or uninterrupted beam.

| Parameter | Rel. <br> Adr. | Data type | Value range | Default | Description |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Number of the optical cascade | 0 | Unsigned1774 | 1 | 1 | Number of the optical cascade beginning with which the <br> beam-stream data is to be transmitted. |

## Read device parameters (module 10)

O With the "Read device parameters" module, various data (e.g., manufacturer, device type, serial number, etc.) can be read out for diagnostics or to check the configuration during the start-up phase.

| Parameter | Rel. Adr. | Data type | Value range | Default | Description |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Parameter | 0 | $\begin{array}{\|l} \text { Unsigned8 } \\ 0 \ldots 255 \end{array}$ | $0 . . .161$ | 0 | 0: ZERO <br> 16: Manufacturer <br> 17: Manufacturer text <br> 18: Receiver product designation <br> 19: Receiver part no. <br> 20: Product description <br> 21: Receiver serial number <br> 22: Hardware version <br> 23: Firmware version <br> 24: Application-specific name <br> 64: Transmitter product designation <br> 65: Transmitter part no. <br> 66: Transmitter serial number <br> 67: Device description <br> 68: Teach status <br> 69: Status - alignment <br> 70: General settings <br> 71: Process data configuration <br> 72: Cascading configuration <br> 73: Extended settings <br> 75: Blanking area configuration <br> 76: Digital PNP/NPN <br> 80: Digital IO 01 <br> 81: Digital IO 02 <br> 82: Digital IO 03 <br> 83: Digital IO 04 <br> 84: Digital output 01 <br> 85: Digital output 02 <br> 86: Digital output 03 <br> 87: Digital output 04 <br> 88: Analog output configuration <br> 89: Analog function <br> 100: Area 01 <br> 101: Area 02 <br> 102: Area 03 <br> 129: Area 30 <br> 130: Area 31 <br> 131: Area 32 <br> 150: 1st interrupted beam <br> 151: 1st uninterrupted beam <br> 152: Last interrupted beam <br> 153: Last uninterrupted beam <br> 154: Number of interrupted beams <br> 155: Number of uninterrupted beams <br> 158: Status of areas $16 \ldots 1$ <br> 159: Status of areas $32 \ldots 17$ <br> 160: Status of digital inputs/outputs <br> 161: Status of analog output |

## General settings (module 11)

- Under general settings, the type of scanning (parallel-/diagonal-/crossed-beam), counting direction and minimum object for evaluation (smoothing) or minimum hole size (inverted smoothing) are set.

| Parameter | Rel. <br> Adr. | Data type | Value range | Default | Description |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Mode | 0 | BitArea(4 $\ldots .7)$ <br> $0 \ldots 3$ | $0 \ldots 2$ | 0 | 0: Parallel-beam scanning <br> 1: Diagonal-beam scanning <br> 2: Crossed-beam scanning |
| Counting direction | 0 | Bit(0) <br> $0 \ldots 1$ | $0 \ldots 1$ | 0 | 0: Normal (interface $\rightarrow$ ) <br> 1: Inverted $(\rightarrow$ interface $)$ |
| Smoothing | 1 | Unsigned8 | $1 \ldots 255$ | 1 | Smoothing: <br> Less than i interrupted beams are ignored. |
| Inverted smoothing | 2 | Unsigned8 | $1 \ldots 255$ | 1 | Inverted smoothing: <br> Less than i free beams are ignored. |

## Extended settings (module 12)

$\stackrel{\square}{\square}$
The filter depth indicates the necessary number of consistent beam states before the evaluation ration of the integration time.

| Parameter | Rel. <br> Adr. | Data type | Value range | Default | Description |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Autoteach on power-on | 0 | Bit (7) <br> $0 \ldots 1$ | $0 \ldots 1$ | 0 | Automatic teach on power-on <br> 0: Not active <br> 1: Active |
| Button lock on the display | 0 | Bit(0) <br> $0 \ldots 1$ | $0 \ldots 1$ | 0 | 0: Not active <br> 1: Active |
| Filter Depth | 1 | Unsigned8 | $1 \ldots 255$ | 1 | The filter depth indicates the necessary number of consis- <br> tent beam states before the evaluation of the measure- <br> ment values. The filter depth corresponds to the number <br> of passes (measurement cycles) with interrupted beam so <br> that the result leads to switching. |
| Integration/hold time | 2 | Unsigned16 | $1 \ldots 6553$ | 1 | All measurement values are accumulated and retained <br> over the duration of the integration time. Hold function in <br> ms. |

## Configuration of digital IOs (module 13)

$\bigcirc$ Configuration of the inputs/outputs. The inputs/outputs can be set to positive switching (PNP) or to negative switching (NPN). The switching behavior applies the same for all inputs/outputs.

| Parameter | Rel. <br> Adr. | Data type | Value range | Default | Description |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Switching level of digital I/Os | 0 | Bit (7) <br> $0 \ldots 1$ | $0 \ldots 1$ | 1 | 0: Transistor, NPN <br> 1: Transistor, PNP |

$\stackrel{O}{\square}$
Configuration of the inputs/outputs: pin 2 and/or pin 5.

| Parameter | Rel. Adr. | Data type | Value range | Default | Description |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Configuration of pin 2 |  |  |  |  |  |
| Pin 2 - Input/output selection | 0 | $\begin{aligned} & \text { Bit (5) } \\ & 0 \ldots .1 \end{aligned}$ | $0 \ldots 1$ | 1 | 0: Output <br> 1: Input |
| Pin 2 - Switching behavior | 0 | $\begin{aligned} & \text { Bit (4) } \\ & 0 \ldots \end{aligned}$ | $0 \ldots 1$ | 0 | 0: Light switching: HIGH active <br> 1: Dark switching: LOW active |
| Pin 2 - Input function | 0 | $\begin{aligned} & \text { BitArea(2 ... 3) } \\ & 0-2 \end{aligned}$ | $0 \ldots 2$ | 1 | 0 : Not active <br> 1: Trigger input <br> 2: Teach input |
| Pin 2 - Output function | 0 | $\begin{aligned} & \operatorname{BitArea(0~...~1)~} \\ & 0 \ldots 3 \end{aligned}$ | $0 \ldots 3$ | 0 | 0 : Not active <br> 1: Switching output (area $1 . . .32$ ) <br> 2: Warning output <br> 3: Trigger output |
| Pin 2 - Time module operating mode | 1 | $\begin{aligned} & \text { BitArea(4 ... 7) } \\ & 0 \ldots 4 \end{aligned}$ | $0 \ldots 4$ | 0 | 0 : Not active <br> 1: Start-up delay <br> 2: Switch-off delay <br> 3: Pulse stretching <br> 4: Pulse suppression |
| Pin 2 - Delay time | 2 | Unsigned16 | $0 \ldots 65535$ | 0 | Affects the selected function of the time module. <br> Unit: ms |
| Pin 2 - area mapping $32 \ldots 1$ | 4 | Unsigned 32 | Ob00000000000000000000000000000000 Ob1111111111111111111111111111111111 |  |  |
| Configuration of pin 5 |  |  |  |  |  |
| Pin 5 - Input/output selection | 8 | $\begin{aligned} & \text { Bit (5) } \\ & 0 \ldots .1 \end{aligned}$ | $0 \ldots 1$ | 0 | 0 : Output <br> 1: Input |
| Pin 5 - Switching behavior | 8 | $\operatorname{Bit}(4) 0 \ldots 1$ | $0 \ldots 1$ | 0 | 0: Light switching: HIGH active <br> 1: Dark switching: LOW active |
| Pin 5 - Input function | 8 | BitArea(2 ... 3)0 | $0 \ldots 2$ | 0 | 0 : Not active <br> 1: Trigger input <br> 2: Teach input |
| Pin 5 - Output function | 8 | $\begin{aligned} & \operatorname{BitArea(0...~1)} \\ & 0 \ldots 3 \end{aligned}$ | $0 \ldots 3$ | 2 | 0 : Not active <br> 1: Switching output (area $1 . . .32$ ) <br> 2: Warning output <br> 3: Trigger output |
| Pin 5 - Time module operating mode | 9 | $\begin{aligned} & \text { BitArea(0 ... 3)0 } \\ & \ldots 4 \end{aligned}$ | $0 \ldots 4$ | 0 | 0 : Not active <br> 1: Start-up delay <br> 2: Switch-off delay <br> 3: Pulse stretching <br> 4: Pulse suppression |
| Pin 5 - Delay time | 10 | Unsigned16 | 0-65535 | 0 | Unit: ms |
| Pin 5 - area mapping $32 \ldots 1$ | 12 | Unsigned32 | Ob00000000000000000000000000000000 Ob111111111111111111111111111111111 |  |  |

## Teach settings (module 14)

$\bigcirc$ In most applications, it is recommended that the teach values be stored in non-volatile memory.

Depending on the function reserve selected for the teach, the sensitivity is higher or lower (high function reserve = low sensitivity, low function reserve = high sensitivity).

| Parameter | Rel. <br> Adr. | Data type | Value range | Default | Description |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Type of storage for teach values | 0 | BitArea(4 $\ldots 7)$ <br> $0-1$ | $0 \ldots 1$ | 0 | 0: Non-volatile storage <br> 1: Teach values stored only in RAM |
| Sensitivity adjustment for teach <br> event | 0 | BitArea(0 $\ldots 3)$ <br> $0 \ldots 3$ | $0 \ldots 2$ | 0 | Sensitivity of the measurement system: <br> 0: High function reserve (for stable operation) <br> 1: Medium function reserve <br> 2: Low function reserve |
| Number of teach cycles | 1 | Unsigned8 | $1 \ldots 255$ | 1 |  |

## Cascading configuration (module 15)



To prevent mutual interference, multiple CML 700i can be operated with a time offset with respect to one another (cascade). Here, the master generates the cyclical trigger signal; the slaves start their measurement after delay times, which are to be set to different values.

| Parameter | Rel. <br> Adr. | Data type | Value range | Default | Description |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Cascading | 0 | Bit (7) <br> $0 \ldots 1$ | $0 \ldots 1$ | 0 | 0: Not active <br> 1: Active |
| Function type | 0 | Bit(0) <br> $0 . .1$ | $0 \ldots 1$ | 0 | 0: Slave (expects trigger signal) <br> 1: Master (sends trigger signal) |
| Delay time Trigger $\rightarrow$ Scan | 1 | Unsigned16 | $500 \ldots 65535$ | 500 | Unit: $\mu \mathrm{s}$ |
| Pulse width of trigger signal | 3 | Unsigned16 | $100 \ldots 65535$ | 100 | Unit: $\mu \mathrm{s}$ |
| Master cycle time | 5 | Unsigned16 | $1 \ldots 6500$ | 1 | Unit: ms |

## Blanking configuration (module 16)

Up to four beam areas can be suppressed. Deactivated beams can be assigned the logical values 0,1 or the value of the adjacent beam. With auto blanking activated, up to four beam areas are automatically suppressed during teaching.

Auto blanking should only be activated during commissioning of the CML 700i to suppress interfering objects. In process mode, auto blanking should be deactivated.

For details on this topic see chapter 14.4.

## NOTICE

## Perform teach after changing the blanking configuration!

$\stackrel{H}{4}$ Perform a teach after changing the blanking configuration.
A teach can be performed via the receiver control panel or via the teach command.

| Parameter | Rel. Adr. | Data type | Value range | Default | Description |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Number of auto-blanking areas | 0 | $\begin{aligned} & \operatorname{BitArea(4~...~7)~} \\ & 0 \ldots 4 \end{aligned}$ | 0... 4 | 0 | Permissible number of blanking areas <br> 0: 0 auto-blanking areas <br> 1: 1 auto-blanking area <br> 2: 2 auto-blanking areas <br> 3: 3 auto-blanking areas <br> 4: 4 auto-blanking areas |
| Auto blanking (during teaching) | 0 | $\begin{aligned} & \operatorname{Bit}(0) \\ & 0 \ldots 1 \end{aligned}$ | $0 \ldots 1$ | 0 | 0 : Not active (manual blanking area configuration) <br> 1: Active (automatic blanking area configuration through teach) |
| Log. value for blanking area 1 | 1 | $\begin{aligned} & \operatorname{BitArea(4~...~7)~} \\ & 0 \ldots 4 \end{aligned}$ | 0... 4 | 0 | 0: No beams blanked <br> 1: Blanked beams $=\log .0$ <br> 2: Blanked beams = log. 1 <br> 3: Value = lower-value neighbor <br> 4: Value = higher-value neighbor |
| Start beam of blanking area 1 | 2 | Unsigned16 | 1... 1774 | 1 |  |
| End beam of blanking area 1 | 4 | Unsigned16 | 1... 1774 | 1 |  |
| Log. value for blanking area 2 | 6 | $\begin{aligned} & \text { BitArea(0 ... 3) } \\ & 0 \ldots 4 . \end{aligned}$ | 0... 4 | 0 | 0: No beams blanked <br> 1: Blanked beams $=\log .0$ <br> 2: Blanked beams = log. 1 <br> 3: Value = lower-value neighbor <br> 4: Value = higher-value neighbor |
| Start beam of blanking area 2 | 7 | Unsigned16 | 1... 1774 | 1 |  |
| End beam of blanking area 2 | 9 | Unsigned16 | 1... 1774 | 1 |  |
| Log. value for blanking area 3 | 11 | $\begin{aligned} & \operatorname{BitArea(4~...~7)~} \\ & 0 \ldots 4 \end{aligned}$ | 0... 4 | 0 | 0: No beams blanked <br> 1: Blanked beams $=\log .0$ <br> 2: Blanked beams = log. 1 <br> 3: Value = lower-value neighbor <br> 4: Value $=$ higher-value neighbor |
| Start beam of blanking area 3 | 12 | Unsigned16 | 1... 1774 | 1 |  |
| End beam of blanking area 3 | 14 | Unsigned16 | 1... 1774 | 1 |  |
| Log. value for blanking area 4 | 16 | $\begin{aligned} & \text { BitArea(0 } \ldots 3) \\ & 0 \ldots 4 \end{aligned}$ | $0 \ldots 4$ | 0 | 0 : No beams blanked <br> 1: Blanked beams $=\log .0$ <br> 2: Blanked beams = log. 1 <br> 3: Value = lower-value neighbor <br> 4: Value $=$ higher-value neighbor |
| Start beam of blanking area 4 | 17 | Unsigned16 | 1... 1774 | 1 |  |
| End beam of blanking area 4 | 19 | Unsigned16 | 1... 1774 | 1 |  |

## Autosplitting configuration (module 17)

$\stackrel{O}{\square}$
Configuration of autosplitting (areas).

| Parameter | Rel. <br> Adr. | Data type | Value range | Default | Description |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Logical behavior of the area | 0 | Bit(7)0 $\ldots 1$ | $0 \ldots 1$ | 0 | 0: Logical OR linked <br> 1: Logical AND linked |
| Number of areas | 0 | BitArea(0 ... 6) | $1 \ldots 111$ | 1 | Number of areas for autosplitting |

## Area settings (module 18)

$\square$
To set multiple areas, you must configure the same module multiple times.
Configuration of the respective area: definition of the status conditions so that the area takes on a logical 1 or 0 . For diagonal- or crossed-beam scanning, the numbers of the logical beams are to be entered.

| Parameter | Rel. <br> Adr. | Data type | Value range | Default | Description |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Area configuration | 0 | BitArea(0 $\ldots 5)$ <br> $1 \ldots 32$ | $1 \ldots 32$ | 1 | 1: Area 01 <br> $\ldots$ <br> 32: Area 32 |
| Area (active/not active) | 0 | Bit (7) <br> $0 \ldots 1$ | $0 \ldots 1$ | 0 | 0: Not active <br> 1: Active |
| Logical behavior of the area | 0 | Bit(6) <br> $0 \ldots 1$ | $0 \ldots 1$ | 0 | 0: Active HIGH <br> 1: Active LOW |
| Start beam of the area | 1 | Unsigned16 | $1 \ldots 1774$ <br> 65534 <br> 65533 <br> 65532 <br> 65531 | 1 | 65534: First interrupted beam (FIB) <br> 65533: First uninterrupted beam (FNIB) <br> 65532: Last interrupted beam (LIB) <br> 65531: Last uninterrupted beam (LNIB) |
| End beam of the area | 3 | Unsigned16 | $1 \ldots 1774$ <br> 65534 <br> 65533 | 1 | 65534: First interrupted beam (FIB) <br> 65532 <br> 65531 |
| Number of active beams $\rightarrow$ ON | 5 | Unsigned16 | $0 \ldots 1774$ | 0 | 65532: Last interrupted beam (LIB) <br> 65531: Last uninterrupted beam (LNIB) |
| Number of active beams $\rightarrow$ OFF | 7 | Unsigned16 | $0 \ldots 1774$ | 0 |  |
| Specified middle of the area | 9 | Unsigned16 | $0 \ldots 1774$ | 0 |  |
| Specified width of the area | 11 | Unsigned16 | $0 \ldots 1774$ | 0 |  |

## 13 Starting up the device - RS 485 Modbus interface

The configuration of an RS 485 Modbus interface involves the following steps on the receiver control panel and the RS 485 Modbus interface module of the control-specific configuration software.

General prerequisites:

- The measuring light curtain has been mounted (see chapter 6) and connected (see chapter 7) correctly.
- The basic configuration has been performed (see chapter 8 ).


### 13.1 Defining the RS 485 Modbus basic configuration on the receiver control panel

## NOTICE

16-bit and 32-bit values in "little endian" format!
${ }^{4}$ ) Contrary to the Modbus specification, 16 -bit and 32 -bit values are handled in "little endian" format (low byte first). Example:
Value 25 as 16 -bit value: $0 \times 190 \times 00$
Value 25 as 32 -bit value: $0 \times 190 \times 000 \times 000 \times 00$
The parameters for the RS 485 Modbus interface are configured with the slave address, bit rate, parity and silent interval configurations.
The structure of these configurations in the receiver control panel menu is as follows:
Level 0
Level 1
Level 2
Description


| (enter value) <br> min $=1$ <br> $\mathrm{max}=247$ |  |  |  |
| :--- | :--- | :--- | :--- |
| $921.6 \mathrm{kbit} / \mathrm{s}$ | $115.2 \mathrm{kbit} / \mathrm{s}$ | $57.6 \mathrm{kbit} / \mathrm{s}$ | $38.4 \mathrm{kbit} / \mathrm{s}$ |
| $19.2 \mathrm{kbit} / \mathrm{s}$ | $9.6 \mathrm{kbit} / \mathrm{s}$ | $4.8 \mathrm{kbit} / \mathrm{s}$ |  |
| none | Straight | Not straight |  |
| $0=$ auto | (enter value) <br> min $=1$ <br> max $=30000$ <br> in $100 \mu \mathrm{~s}$ <br> increments |  |  |
|  |  |  |  |

[^0]
### 13.2 Defining configurations via the RS 485 Modbus interface module of the PLC software

In addition to the basic configurations (see chapter 8), the functionality of the CML 700i is configured according to the measurement application via the PLC with RS 485 Modbus telegrams.

During operation of the CML 700i on the RS 485 Modbus, all configuration parameters are set with adjustment values ex works (see default adjustment values in the following module descriptions). As long as these configuration parameters are not changed, the CML 700i operates with these default parameter values.

## RS 485 Modbus protocol

The CML 700i with RS 485 Modbus interface communicates with Modbus protocol RTU (Remote Terminal Unit).
For the RS 485 Modbus protocol configurations, the following applies: 1 module $=2$ bytes.
General structure of a serial RS 485 Modbus protocol telegram:

| Address field | Function code | User data | Error check |
| :--- | :--- | :--- | :--- |

Depending on the type of the RS 485 Modbus telegram (read access/write access or request/answer), all components can be contained in this general telegram structure or just some of them.

Access via RS 485 Modbus telegrams:

- Read access (see chapter 13.2.1)

The master (PLC) sends the slave (CML 700i) a 16-bit read access request that prompts the slave to send user data (e.g., measurement data and parameter values) as response telegram to the master.

- Write access (see chapter 13.2.2) The master (PLC) sends a write-access command telegram (e.g., teach or reset) or write-access configuration telegram (e.g., for cascading) for controlling the slave (CML 700i). The response from the slave reflects the write access bit on the master, but without specifying the amount of user data and the user data.
- Error check (CRC calculation) (see chapter 13.2.3)

The CRC calculation is a frame test and is performed over all bytes of the telegram to be transmitted, including the slave address. The CRC bytes are appended to the end of the telegram.

### 13.2.1 Modbus read access

16-bit read access

Telegram frame:

| 01 | 03 | 0010 | 0010 | 7203 |
| :--- | :--- | :--- | :--- | :--- |
| (byte 1) | (byte 2) | (byte $3 \ldots 4)$ | (byte $5 \ldots 6$ ) | (byte $7 \ldots 8$ ) |

Description of the bytes:

- Byte 1: 8-bit address, corresponds to the slave address set in the receiver control panel
- Byte 2: read access command $=0 x 03$
- Byte 3: module ID = 0x00
- Byte 4: index (here, e.g., $0 \times 10$ returns the manufacturer name, see chapter 13.3)
- Bytes $5 \ldots 6$ : maximum accepted number/length of the response data in words (16 bit)
- Bytes 7 ... 8: 16-bit error check (Cyclic Redundancy Check, CRC) (see chapter 13.2.3)


## Response to 16-bit read access (example)

Telegram frame:

| 01 | 03 | 20 | 4C 65 75 7A 6520 65 6C 65637472 6F 6E 69 632047 6D 624820 2B 2043 6F 2E 20 4B 47 0000 | 40 E6 |
| :---: | :---: | :---: | :---: | :---: |
| (byte 1) (byte 2) |  |  |  | (byte $36 . . .37$ ) |

## Description of the bytes

- Byte 1: slave address
- Byte 2: read access command = 0x03 (repeat of the read command)
- Byte 3: amount of user data (20 - the actual number/length of the sent response data of the read access)
- Bytes 4 ... 35: user data (here, e.g., string with manufacturer designation)
- Bytes 36 ... 37: 16-bit error check (Cyclic Redundancy Check, CRC) (see chapter 13.2.3)


### 13.2.2 Modbus write access

## 16-bit write access

Telegram frame:

| 01 | 10 | 0000 | 0002 | 04 | 01010200 | 3 F 36 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| (byte 1) | (byte 2) | (byte $3 \ldots 4)$ | (byte 5 . . 6) | (byte 7) | (byte $8 \ldots 11$ ) | (byte 12 $\ldots$ 13) |

Description of the bytes:

- Byte 1: slave address
- Byte 2: write access command $=0 \times 10$
- Byte 3: module ID = 0x00
- Byte 4: index (here, e.g., 0x10 returns the manufacturer name, see chapter 13.3)
- Bytes $5 \ldots$ 6: maximum length of the response data in words (16 bit)
- Byte 7: number of bytes of transferred user data (= $2 x$ value in bytes $5 \ldots 6$ )
- Bytes 8 .. 11: user data
- Bytes 12 ... 13: 16-bit error check (Cyclic Redundancy Check, CRC) (see chapter 13.2.3)


## Response to 16-bit write access

Telegram frame:

| 01 | 10 | 0000 | 0002 | $3 F 36$ |
| :--- | :--- | :--- | :--- | :--- |
| (byte 1) | (byte 2) | (byte $3 \ldots 4$ ) | (byte $5 \ldots 6$ ) | (byte $7 \ldots 8$ ) |

Description of the bytes:

- Byte 1: slave address
- Byte 2: write access command $=0 \times 10$
- Byte 3: module ID = 0x00
- Byte 4: index (here, e.g., 0x10 returns the manufacturer name, see chapter 13.3)
- Bytes $5 \ldots$ 6: maximum length of the response data in words (16 bit)
- Bytes 7 ... 8: 16-bit error check (Cyclic Redundancy Check, CRC) (see chapter 13.2.3)


### 13.2.3 Error check (CRC calculation)

$\xrightarrow{\circ}$
Example from the reference specification:
"MODBUS over serial line specification and implementation guide V1.0", chapter 6.2.2

## Example

An example of a C language function performing CRC generation is shown in the following. All of the possible CRC values are preloaded into two arrays, which are simply indexed as the function increments through the message buffer. One array contains all of the 256 possible CRC values for the high byte of the 16 -bit CRC field, and the other array contains all of the values for the low byte.

Indexing the CRC in this way provides faster execution than would be achieved by calculating a new CRC value with each new character from the message buffer.

This function performs the swapping of the high/low CRC bytes internally. The bytes are already swapped in the CRC value that is returned from the function.

Therefore the CRC value returned from the function can be directly placed into the message for transmission.

The function takes two arguments:

| Argument | Description |
| :--- | :--- |
| unsigned char *puchMsg; | A pointer to the message buffer containing binary data to be used for generating the CRC |
| unsigned short usDataLen; | The quantity of bytes in the message buffer. |

CRC generation function:

```
unsigned short CRC16 (puchMsg, usDataLen);
unsigned char *puchMsg;
unsigned short usDataLen; /* quantity of bytes in message */
{
```

```
unsigned char uchCRCHi =0xFF; /* high byte of CRC initialized */
```

unsigned char uchCRCHi =0xFF; /* high byte of CRC initialized */
unsigned char uchCRCLo = 0xFF; /* low byte of CRC initialized */
unsigned char uchCRCLo = 0xFF; /* low byte of CRC initialized */
unsigned ulndex; /* will index into CRC lookup table */
unsigned ulndex; /* will index into CRC lookup table */
while (usDataLen--) /* pass through message buffer */
while (usDataLen--) /* pass through message buffer */
{
{
ulndex = uchCRCLo ^ *puchMsgg++ ; /* calculate the CRC */
ulndex = uchCRCLo ^ *puchMsgg++ ; /* calculate the CRC */
uchCRCLo = uchCRCHi ^ auchCRCHi[ulndex} ;
uchCRCLo = uchCRCHi ^ auchCRCHi[ulndex} ;
uchCRCHi = auchCRCLo[ulndex];
uchCRCHi = auchCRCLo[ulndex];
}
}
return (uchCRCHi << 8 | uchCRCLo) ;
return (uchCRCHi << 8 | uchCRCLo) ;
}

```
}
```

High-order byte table:

| /* Tabl <br> static | of CRC <br> signed | lues for <br> ar auchC | gh-order $\mathrm{CHi}[]=$ |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0x00, | $0 x C 1$, | 0x81, | $0 \times 40$, | 0x01, | 0xC0, | 0x80, | 0x41, | 0x01, | $0 \times \mathrm{CO}$, | 0x80, | 0x41, | 0x00, | $0 \times \mathrm{C} 1$, | $0 \times 81$, |
| 0x40, | 0x01, | $0 \times C 0$, | 0x80, | $0 \times 41$, | 0x00, | $0 \times \mathrm{C} 1$, | 0x81, | 0x40, | 0x00, | $0 \times C 1$, | 0x81, | 0x40, | 0x01, | $0 \times C 0$, |
| 0x80, | 0x41, | 0x01, | 0xC0, | 0x80, | $0 \times 41$, | 0x00, | $0 \mathrm{xC1}$, | 0x81, | 0x40, | 0x00, | $0 \mathrm{CC1}$, | 0x81, | 0x40, | 0x01, |
| $0 \times C 0$, | 0x80, | 0x41, | 0x00, | $0 \times C 1$, | 0x81, | 0x40, | 0x01, | $0 \times C 0$, | 0x80, | 0x41, | 0x01, | $0 \times C 0$, | 0x80, | $0 \times 41$, |
| 0x00, | $0 \mathrm{CC1}$, | 0x81, | $0 \times 40$, | 0x01, | 0xC0, | 0x80, | $0 \times 41$, | 0x00, | $0 \times \mathrm{C} 1$, | 0x81, | 0x40, | 0x00, | $0 \times \mathrm{C} 1$, | $0 \times 81$, |
| 0x40, | 0x01, | 0 CCO , | 0x80, | $0 \times 41$, | 0x00, | $0 \times \mathrm{C} 1$, | 0x81, | 0x40, | 0x01, | 0xC0, | 0x80, | 0x41, | 0x01, | $0 \times C 0$, |
| 0x80, | 0x41, | 0x00, | 0xC1, | 0x81, | $0 \times 40$, | 0x00, | $0 \mathrm{xC1}$, | 0x81, | 0x40, | 0x01, | 0xC0, | 0x80, | 0x41, | 0x01, |
| 0xC0, | 0x80, | 0x41, | 0x00, | 0xC1, | 0x81, | 0x40, | 0x01, | 0xC0, | 0x80, | 0x41, | 0x00, | 0xC1, | 0x81, | 0x40, |
| 0x00, | $0 \mathrm{xC1}$, | 0x81, | $0 \times 40$, | 0x01, | 0xC0, | 0x80, | 0x41, | 0x01, | $0 \times \mathrm{CO}$, | 0x80, | 0x41, | 0x00, | $0 \times \mathrm{C} 1$, | $0 \times 81$, |
| 0x40, | 0x00, | 0xC1, | 0x81, | 0x40, | 0x01, | 0xC0, | 0x80, | 0x41, | 0x00, | $0 \times C 1$, | 0x81, | 0x40, | 0x01, | 0xC0, |
| 0x80, | 0x41, | 0x01, | 0xC0, | 0x80, | $0 \times 41$, | 0x00, | 0 CC 1 , | 0x81, | 0x40, | 0x00, | 0 CC 1 , | 0x81, | 0x40, | 0x01, |
| $0 \times \mathrm{C} 0$, | 0x80, | 0x41, | 0x01, | 0xC0, | 0x80, | 0x41, | 0x00, | $0 \mathrm{CC1}$, | 0x81, | 0x40, | 0x01, | 0xC0, | 0x80, | 0x41, |
| 0x00, | $0 \times C 1$, | 0x81, | $0 \times 40$, | $0 \times 00$, | $0 \times C 1$, | 0x81, | 0x40, | 0x01, | 0xC0, | 0x80, | 0x41, | 0x00, | $0 \times C 1$, | $0 \times 81$, |


| $0 \times 40$, | $0 \times 01$, | $0 \times C 0$, | $0 \times 80$, | $0 \times 41$, | $0 \times 01$, | $0 \times C 0$, | $0 \times 80$, | $0 \times 41$, | $0 \times 00$, | $0 \times C 1$, | $0 \times 81$, | $0 \times 40$, | $0 \times 01$, | $0 \times C 0$, |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $0 \times 80$, | $0 \times 41$, | $0 \times 00$, | $0 \times C 1$, | $0 \times 81$, | $0 \times 40$, | $0 \times 00$, | $0 \times C 1$, | $0 \times 81$, | $0 \times 40$, | $0 \times 01$, | $0 \times C 0$, | $0 \times 80$, | $0 \times 41$, | $0 \times 01$, |
| $0 \times C 0$, | $0 \times 80$, | $0 \times 41$, | $0 \times 00$, | $0 \times C 1$, | $0 \times 81$, | $0 \times 40$, | $0 \times 00$, | $0 \times C 1$, | $0 \times 81$, | $0 \times 40$, | $0 \times 01$, | $0 \times C 0$, | $0 \times 80$, | $0 \times 41$, |
| $0 \times 00$, | $0 \times C 1$, | $0 \times 81$, | $0 \times 40$, | $0 \times 01$, | $0 \times C 0$, | $0 \times 80$, | $0 \times 41$, | $0 \times 01$, | $0 \times C 0$, | $0 \times 80$, | $0 \times 41$, | $0 \times 00$, | $0 \times C 1$, | $0 \times 81$, |
| $0 \times 40$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

### 13.2.4 Defining configurations via the PLC-specific software

General prerequisites:

- The measuring light curtain has been mounted (see chapter 6) and connected (see chapter 7) correctly.
- The basic configuration has been performed (see chapter 8).
- RS 485 Modbus-specific basic configurations have been performed.
- Slave address selected
- Bit rate selected
- Parity selected
- Silent interval entered

To configure the CML 700i, the user must set the parameters via RS 485 Modbus telegrams with read/write commands (see chapter 13.2.1/see chapter 13.2.2).

O Information on using the configuration parameters can be found in the general descriptions of the individual functions of the CML 700i (see chapter 4).
$\stackrel{4}{\wedge}$ Open the configuration software of the RS 485 Modbus interface module.
${ }^{4}$ Configure the following configuration parameters:

- Operating mode (parallel-beam; diagonal-beam; crossed-beam scanning)
- Blanking settings
- Teach settings
$\left.{ }^{4}\right)$ Perform a teach. This is possible via the receiver control panel or the control group in the RS 485 Modbus process data.
(4) If necessary, configure additional parameter/process data (see chapter 13.3).
${ }^{4}$ Save the configuration via the control group in the RS 485 Modbus process data.
Saving ensures that the configuration is stored in non-volatile memory. Configurations that are not stored in non-volatile memory have only temporary effect and are lost when the device is switched off.
The RS 485 Modbus-specific configurations have been performed, copied to the CML 700i and the CML 700i is ready for process mode.


### 13.3 Parameter/process data for RS 485 Modbus

The configuration parameters or process data for RS 485 Modbus are defined via the following module descriptions.
$\stackrel{\circ}{\square}$ The following abbreviations for data types apply in the following module descriptions:
$\rfloor$ t08U = type: 8 bit, unsigned CHAR
t08S = type: 8 bit, signed CHAR
t16U = type: 16 bit, unsigned SHORT
t16S = type: 16 bit, signed SHORT

## Overview

| Group | Group name |
| :--- | :--- |
| Group 1 | System commands (see page 125) |
| Group 2 | CML 700i status information (see page 126) |
| Group 3 | Device description (see page 126) |
| Group 4 | General configurations (see page 127) |
| Group 5 | Extended settings (see page 127) |
| Group 6 | Process data settings (see page 128) |
| Group 7 | Cascading/trigger settings (see page 128) |
| Group 8 | Blanking settings (see page 129) |
| Group 9 | Teach settings (see page 130) |
| Group 10 | Digital IO pin N settings (N = 2. 5) (see page 130) |
| Group 11 | Time module settings for digital outputs (see page 132) |
| Group 12 | Configuration for block evaluation of beam areas (see page 132) |
| Group 13 | Evaluation functions (see page 134) |

## System commands (group 1)



The system commands trigger a direct action in the CML 700i.

| Parameter | Index <br> (hex.) | Answer | Data <br> type | Ac- <br> cess | Value <br> range | Default | Description |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Command | 84 | 4 bytes | t16U | RW | $1 \ldots 8$ |  | 1: Reserved <br> 2: Reserved <br> 3: Teach <br> 4: Reboot <br> $5:$ Reset |
| 6: Save settings |  |  |  |  |  |  |  |
| Notice: |  |  |  |  |  |  |  |
| Processing of the Save command takes up to |  |  |  |  |  |  |  |
| 600 ms. During this time, no other data/telegrams are |  |  |  |  |  |  |  |
| accepted. |  |  |  |  |  |  |  |

## CML 700i status information (group 2)

$\square$
The CML 700i status information specifies operating state information or error messages.

| Parameter | Index <br> (hex.) | Answer | Data <br> type | Ac- <br> cess | Value <br> range | Default | Description |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| CML 700i status informa- <br> tion | A2 | 2 bytes with the <br> status informa- <br> tion (counter), <br> valid bit | t 16 U | RO |  |  | Operating state information or error messages |
| Parameter | Index <br> (hex.) | Answer | Data <br> type | Ac- <br> cess | Value <br> range | Default | Description |
| Teach information | 45 | 2 bytes with <br> teach informa- <br> tion | t 16 U | RO | $0,1,128$ | 0 | Status information on teach event <br> 0: Teach successful <br> $1:$ Teach running <br> 128: Teaching error |
| Alignment status | 46 | 4 bytes with |  | RO |  |  |  |
| alignment sta- |  |  |  |  |  |  |  |
| tus |  |  |  |  |  |  |  |

## Device description (group 3)

$\stackrel{O}{\square}$
The device description specifies the device characteristics, e.g., beam spacing, number of physical/logical individual beams, the number of cascades (16 individual beams) in the device and the cycle time.

| Parameter | Index <br> (hex.) | Answer | Data type | Access | Value range | Default | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Manufacturer name (Manufacturer name) | 10 | 32 bytes with the manufacturer string | string 32 byt es | Ro |  |  | Leuze electronic GmbH + Co. KG |
| Manufacturer text | 11 | 64 bytes with the manufacturer text string | string 64 byt es | RO |  |  | Leuze electronic - the sensor people |
| Receiver product designation | 12 | 64-byte string with the product designation | string 64 byt es | RO |  |  | Receiver type designation |
| Product description | $\begin{aligned} & 13 ; \\ & 14 \end{aligned}$ | 64-byte string with the product description | string 64 byt es | RO |  |  | E.g. "Measuring light curtain CML 730i" Series: CML 730i |
| Receiver serial number | 15 | 16-byte string with the serial number | string 16 byt es | RO |  |  | Serial number of the receiver for unique product identification |
| Hardware version | 16 | 20-byte string with hardware version | string <br> 20 byt <br> es | RO |  |  |  |
| Firmware version | 17 | 20-byte string with firmware version | string <br> 20 byt <br> es | RO |  |  |  |
| Application-specific name | 18 | 32-byte string with the applicationspecific name | string 32 byt es | RW |  |  | Device designation defined by the user |
| Receiver part no. | 40 | 20-byte string with the part number | string 20 byt es | Ro |  |  | Order number of the receiver (8-digit) |


| Parameter | Index <br> (hex.) | Answer | Data <br> type | Ac- <br> cess | Value <br> range | Default | Description |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Transmitter product des- <br> ignation | 41 | 64-byte string with <br> the product desig- <br> nation of the <br> transmitter | string <br> 64 byt <br> es | RO |  |  | Type designation |
| Transmitter part number | 42 | 20-byte string with <br> the part number <br> of the transmitter | string <br> 20 byt <br> es | RO |  |  | Order number of the transmitter (8-digit) |
| Transmitter serial num- <br> ber | 43 | 16-byte string with <br> the transmitter <br> serial number | string <br> 16 byt <br> es | RO |  | Transmitter serial number for unique product identi- <br> fication |  |
| Device description | 44 | 10-byte string with <br> the device <br> description | string <br> 10 byt <br> es | RO |  | The device characteristics specify the beam spac- <br> ing, the number of physical/logical individual <br> beams, the number of cascades (16 individual <br> beams) in the device and the cycle time. |  |

## General configurations (group 4)

○ Configured under group 4 "General configurations" are the type of scanning (parallel-/diagonal-/crossed-beam), counting direction and the minimum object diameter for the evaluation (smoothing). The minimum hole size for the evaluation, e.g., with web material, is configured via inverted smoothing.

| Parameter | Index <br> (hex.) | Answer | Data <br> type | Ac- <br> cess | Value <br> range | Default | Description |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| General settings | 47 | 4 bytes with the <br> general settings |  | RW |  |  |  |
| Beam mode | 47 |  | t08U | RW | $0 \ldots 3$ | 0 | Beam mode <br> 0: Parallel-beam scanning <br> 1: Diagonal-beam scanning <br> 2: Crossed-beam scanning <br> 3: Beam matrix |
| Counting direction | 47 |  | t08U | RW | $0 \ldots 1$ | 0 | Counting direction <br> 0: Normal - starting with the connection piece <br> 1: Inverted - ending with the connection piece |
| Smoothing | 47 |  | t08U | RW | $1 \ldots 255$ | 1 | Smoothing: <br> Less than i interrupted beams are ignored. |
| InvertedSmoothing | 47 |  | t08U | RW | $1 \ldots 255$ | 1 | Inverted smoothing: <br> Less than i free beams are ignored. |

## Extended settings (group 5)

O The extended settings specify the autoteach function, filter depth (with respect to the number of
] interrupted beams as switching trigger) and integration time (hold function).

| Parameter | Index <br> (hex.) | Answer | Data <br> type | Ac- <br> cess | Value <br> range | Default | Description |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Extended settings | 4 A | 4 bytes with the <br> extended settings |  | RW |  |  |  |
| Autoteach | 4 A |  | t08U | RW | $0 \ldots 1$ | 0 | 0 : Not active <br> 1: Active |
| Filter Depth | 4 A |  | t08U | RW | $0 \ldots 255$ | 1 | The filter depth indicates the necessary number of <br> consistent beam states before the evaluation of the <br> measurement values. The filter depth corresponds <br> to the number of passes with interrupted beam so <br> that the result leads to switching. |
| Integration time | 4 A |  | t 16 U | RW | $0 \ldots 6553$ |  |  |

## Process data settings (group 6)



The process data settings describe the cyclically transmitted process data.

## Procedure:

1. Write index $0 \times 48$
2. Write index $0 x C 0$

After the last desired process data mapping, index $0 \times C 0$ is to be filled with the value 0 . The position of the last process data mapping determines the length of the AutoSend telegram.

| Parameter | Index <br> (hex.) | Answer | Data type | Access | Value range | Default | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Process data settings | 48 | 16 bytes with the process configuration data | t08U | RW | $\begin{aligned} & 0 ; \\ & 0 . \ldots 111 ; \\ & 200 \ldots 21 \\ & 2 \end{aligned}$ | 0 | Process configuration data: <br> 1.. 111: Number of optical cascades for beamstream evaluation ( 16 beams) <br> 0 : No evaluation (NOP) <br> 200: First interrupted beam (FIB) <br> 201: First uninterrupted beam (FNIB) <br> 202: Last interrupted beam (LIB) <br> 203: Last uninterrupted beam (LNIB) <br> 204: Number of interrupted beams (TIB) <br> 205: Number of uninterrupted beams (TNIB) <br> 208: Switching state of areas 16 ... 1 <br> 209: Switching state of areas 32 ... 17 <br> 210: Switching state of the outputs mapped to the areas <br> 212: CML 700i status information |
| Extended process data settings | C0 | 96 bytes with the process configuration data | t08U | RW | $\begin{aligned} & 0 ; \\ & 0 \ldots 111 ; \\ & 200 \ldots 21 \\ & 2 \end{aligned}$ | 0 | Extended process configuration data: <br> 1... 111: Number of optical cascades for beamstream evaluation ( 16 beams) <br> 0 : No evaluation (NOP) <br> 200: First interrupted beam (FIB) <br> 201: First uninterrupted beam (FNIB) <br> 202: Last interrupted beam (LIB) <br> 203: Last uninterrupted beam (LNIB) <br> 204: Number of interrupted beams (TIB) <br> 205: Number of uninterrupted beams (TNIB) <br> 208: Switching state of areas $16 \ldots 1$ <br> 209: Switching state of areas 32 ... 17 <br> 210: Switching state of the outputs mapped to the areas <br> 212: CML 700i status information |

For reasons of backwards compatibility with earlier device versions, the "Save" command saves extended process data settings in volatile memory. If more than 16 evaluation functions are required, this parameter must be written by the control unit each time the device is restarted.

## Cascading/trigger settings (group 7)



To prevent mutual interference, multiple light curtains can be operated with a time offset with respect to one another (cascade). Here, the master generates the cyclical trigger signal; the slaves start their measurement after delay times, which are to be set to different values.

| Parameter | Index <br> (hex.) | Answer | Data <br> type | Ac- <br> cess | Value <br> range | Default | Description |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Cascading/trigger config- <br> uration | 49 | 8 bytes with the <br> trigger settings <br> (cascading infor- <br> mation) |  | RW |  |  |  |
| Cascading | 49 |  | t08U | RW | $0 \ldots 1$ | 0 | 0: Not active (constant measurement of the sensor) <br> 1: Active (sensor expects trigger signal) |
| Function type | 49 |  | t08U | RW | $0 \ldots 1$ | 0 | 0: Slave (expects trigger signal) <br> 1: Master (sends trigger signal) |


| Parameter | Index <br> (hex.) | Answer | Data <br> type | Ac- <br> cess | Value <br> range | Default | Description |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Trigger delay time $\rightarrow$ <br> Start measurement | 49 |  | t 16 U | RW | $500 \ldots 65$ <br> 535 | 500 | Slave: delay of rising edge of the trigger signal until <br> start of the scan pass <br> Unit: $\mu \mathrm{s}$ |
| Trigger width | 49 |  | t 16 U | RW | 100 | 100 |  |
| Master cycle time | 49 |  | t 16 U | RW | $1 \ldots 6500$ | 1 | Master: duration of a trigger cycle <br> Unit: ms |

## Blanking settings (group 8)

O Up to four beam areas can be deactivated. Deactivated beams can be assigned the logical $\pi$ values 0,1 or the value of the adjacent beam. With auto blanking activated, up to four beam areas are automatically suppressed during teaching.

Auto blanking should only be activated during commissioning of the CML 700i to suppress interfering objects. In process mode, auto blanking should be deactivated.

For details on this topic see chapter 14.4.

## NOTICE

## Perform teach after changing the blanking configuration!

$\stackrel{4}{4}$ Perform a teach after changing the blanking configuration.
A teach can be performed via the receiver control panel or via the teach command.
$\left.\begin{array}{|l|l|l|l|l|l|l|l|}\hline \text { Parameter } & \begin{array}{l}\text { Index } \\ \text { (hex.) }\end{array} & \text { Answer } & \begin{array}{l}\text { Data } \\ \text { type }\end{array} & \begin{array}{l}\text { Ac- } \\ \text { cess }\end{array} & \begin{array}{l}\text { Value } \\ \text { range }\end{array} & \text { Default } & \text { Description } \\ \hline \begin{array}{l}\text { Blanking area configura- } \\ \text { tion }\end{array} & \text { 4C } & \begin{array}{l}\text { 26 bytes with } \\ \text { blanking settings }\end{array} & & \text { RW } & & & \\ \hline \begin{array}{l}\text { Number of auto-blanking } \\ \text { areas }\end{array} & 4 \mathrm{C} & & \text { t08U } & \text { RW } & 0 \ldots 4 & 0 & \begin{array}{l}\text { Permissible number of auto-blanking areas } \\ 0: 0 \text { auto-blanking areas } \\ 1: 1 \text { auto-blanking area } \\ \text { 2: 2 auto-blanking areas } \\ 3: 3 \text { auto-blanking areas }\end{array} \\ \text { 4: } 4 \text { auto-blanking areas }\end{array}\right]$

| Parameter | Index <br> (hex.) | Answer | Data <br> type | Ac- <br> cess | Value <br> range | Default | Description |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Logical value for blanking <br> area 4 | 4 C |  | t 16 U | RW | $0 \ldots 4$ | 0 | 0: No beams blanked <br> 1: Logical value 0 for blanked beams <br> 2: Logical value 1 for blanked beams <br> 3: Logical value $=$ same as adjacent beam with <br> lower beam number <br> 4: Logical value $=$ same as adjacent beam with <br> higher beam number |
| Start beam of blanking <br> area 4 | 4 C |  | t 16 U | RW | $1 \ldots 1774$ | 0 |  |
| End beam of blanking <br> area 4 | 4 C |  | t 16 U | RW | $1 \ldots 1774$ | 0 |  |

## Teach settings (group 9)

O In most applications, it is recommended that the teach values be stored in non-volatile memory.
$\pi$
Depending on the function reserve selected for the teach event, the sensitivity is higher or lower (high function reserve = low sensitivity; low function reserve $=$ high sensitivity).
$\left.\begin{array}{|l|l|l|l|l|l|l|l|}\hline \text { Parameter } & \begin{array}{l}\text { Index } \\ \text { (hex.) }\end{array} & \text { Answer } & \begin{array}{l}\text { Data } \\ \text { type }\end{array} & \begin{array}{l}\text { Ac- } \\ \text { cess }\end{array} & \begin{array}{l}\text { Value } \\ \text { range }\end{array} & \text { Default } & \text { Description } \\ \hline \text { Teach configuration } & 4 \mathrm{~F} & \begin{array}{l}4 \text { bytes teach } \\ \text { configuration }\end{array} & & \text { RW } & & & \\ \hline \begin{array}{l}\text { Number of measurement } \\ \text { cycles for minimum value } \\ \text { creation during teaching }\end{array} & 4 \mathrm{~F} & & \text { t08U } & \text { RW } & & 128 & \\ \hline \begin{array}{l}\text { Type of storage for teach } \\ \text { values }\end{array} & 4 \mathrm{~F} & & \text { t08U } & \text { RW } & 0 \ldots 1 & 0 & \begin{array}{l}\text { 0: Save the parameters in flash (non-volatile stor- } \\ \text { age of teach values) } \\ \text { 1: In RAM (volatile, i.e., teach values only saved } \\ \text { while voltage ON) }\end{array} \\ \hline \begin{array}{l}\text { Sensitivity adjustment for } \\ \text { teach event }\end{array} & \text { 4F } & & \text { t08U } & \text { RW } & 0 \ldots 2 & 0 & \begin{array}{l}\text { Sensitivity of the measurement system } \\ \text { 0: High function reserve (for stable operation) } \\ \text { 1: Medium function reserve }\end{array} \\ \text { 2: Low function reserve }\end{array}\right]$

Digital IO pin N settings $(\mathrm{N}=2,5)$ (group 10)
O In this group, the inputs/outputs can be set to positive switching (PNP) or to negative switching
] (NPN). The switching behavior applies the same for all inputs/outputs.

Moreover, the inputs/outputs can be configured via this group: pins 2, 5 for fieldbus and analog devices, such as RS 485 Modbus; pins 2, 5, 6, 7 for IO-Link devices (see chapter 10 "Starting up the device-IO-Link interface").

| Parameter | Index <br> (hex.) | Answer | Data type | Access | Value range | Default | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Switching level of the inputs/outputs | 4D | 4 bytes, switching level configuration of the inputs/outputs | t08U | RW | 0... 1 | 1 | Switching level of the inputs/outputs <br> 0: Transistor, NPN <br> 1: Transistor, PNP <br> Notice on the data structure: <br> $0 \times 00000000,0 \times 00010000,0 \times 00020000$ <br> The last two bytes are filler bytes and are ignored |
| Keyboard lock | 4E | 2 bytes keyboard lock configuration | t08U | RW | 0... 2 |  | Notice on the data structure: <br> ?? $0 \times 00000000,0 \times 00010000,0 \times 00020000$ <br> The last two bytes are filler bytes and are ignored. <br> - ??ID: $0 \times 00$ <br> - ??Parameter: $0 \times 4 \mathrm{E}$ <br> Read: 2 bytes <br> - 0x00 0xFF <br> - 0x01 0xFF <br> - 0x020xFF <br> Examples <br> - ReadRequest send string (read access) 010300 4E 0001 E4 1D <br> - ReadRequest response string (response to read access) 01030200 FF F8 04 <br> ??Write: $0 \times 00 \mathrm{NN}, 0 \times 01 \mathrm{NN}, 0 \times 02 \mathrm{NN}$ <br> - 0x00NN: No lock set <br> - 0x01NN: Permanent lock <br> - 0x02NN: Temporary lock <br> - NN: 0xFF; 0x00 allowed <br> Examples <br> - WriteRequest send string (write access): 011000 4E 00010200 FF E9 FE <br> - WriteRequest response string (response to write access): <br> 011000 4E 000161 DE |
|  |  |  |  |  |  |  |  |
| Configuration of pin 2 |  |  |  |  |  |  |  |
| Digital IO Pin 2 Settings | 50 | 4 bytes, configuration IO1 |  | RW |  |  |  |
| Input/output selection | 50 |  | t08U | RW | 0... 1 | 0 | 0 : Output <br> 1: Input |
| Switching behavior | 50 |  | t08U | RW | $0 \ldots 1$ | 0 | 0 : Not active (normal - light switching) <br> 1: Active (inverted - dark switching) |
| Input function | 50 |  | t08U | RW | $0 \ldots 2$ | 0 | 0 : Not active <br> 1: Trigger input (Trigger In) <br> 2: Teach input (Teach In) |
| Output function | 50 |  | t08U | RW | 0... 3 | 0 | 0 : Not active <br> 1: Switching output (area $1 \ldots 32$ ) <br> 2: Warning output <br> 3: Trigger output |
| Configuration of pin 5 |  |  |  |  |  |  |  |
| Digital IO Pin 5 Settings | 51 | 4 bytes, configuration IO2 |  | RW |  |  |  |
| Input/output selection | 51 |  | t08U | RW | 0... 1 | 0 | 0 : Output <br> 1: Input |
| Switching behavior | 51 |  | t08U | RW | 0... 1 | 0 | 0 : Not active (normal - light switching) <br> 1: Active (inverted - dark switching) |
| Input function | 51 |  | t08U | RW | 0... 2 | 0 | 0: Not active <br> 1: Trigger input (Trigger In) <br> 2: Teach input (Teach In) |
| Output function | 51 |  | t08U | RW | 0... 3 | 0 | 0: Not active <br> 1: Switching output (area $1 \ldots 32$ ) <br> 2: Warning output <br> 3: Trigger output |

## Settings for digital switching outputs (group 11)

$\stackrel{\square}{\square}$
Four different time functions can be configured in this group.
Map the output to areas $1 \ldots 32$. Activate the area by entering a 1 at the corresponding position in the 32-bit word. Area $1 \ldots 32$ increasing from right.

| Parameter | Index (hex.) | Answer | Data type | Access | Value range | Default | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Configuration of switching output pin 2 | 54 | 4 bytes, configuration output 1 |  | RW |  |  | Four different time functions can be set. Max. time duration that can be set is 65 s . Map the output to switching areas $1 \ldots 32$. |
| Operating mode of the time module | 54 |  | t08U | RW | $0 . . .4$ | 0 | 0 : Not active <br> 1: Start-up delay <br> 2: Switch-off delay <br> 3: Pulse stretching <br> 4: Pulse suppression |
| Time constant for selected function | 54 |  | t16U | RW | $\begin{aligned} & 0 \ldots 6553 \\ & 5 \end{aligned}$ | 0 | Unit: ms |
| Area mapping | 54 |  | t32U | RW | $\begin{aligned} & 0 \ldots 4294 \\ & 967295 \end{aligned}$ | 1: For DO1 <br> 2: For <br> DO2 <br> 4: For <br> DO3 <br> 8: For <br> DO4 | Logical OR link mask of the switching outputs |
| Digital switching output pin 5 | 55 | 4 bytes, configuration output 2 |  | RW |  |  | Four different time functions can be set. Max. time duration that can be set is 65 s . Map the output to switching areas $1 \ldots 32$. |
| Operating mode of the time module | 55 |  | t08U | RW | $0 . . .4$ | 0 | 0: Not active <br> 1: Start-up delay <br> 2: Switch-off delay <br> 3: Pulse stretching <br> 4: Pulse suppression |
| Time constant for selected function | 55 |  | t16U | RW | $\begin{aligned} & 0 \ldots 6553 \\ & 5 \end{aligned}$ | 0 | Unit: ms |
| Area mapping | 55 |  | t32U | RW | $\begin{aligned} & 0 \ldots 4294 \\ & 967295 \end{aligned}$ | 1: For DO1 <br> 2: For <br> DO2 <br> 4: For <br> DO3 <br> 8: For <br> DO4 | Logical OR link mask of the switching outputs |

## Configuration for block evaluation of beam areas (group 12)

O In this group, a detailed area configuration can be displayed and a beam area configured for the block evaluation.

| Parameter | Index <br> (hex.) | Answer | Data <br> type | Ac- <br> cess | Value <br> range | Default | Description |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Configuration of area 01 | 64 | 14 bytes info <br> area 01 |  | RW |  | Configuration of area 01: definition of the status <br> conditions so that the area takes on a logical 1 or 0. <br> For diagonal- or crossed-beam mode, the numbers <br> of the logical beams are to be entered. |  |
| Area | 64 |  | t08U | RW | $0 \ldots 1$ | 0 | 0: Not active <br> $1:$ Active |
| Active beam | 64 |  | t08U | RW | $0 \ldots 1$ | 0 | $0:$ Light switching (beam is active if light path is <br> free) <br> $1:$ Dark switching (beam is active if light path is <br> interrupted) |


| Parameter | Index <br> (hex.) | Answer | Data type | Access | Value range | Default | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Start beam of the area | 64 |  | t16U | RW | $\begin{aligned} & 1 \ldots 1774 \\ & 65534 \\ & 65533 \\ & 65532 \\ & 65531 \end{aligned}$ | 1 | Dynamic start positions are created by means of entries in the form of impossible beam numbers. <br> 65534: First interrupted beam (FIB) <br> 65533: First uninterrupted beam (FNIB) <br> 65532: Last interrupted beam (LIB) <br> 65531: Last uninterrupted beam (LNIB) |
| End beam of the area | 64 |  | t16U | RW | $\begin{aligned} & 1 \ldots \mathrm{FFE} \\ & \mathrm{E} \end{aligned}$ | 1 |  |
| Number of active beams for area ON | 64 |  | t16U | RW | $0 . . .1774$ | 0 |  |
| Number of active beams for area OFF | 64 |  | t16U | RW | 0 ... 1774 | 0 |  |
| Specified middle of the area | 64 |  | t16U | RW | $0 . .11774$ | 0 |  |
| Specified width of the area | 64 |  | t16U | RW | $0 . . .1774$ | 0 |  |
| Configuration of area 02 | 65 | 14 bytes info area 02 |  | RW |  |  | Configuration of area 02: definition of the status conditions so that the area takes on a logical 1 or 0 . For diagonal- or crossed-beam mode, the numbers of the logical beams are to be entered. |
| Area | 65 |  | t08U | RW | $0 \ldots 1$ | 0 | 0 : Not active <br> 1: Active |
| Active beam | 65 |  | t08U | RW | 0... 1 | 0 | 0 : Light switching (beam is active if light path is free) <br> 1: Dark switching (beam is active if light path is interrupted) |
| Start beam of the area | 65 |  | t16U | RW | $\begin{aligned} & 1 \ldots 1774 \\ & 65534 \\ & 65533 \\ & 65532 \\ & 65531 \end{aligned}$ | 1 | Dynamic start positions are created by means of entries in the form of impossible beam numbers. <br> 65534: First interrupted beam (FIB) <br> 65533: First uninterrupted beam (FNIB) <br> 65532: Last interrupted beam (LIB) <br> 65531: Last uninterrupted beam (LNIB) |
| End beam of the area | 65 |  | t16U | RW | $\begin{aligned} & 1 \ldots 1774 \\ & 65534 \\ & 65533 \\ & 65532 \\ & 65531 \end{aligned}$ | 1 | Dynamic start positions are created by means of entries in the form of impossible beam numbers. <br> 65534: First interrupted beam (FIB) <br> 65533: First uninterrupted beam (FNIB) <br> 65532: Last interrupted beam (LIB) <br> 65531: Last uninterrupted beam (LNIB) |
| Number of active beams for area ON | 65 |  | t16U | RW | $0 . . .1774$ | 0 |  |
| Number of active beams for area OFF | 65 |  | t16U | RW | 0 ... 1774 | 0 |  |
| Specified middle of the area | 65 |  | t16U | RW | $0 \ldots 1774$ | 0 |  |
| Specified width of the area | 65 |  | t16U | RW | 0 ... 1774 | 0 |  |
| .... | .... |  | .... | .... | .... | .... | .... |
| .... | .... |  | $\ldots$ | .... | .... | .... | .... |
| Configuration of area 32 | 83 | 14 bytes info area 32 |  | RW |  |  | Configuration of area 32: definition of the status conditions so that the area takes on a logical 1 or 0. For diagonal- or crossed-beam mode, the numbers of the logical beams are to be entered. |
| Area | 83 |  | t08U | RW | $0 \ldots 1$ | 0 | 0 : Not active <br> 1: Active |
| Active beam | 83 |  | t08U | RW | $0 \ldots 1$ | 0 | 0 : Light switching (beam is active if light path is free) <br> 1: Dark switching (beam is active if light path is interrupted) |


| Parameter | Index <br> (hex.) | Answer | Data type | Access | Value range | Default | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Start beam of the area | 83 |  | t16U | RW | $\begin{aligned} & 1 \ldots 1774 \\ & 65534 \\ & 65533 \\ & 65532 \\ & 65531 \end{aligned}$ | 1 | Dynamic start positions are created by means of entries in the form of impossible beam numbers. <br> 65534: First interrupted beam (FIB) <br> 65533: First uninterrupted beam (FNIB) <br> 65532: Last interrupted beam (LIB) <br> 65531: Last uninterrupted beam (LNIB) |
| End beam of the area | 83 |  | t16U | RW | $\begin{aligned} & 1 \ldots 1774 \\ & 65534 \\ & 65533 \\ & 65532 \\ & 65531 \end{aligned}$ | 1 | Dynamic start positions are created by means of entries in the form of impossible beam numbers. <br> 65534: First interrupted beam (FIB) <br> 65533: First uninterrupted beam (FNIB) <br> 65532: Last interrupted beam (LIB) <br> 65531: Last uninterrupted beam (LNIB) |
| Number of active beams for area ON | 83 |  | t16U | RW | 0 ... 1774 | 0 |  |
| Number of active beams for area OFF | 83 |  | t16U | RW | $0 . .1774$ | 0 |  |
| Specified middle of the area | 83 |  | t16U | RW | $0 . .1774$ | 0 |  |
| Specified width of the area | 83 |  | t16U | RW | 0 ... 1774 | 0 |  |

## Evaluation functions (group 13)

$\stackrel{O}{\square}$
In this group, all evaluation functions can be configured.

| Parameter | Index <br> (hex.) | Answer | Data type | Access | Value range | Default | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| First interrupted beam (FIB) | 96 | 2 bytes with the number of the first interrupted beam | t16U | RO |  |  | Logical beam number of the first darkened individual beam. The logical beam numbers change in diagonal- or crossed-beam mode. Note any changed configuration of the counting direction! |
| First uninterrupted beam (FNIB) | 97 | 2 bytes with the number of the first uninterrupted beam | t16U | Ro |  |  | Logical beam number of the first undarkened individual beam. The logical beam numbers change in diagonal- or crossed-beam mode. Note any changed configuration of the counting direction! |
| Last interrupted beam (LIB) | 98 | 2 bytes with the number of the last interrupted beam | t16U | RO |  |  | Logical beam number of the last darkened individual beam. The logical beam numbers change in diagonal- or crossed-beam mode. Note any changed configuration of the counting direction! |
| Last uninterrupted beam (LNIB) | 99 | 2 bytes with the number of the last uninterrupted beam | t16U | RO |  |  | Logical beam number of the last undarkened individual beam. The logical beam numbers change in diagonal- or crossed-beam mode. Note any changed configuration of the counting direction! |
| Number of interrupted beams (TIB) | 9A | 2 bytes with the number of interrupted beams | t16U | RO |  |  | Sum of all darkened individual beams. The sum changes for diagonal- or crossed-beam scanning. |
| Number of uninterrupted beams (TNIB) | 9 B | 2 bytes with the number of uninterrupted beams | t16U | Ro |  |  | Sum of all undarkened individual beams. The sum changes for diagonal- or crossed-beam scanning. |
| Status of areas $16 \ldots 1$ | 9E | 2 bytes | t16U | Ro |  |  | Status of areas 01 ... 16 as 2 bytes of process data (Area Out LoWord) |
| Status of areas $32 \ldots 17$ | 9F | 2 bytes | t16U | RO |  |  | Status of areas $17 \ldots 32$ as 2 bytes of process data (Area Out HiWord) |
| Status digital inputs/outputs | A0 | 2 bytes | t16U | RO |  |  | Result of the area evaluation to which pins are mapped (logical status of the area evaluation mapped to the pin) |


| Parameter | Index <br> (hex.) | Answer | Data <br> type | Ac- <br> cess | Value <br> range | Default | Description |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Status of process data <br> object | AA | 32 bytes |  | RO |  |  | Representation of the 16 evaluation functions <br> mapped with the process data settings configura- <br> tion (see *** Process data settings (group 6)' on <br> page 128 ***). |
| Beam-stream object | BD | 222 bytes | array | RO |  |  | PD beam-stream <br> Notice: <br> This is the only object for which it is permitted to <br> specify a length in the read telegram that is smaller <br> than the object length itself. You can request <br> between $1 \ldots 22$ bytes. |

### 13.4 Autosend mode

In normal mode, the master sends a query to the slave and the slave responds.
In autosend mode, the slave constantly sends datablocks to the master; the master activates this by sending a query to the slave once. In autosend mode, a freely definable datablock (process data between 32 and 224 bytes) is transmitted by the CML 700i to the PLC as fast as possible with little "overhead".

Restrictions/boundary conditions:
Autosend mode is not compatible with the Modbus definition.
Autosend communication is only possible between two participants, i.e., for point-to-point connection between master (PLC) and a slave (CML 700i).

The PLC must be able to process the data transmitted by the CML 700i.

O The silent interval has no effect on autosend mode. The silent interval only influences the response time in RS 485 Modbus mode.

With a silent interval $>0$, the response of the CML 700 i to a master query is output with a delay and the RS 485 direction changeover performed (half duplex mode).

To throttle the data output of the CML 700i, select a lower bit rate or use the cascading functions (see chapter 4.9 "Cascading/triggering").

To send data in a meaningful way in autosend mode, proceed as follows:
$\leadsto$ Configure the process data by means of the Modbus command.
(4) Use the PLC to switch the CML 700i to autosend mode via the Modbus command described in the following.

## Data frame structure

| Byte no. | Modbus action <br> (from the perspective of <br> the CML 700i) | Description |
| :--- | :--- | :--- |
| 0 | send | Number of user data bytes (i) |
| 1 | send | 8-bit checksum of all user data bytes and the number of user data bytes (checksum is the 1-byte <br> sum of all user data, i.e., carryovers on the 9th bit are lost) |
| $2 \ldots \mathrm{i}+1$ | changeover | Changeover to receive; <br> CML 700i waits for EOT byte (0x04) from the PLC (Modbus master) |
|  | changeover | Changeover to send if no EOT byte was received |
| $i+x \ldots$ | receive | Repeat with byte 0, etc., if autosend is not stopped |

## Changeover from RS 485 Modbus to autosend mode

```
Message from master (PLC) to slave (CML 700i): (AUTOSEND ON)
```

HEX: 01050000 FF 00 8C 3A

Expected answer from slave (CML 700i) to master (PLC): (AUTOSEND ON)
HEX: 01050000 FF 00 8C 3A

```
01 = Slave address 1
05 = Write-coil command
00 00 = Address 1 (application level; counting technically begins with zero)
00 = OFF
FFOO = ON
8C 3A = CRC checksum
```

Changeover from autosend mode to RS 485 Modbus
To switch back from autosend mode to RS 485 Modbus, the control (RS 485 Modbus master) must send an "End-Of-Transmission" (EOT) byte (0x04) to the CML 700i. In the autosend transmission frame, a time window is provided for receiving the EOT byte. The time window in which the control may send the EOT byte begins after approx. 1.5 characters (start time) after the CML 700i has received the last character. The character must be transmitted within the time window of approx. 3 characters. The times are multiples of $100 \mu \mathrm{~s}$. For high bit rates, the start time is fixed at $100 \mu \mathrm{~s}$ and the entire EOT-byte time window is $200 \mu \mathrm{~s}$ long.

| Bit rate <br> (bit/s) | Pause for EOT byte <br> $(\mathrm{i} * 100 \mu \mathrm{~s})$ | Description |
| :--- | :--- | :--- |
| 4.800 | 27 |  |
| 9.600 | 13 |  |
| 19.200 | 6 |  |
| 38.400 | 3 |  |
| 57.600 | 2 |  |
| 115.200 | 1 |  |
| 921.600 | 1 |  |

## 14 Example configurations

### 14.1 Example configuration - Reading out 64 beams (beam-stream)

The beam-stream evaluation function is used, e.g., for evaluating the size and position of objects on a transport system.

### 14.1.1 Configuration of beam-stream process data via IO-Link interface

$\stackrel{H}{ } \Rightarrow$ Map the beam states of the individual optical cascades in the CML 700i to the process data as follows.

| Evaluation function 01 <br> (group 6) | Index 72, bit offset $120=1$ | (The first optical cascade (beams $1 \ldots 16$ ) is transmitted in process data module 01) |
| :--- | :--- | :--- | :--- |
| Evaluation function 02 <br> (group 6) | Index 72, bit offset 112 $=2$ | (The second optical cascade (beams $17 \ldots 32$ ) is transmitted in process data module 02) |
| Evaluation function 03 <br> (group 6) | Index 72, bit offset 104 $=3$ | (The third optical cascade (beams $33 \ldots 48$ ) is transmitted in process data module 03) |
| Evaluation function 04 <br> (group 6) | Index 72, bit offset 96 $=4$ | (The fourth optical cascade (beams 49 ... 64) is transmitted in process data module 04) |

### 14.1.2 Configuration of beam-stream process data via CANopen interface

$\stackrel{\Perp}{\Perp}$ Map the TPDO1 as follows.

| MAPPINGENTRY1 | 24120110 | (Index $0 \times 2412$ sub-index 01 is mapped, length of the mapped object: 16 bit) |
| :--- | :--- | :--- |
| MAPPINGENTRY2 | 24120210 | (Index $0 \times 2412$ sub-index 02 is mapped, Length of the mapped object: 16 bit) |
| MAPPINGENTRY3 | 24120310 | (Index $0 \times 2412$ sub-index 03 is mapped, Length of the mapped object: 16 bit) |
| MAPPINGENTRY4 | 24120410 | (Index $0 \times 2412$ sub-index 04 is mapped, Length of the mapped object: 16 bit) |

These 32 bits are to be read as follows:

| 31 | 16 | 15 | 8 | 7 |
| :--- | :--- | :--- | :--- | :--- |
| Index | Sub-index | Length |  |  |
| MSB |  |  | LSB |  |

This means that $4 \times 16$ bit objects can be mapped per PDO $\rightarrow 64$ beams.

### 14.1.3 Configuration of beam-stream process data via Profibus interface

$\stackrel{y}{\leadsto}$ Map the beam states of the 64 beams starting with the first optical cascade in the CML 700i to the beamstream (64 bits) as follows:

| Beam-stream (64 bit) <br> (module 4) | Parameter number of $=1$ <br> the optical cascade | (The first optical cascade (beams $1 \ldots 64$ ) is transmitted in the beam-stream module <br> $(64$ bit)) |
| :--- | :--- | :--- |

### 14.1.4 Configuration of beam-stream process data via RS 485 Modbus interface

The following possibilities are available for obtaining evaluation-function process data (e.g., for beamstream):

- Polling method I - by means of RS 485 Modbus read function The desired beam-stream object evaluation function parameters (group 13) are read out in sequence by means of a read telegram.
- Polling method II - by means of RS 485 Modbus read function The desired evaluation functions in parameter Process data settings (group 6) are mapped and only the Status process data objectobject parameter (group 13) is read out by means of a read telegram. This method is limited to 16 evaluation functions.
- Autosend method (see chapter 13.4)

The desired evaluation functions in parameter process data settings (group 6) are mapped (and, if necessary, mapped in parameter extended process data settings (group 6)) and automatically sent by means of activated autosend mode.

Example for polling method I - by means of the RS 485 Modbus read function:
$\stackrel{\Perp}{\Perp}$ Use the following parameters to read out the individual beam states.

| Beam-stream (group 13) | Parameter Beam-stream object | Read access: <br> 010300 BD 00 6F 95 C2 <br> Response to read access: <br> 0103 DE FF 7D 62 |
| :---: | :---: | :---: |

### 14.2 Example configuration - Mapping of beams $1 \ldots 32$ to output pin 2

### 14.2.1 Configuration of area/output mapping (general)

The following table shows an example configuration for an area mapping to an output. In this example, beams $1 \ldots 32$ are to be applied to output pin 2 on interface X1.
$\stackrel{\wedge}{ } \rightarrow$ Map beams $1 \ldots 32$ to area 01.

| Description / variables |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Display detailed area configuration Value: 0 = area 01 |  |  |  |  |
| Configuration of area 01 |  |  |  |  |
| Area <br> Value: 1 = active |  |  |  |  |
| Logical behavior of the area | Value: 0 <br> Normal - light switching (i.e., switching if beams are free) | Value: 1 <br> Inverted - dark switching (i.e., switching if beams are interrupted) | Value: 0 <br> Normal - light switching | Value: 1 <br> Inverted - dark switching |
| Start beam of the area Value: | 1 | 1 | 1 | 1 |
| End beam of the area Value: | 32 | 32 | 32 | 32 |
| Number of active beams for area ON Value: | 32 | 32 | 1 | 1 |


| Number of active beams for <br> area OFF <br> Value: | 31 | 31 |  | 0 |
| :--- | :--- | :--- | :--- | :--- |
| Switching behavior <br> Value: 0 = normal - light <br> switching (i.e., switching if <br> beams are free) | Output 1 if all beams are <br> free. <br> Output 0 if a beam is inter- <br> rupted or if more than a <br> beam are interrupted. | Output 0 if all beams are <br> free or $1 \ldots 31$ beams are <br> free. <br> Output 1 only if 32 beams <br> are interrupted. | Output 1 if all beams are <br> free or as long as $1 \ldots 31$ <br> beams are free. <br> Output 0 if 32 beams are <br> interrupted. | Output 0 if all beams are <br> free. <br> Output 1 as soon as a <br> beam is interrupted. |
| Switching behavior <br> Value: $1=$ inverted - dark <br> switching (i.e., switching if <br> beams are interrupted) | Output 0 if all beams are <br> free. <br> Output 1 if one or more <br> beams are interrupted. <br> OR function | Output 1 if all beams are <br> free or $1 \ldots 31$ beams are <br> free. <br> Output 0 only if 32 beams <br> are interrupted. | Output 0 if all beams are <br> free or as long as $1 \ldots 31$ <br> beams are free. <br> Output 1 if 32 beams are <br> interrupted. | Output 1 if all beams are <br> free. <br> Output 0 as soon as a <br> beam is interrupted. |
| AND function |  |  |  |  |

## ${ }^{4}$ Configure pin 2 as area output.

| Description / variables |  |  |
| :--- | :--- | :--- |
| Configuration of digital inputs/outputs | Value: $0=$ output | Pin 2 functions as digital output |
| Input/output selection | Value: $1=$ switching output (area 1...32) | The switching output signals the logical states of beam <br> areas $1 \ldots 32$ |
| Function of the switching output |  |  |

$\stackrel{4}{ } \stackrel{y}{c}$ Map pin 2 to configured area 1.

| Digital Output 2 Settings |  |  |
| :--- | :--- | :--- |
| Area mapping 32 $\ldots$ 1 <br> (OR combination) | $0 b 0000000000000000000000000000001$ | Every area is displayed as a bit. |

## Possible additional area-to-pin configurations:

$\stackrel{\Perp}{\leftrightarrows}$ Map pin 2 to configured area 8.

| Digital Output 2 Settings |  |
| :--- | :--- |
| Area mapping $32 \ldots 1$ <br> (OR combination) | $0 b 0000000000000000000000010000000$ |

$\stackrel{4}{\triangleleft}$ Map the configured areas 1 and 8 (OR-linked) to the corresponding switching output.

| Digital Output 2 Settings |  |
| :--- | :--- |
| Area mapping 32 $\ldots 1$ <br> (OR combination) | $0 b 0000000000000000000000010000001$ |

### 14.2.2 Configuration of an area/output mapping via IO-Link interface

$\stackrel{H}{4}$ Map the beams to output pin 2 as follows.

| Configuration of area 01 <br> (group 14) | Index 100, bit offset 104: | $=1$ | (area 01 active) |
| :--- | :--- | :--- | :--- |
|  | Index 100, bit offset 96: | $=0$ | (light switching) |
|  | Index 100, bit offset 80: | $=1$ | (start beam of the area) |
|  | Index 100, bit offset 64: | $=32$ | (end beam of the area) |
|  | Index 100, bit offset 48: | $=32$ | (number of active beams for area ON) |
|  | Index 100, bit offset 32: | $=31$ | (number of active beams for area OFF) |


| Digital IO Pin 2 Settings <br> (group 10) | Index 80, bit offset 24: | $=0$ | (pin 2 as output) |
| :--- | :--- | :--- | :--- |
|  | Index 80, bit offset 16: | $=1$ | (switching behavior inverted) |
|  | Index 80, bit offset 0: | $=1$ | (switching output area 32 $\ldots$ 1) |
|  | Index 84, bit offset 0: | $=1$ | (bit mapping of area 01 to pin 2) |

### 14.2.3 Configuration of area/output mapping via CANopen interface

4) Map the beams to output pin 2 as follows.

| Configuration of area 01 <br> (module 8) | Index $0 \times 2170$ sub 01: | $=1$ | (area 01 active) |
| :--- | :--- | :--- | :--- |
|  | Index $0 \times 2170$ sub 02: | $=0$ | (light switching) |
|  | Index $0 \times 2170$ sub 03 | $=1$ | (start beam of the area) |
|  | Index $0 \times 2170$ sub 04: | $=32$ | (end beam of the area) |
|  | Index $0 \times 2170$ sub 05: | $=32$ | (number of active beams for area ON) |
|  | Index $0 \times 2170$ sub 06: | $=31$ | (number of active beams for area OFF) |
| Switching level of the <br> inputs/outputs <br> (module 7) | Index $0 \times 2151$ sub 01: | $=0$ | (pin 2 as output) |
|  | Index $0 \times 2151$ sub 03: | $=1$ | (switching behavior inverted) |
|  | Index $0 \times 2151$ sub 04: | $=1$ | (switching output area 32 $\ldots$ 1) |
|  | Index $0 \times 2155$ sub 03: | $=1$ | (bit mapping of area 01 to pin 2) |

### 14.2.4 Configuration of area/output mapping via Profibus interface

$\stackrel{\leftrightarrow}{\Perp}$ Map the beams to output pin 2 as follows.

| Area settings (module 17) | Parameter Area configuration: | $=1$ | (area 01 selected) |
| :---: | :---: | :---: | :---: |
|  | Parameter Area: | $=1$ | (area 01 active) |
|  | Parameter Logical behavior of the area: | $=0$ | (active HIGH) |
|  | Parameter Start beam of the area: | $=1$ | (start beam of the area) |
|  | Parameter End beam of the area: | $=32$ | (end beam of the area) |
|  | Parameter Number of active beams $\rightarrow$ ON: | $=32$ | (number of active beams for area ON) |
|  | Parameter Number of active beams $\rightarrow$ OFF: | $=31$ | (number of active beams for area OFF) |
| Configuration of digital I/ Os (module 12) | Parameter Pin 2 -Input/output selection: | $=0$ | (pin 2 as output) |
|  | Parameter Pin 2 - Switching behavior. | $=1$ | (switching behavior inverted) |
|  | Parameter Pin 2 - Output function: | $=1$ | (switching output area $1 . . .32$ ) |
|  | Parameter Pin 2 - Area mapping $32 \ldots$ 1: | $=1$ | (bit mapping of area 01 to pin 2) |

### 14.2.5 Configuration of area/output mapping via RS 485 Modbus interface

$\stackrel{H}{4}$ Map the beams to output pin 2 as follows.

| Area 01 (group 12) | Parameter Ox64 area 01 | Write access (specified middle and specified width remain zero): <br> 011000640007 OE 0100010020002000 1F 00000000 00 A6 5F <br> Response to write access: <br> 011000640007 C0 14 |
| :---: | :---: | :---: |
| Digital IO Pin 2 Settings (group 10) | Parameter Ox50 Digital IO Pin 2 Settings | Write access: <br> 0110005000020401000000 F7 6F <br> Response to write access: <br> 01100050000241 D9 |
| Configuration of switching output pin 2 <br> (group 11) | Parameter Ox54 configuration of switching output pin 2 settings | Write access: <br> 011000540004080000000001868 A <br> Response to write access: <br> 01100054000480 1A |

### 14.3 Example configuration - Hole recognition

The following table shows an example configuration for hole recognition for web material with signaling of a hole at output pin 2. Example for detection beginning with a free beam with fixed/dynamic web position. $\stackrel{\Perp}{\Perp}$ First activate and configure a beam area (e.g., area 01).

| Description / variables |  |  |
| :--- | :--- | :--- |
| Configuration of area 01 | 01 | This area is active and is then mapped to output pin 2. |
| Area <br> Value: $1=$ active | 00 | Switching in case of free beams. |
| Logical behavior of the area <br> Value: $0=$ normal - light switching | FIB | If a hole is to be detected in a web with arbitrary position or width, the value <br> FIB is to be set for the start beam. <br> With fixed position value, the start beam of the area is to be set. |
| Start beam of the area <br> Value: FIB for dynamic web position or fixed position <br> value, if specified | LIB | If a hole is to be detected in a web with arbitrary position or width, the value <br> LIB is to be set for the end beam. <br> With fixed position value, the end beam of the area is to be set. |
| End beam of the area <br> Value: LIB for dynamic web position or fixed position <br> value, if specified | 1 | With this setting, the area (output) switches as soon as one or more beams <br> are not interrupted. |
| Number of active beams for area ON <br> Value: 1 | 0 |  |
| Number of active beams for area OFF <br> Value: 0 |  |  |

$\stackrel{4}{\triangleleft}$ Map the area to the corresponding switching output.

| Description / variables |  |  |
| :--- | :--- | :--- |
| Configuration of pin 2 | Value: $0=$ output | Pin 2 functions as digital output |
| Input/output selection | Value: $1=$ switching output area $1 \ldots 32$ | The switching output signals the logical states of beam <br> areas $1 \ldots 32$ |
| Function of the switching output | Switching behavior <br> Value: $0=$ normal - light switching <br> Value: $1=$ inverted - dark switching | Configuration according to the necessary switching <br> behavior of the output |
| Switching behavior |  |  |

Map configured area 1 to pin 2 .

| Digital Output 2 Settings |  |
| :--- | :--- |
| Area mapping $32 \ldots 1$ <br> (OR combination) | $0 b 00000000000000000000000000000001$ |

### 14.3.1 Configuration of hole recognition via IO-Link interface

${ }^{4}$ For hole recognition for web material map hole indication to output pin 2.

| Configuration of area 01 <br> (group 14) | Index 00, bit offset 104: | $=1$ | (area 01 active) |
| :--- | :--- | :--- | :--- |
|  | Index 100, bit offset 96: | $=0$ | (light switching) |
|  | Index 100, bit offset 80: | $=65534$ | (start beam of the area) dynamic: on 65534 (start beam = FIB) |
|  | Index 100, bit offset 64: | $=65532$ | (end beam of the area) dynamic: on 65532 (start beam = LIB) |
|  | Index 100, bit offset 48: | $=1$ | (number of active beams for area ON) |
|  | Index 100, bit offset 32: | $=0$ | (number of active beams for area OFF) |
| Digital IO Pin 2 Settings <br> (group 10) | Index 80, bit offset 24: | $=0$ | (pin 2 as output) |
|  | Index 80, bit offset 16: | $=1$ | (switching behavior inverted) |
|  | Index 80, bit offset 0: | $=1$ | (switching output area 32 $\ldots$.. 1) |
|  | Index 84, bit offset 0: | $=1$ | (bit mapping of area 01 to pin 2) |

### 14.3.2 Configuration of hole recognition via CANopen interface

$\leftrightarrows$ For hole recognition for web material map hole indication to output pin 2.

| Configuration of area 01 <br> (module 8) | Index $0 \times 2170$ sub 01: | $=1$ | (area 01 active) |
| :--- | :--- | :--- | :--- |
|  | Index $0 \times 2170$ sub 02: | $=0$ | (light switching) |
|  | Index $0 \times 2170$ sub 03: | $=65534$ | (start beam of the area) dynamic: on 65534 (start beam = FIB) |
|  | Index $0 \times 2170$ sub 04: | $=65532$ | (end beam of the area) dynamic: on 65532 (start beam = LIB) |
|  | Index $0 \times 2170$ sub 05: | $=1$ | (number of active beams for area ON) |
|  | Index $0 \times 2170$ sub 06: | $=0$ | (number of active beams for area OFF) |
| Switching level of the inputs/out- <br> puts <br> (module 7) | Index $0 \times 2151$ sub 01: | $=0$ | (pin 2 as output) |
|  | Index $0 \times 2151$ sub 03: | $=1$ | (switching behavior inverted) |
|  | Index $0 \times 2151$ sub 04: | $=1$ | (switching output area 32 ... 1) |
|  | Index $0 \times 2155$ sub 03: | $=1$ | (bit mapping of area 01 to pin 2) |

### 14.3.3 Configuration of hole recognition via Profibus interface

« For hole recognition for web material map hole indication to output pin 2.

| Area settings (module 17) | Parameter Area configuration: | $=1$ | (area 01 selected) |
| :---: | :---: | :---: | :---: |
|  | Parameter Area: | $=1$ | (area 01 active) |
|  | Parameter Logical behavior of the area: | $=0$ | (active HIGH) |
|  | Parameter Start beam of the area: | $=65534$ | (start beam of the area) dynamic: on 65534 (start beam $=$ FIB) |
|  | Parameter End beam of the area: | $=65532$ | (end beam of the area) dynamic: on 65532 (start beam = LIB) |
|  | Parameter Number of active beams $\rightarrow$ ON: | $=1$ | (number of active beams for area ON) |
|  | Parameter Number of active beams $\rightarrow$ OFF: | $=0$ | (number of active beams for area OFF) |
| Configuration of digital I/ Os (module 12) | Parameter Pin 2 -Input/output selection: | $=0$ | (pin 2 as output) |
|  | Parameter Pin 2-Switching behavior. | $=1$ | (switching behavior inverted) |
|  | Parameter Pin 2 - Output function: | $=1$ | (switching output area $1 . . .32$ ) |
|  | Parameter Pin 2 - Area mapping $32 \ldots 1$ : | $=1$ | (bit mapping of area 01 to pin 2) |

### 14.3.4 Configuration of hole recognition via RS 485 Modbus interface

$\leadsto$ For hole recognition for web material map hole indication to output pin 2.

| Area 01 (group 12) | Parameter 0x64 area 01 | Write access (specified middle and specified width remain zero): 0110006400070 E 0100 FF FE FF FC 00010000000000 00 4E 48 <br> Response to write access: <br> 011000640007 C0 14 |
| :---: | :---: | :---: |
| Digital IO Pin 2 Settings (group 10) | Parameter Ox50 Digital IO Pin 2 Settings | Write access: <br> 01100050000204000001 F7 03 <br> Response to write access: <br> 01100050000241 D9 |
| Configuration of switching output pin 2 <br> (group 11) | Parameter $0 \times 54$ configuration of switching output pin 2 | Write access: <br> 0110005400040800000000000001 FF C6 A5 <br> Response to write access: <br> 01100054000480 1A |

### 14.4 Example configuration - Activating and deactivating blanking areas

### 14.4.1 Configuration of blanking areas (general)

$\stackrel{\leftrightarrow}{\leftrightarrows}$ Perform the following settings to activate or deactivate blanking areas.

## Example: automatic blanking of two areas during teaching

| Blanking settings | Parameter Number of auto blanking areas: | $=2$ | (two blanking areas permitted) |
| :--- | :--- | :--- | :--- |
|  | Parameter Auto blanking (during teaching): | $=1$ | (automatic blanking-area configuration active) |
| System commands | Parameter Teach command. | $=1$ | (execute teach command) |

Example: Deactivation/resetting of auto blanking

| Blanking settings | Parameter Number of auto blanking areas: | $=0$ | (no blanking areas permitted) |
| :--- | :--- | :--- | :--- |
|  | Parameter Auto blanking (during teaching): | $=0$ | (automatic blanking area configuration not active) |
| Blanking settings | Parameter Function for blanking area/logical value <br> for blanking area 1: | $=0$ | (no beams blanked) |
|  | Parameter Function for blanking area/logical value <br> for blanking area 2: | $=0$ | (no beams blanked) |
|  | Parameter Teach command: | $=1$ | (execute teach command) |

### 14.4.2 Configuration of blanking areas via IO-Link interface

$\left.{ }^{\wedge}\right)$ Perform blanking area activation and deactivation.

Example: automatic blanking of two areas during teaching

| Blanking settings <br> (group 8) | Index 76, bit offset 200: | $=2$ | (two blanking areas permitted) |
| :--- | :--- | :--- | :--- |
|  | Index 76, bit offset 192: | $=1$ | (automatic blanking-area configuration active) |
| System commands <br> (group 1) | Index 2 | $=162$ | (perform teach) |

In the background, the values of objects INDEX 76 sub-index 3 et seq. are calculated and stored in nonvolatile memory. Upon successful teach completion, all other objects of index 76 are stored in non-volatile memory if index 79 , sub-index 2 is set to value $0=$ non-volatile storage of teach values.

## Example: Deactivation/resetting of auto blanking

| Blanking settings <br> (group 8) | Index 76, bit offset 200: | $=0$ | (no blanking areas permitted) |
| :--- | :--- | :--- | :--- |
|  | Index 76, bit offset 192: | $=0$ | (automatic blanking area configuration not active) |


| Blanking settings <br> (group 8) | Index 76, bit offset 176: | $=0$ | (no beams blanked) |
| :--- | :--- | :--- | :--- |
|  | Index 76, bit offset 176: | $=0$ | (no beams blanked) |
| System commands <br> (group 1) | Index 2: | $=162$ | (perform teach) |

### 14.4.3 Configuration of blanking areas via CANopen interface

${ }_{\Perp}$ P Perform blanking area activation and deactivation.
Example: automatic blanking of two areas during teaching

| Blanking settings <br> (module 6) | Index $0 \times 2104$ sub 01: | $=2$ | (two blanking areas permitted) |
| :--- | :--- | :--- | :--- |
|  | Index $0 \times 2104$ sub 02: | $=1$ | (automatic blanking-area configuration active) |
| Commands <br> (module 9) | Index $0 \times 2200$ sub 01: | $=3$ | (perform teach) |

In the background, the values of objects $0 \times 2104$ sub 04 and $0 \times 2104$ sub 05 as well as $0 \times 2104$ sub 07 and $0 \times 2104$ sub 08 are calculated and stored in non-volatile memory. Following a successful teach, all other $0 \times 2104$ objects are stored in non-volatile memory if $0 \times 2103$ sub 02 is set to value $0=$ non-volatile storage of teach values.

Example: Deactivation/resetting of auto blanking

| Blanking settings <br> (module 6) | Index $0 \times 2104$ sub 01: | $=0$ | (no blanking areas permitted) |
| :--- | :--- | :--- | :--- |
|  | Index $0 \times 2104$ sub 02: | $=0$ | (automatic blanking area configuration not active) |
| Blanking settings <br> (module 6) Index $0 \times 2104$ sub 03: $=0$ (no beams blanked) <br>  Index $0 \times 2104$ sub 03: $=0$ (no beams blanked) <br> Commands <br> (module 9) Index $0 \times 2200$ sub 01: $=3$ (perform teach) |  |  |  |

### 14.4.4 Configuration of blanking areas via Profibus interface

$\stackrel{\Perp}{\Perp}$ Perform blanking area activation and deactivation.
Example: automatic blanking of two areas during teaching

| Blanking configuration <br> (module 5) | Parameter Number of auto blanking areas | $=2$ | (two blanking areas permitted) |
| :--- | :--- | :--- | :--- |
|  | Parameter Auto blanking (during teaching) | $=1$ | (automatic blanking-area configuration active) |
| Sensor control module <br> (module 0) | Change value of byte 2 |  | (perform teach) |

In the background, the configuration for blanking areas 01 and 02 is calculated and stored in non-volatile memory. Upon successful teach completion, all other objects of the blanking configuration are stored in non-volatile memory if the Type of storage for teach values parameter is set to value $0=$ non-volatile storage of teach values.

Example: Deactivation/resetting of auto blanking

| Blanking configuration <br> (module 15) | Parameter Number of auto blanking areas | $=0$ | (no blanking areas permitted) |
| :--- | :--- | :--- | :--- |
|  | Parameter Auto blanking (during teaching) | $=0$ | (automatic blanking area configuration not active) |
| Blanking configuration <br> (module 15) | Parameter Log. value for blanking area 1 | $=0$ | (no beams blanked) |
|  | Parameter Log. value for blanking area 2 | $=0$ | (no beams blanked) |
| Sensor control module <br> (module 0) | Change value of byte 2 |  | (perform teach) |

### 14.4.5 Configuration of blanking areas via RS 485 Modbus interface

$\Leftrightarrow$ Perform blanking area activation and deactivation.
Example: automatic blanking of two areas during teaching

| Blanking area configuration <br> (group 8) | Parameter Ox4C configuration of blanking <br> areas | Write access: <br> $0110004 C 000 D 1 A 02010000010001000000010001$ <br> 00000001000100000001000100 B2 52 |
| :--- | :--- | :--- |
|  |  | Response to write access: <br> $0110004 C 000 D ~ C 0 ~ 1 B ~$ |
| Rx command <br> (group 1) | Parameter Ox84 Rx command (teach) | Write access: <br> 0110008400020403000000 FA 78 |
|  |  | Response to write access: <br> 01100084000201 E1 |

## Example: Deactivation/resetting of auto blanking

| Blanking area configuration (group 8) | Parameter OX4C configuration of blanking areas | Write access: <br> 011000 4C 00 OD 1A 00010000010001000000010001 0000000100010000000100010041 ED <br> Response to write access: <br> 011000 4C 00 0D C0 1B |
| :---: | :---: | :---: |
| Command (group 1) | Parameter 0x84 command (teach) | Write access: <br> 0110008400020403000000 FA 78 <br> Response to write access: <br> 01100084000201 E1 |

### 14.5 Example configuration - smoothing

### 14.5.1 Smoothing configuration (general)

$\stackrel{4}{4}$ Make the following settings for smoothing.

Example: Smoothing of four interrupted beams

| Smoothing settings | Parameter Smoothing - less than i interrupted <br> beams are ignored: |
| :--- | :--- | | (Beams are taken into account in the evaluation once |
| :--- |
| there are four or more interrupted beams) |

Example: Inverted smoothing of four interrupted beams

| Smoothing settings | Parameter Inverted smoothing - less than i free <br> beams are ignored: | (Beams are taken into account in the evaluation once <br> there are four or more free beams) |
| :--- | :--- | :--- | :--- |

### 14.5.2 Configuration of smoothing via IO-Link interface

${ }^{4}$ ) Assign the desired value for smoothing.

## Example: Smoothing of four interrupted beams

| General configuration <br> (group 4) | Index 71, bit offset 8: | $=4$ | (Beams are taken into account in the evaluation once there are four or more <br> interrupted beams) |
| :--- | :--- | :--- | :--- |

Example: Inverted smoothing of four interrupted beams

| General configuration <br> (group 4) | Index 71, bit offset 0: | $=4$ |
| :--- | :--- | :--- |
| (Beams are taken into account in the evaluation once there are four or more <br> free beams) |  |  |

### 14.5.3 Configuration of smoothing via CANopen interface <br> $\stackrel{\leftrightarrow}{\Perp}$ Assign the desired value for smoothing.

Example: Smoothing of four interrupted beams

| General configuration <br> (module 3) | Index 2100 sub 03: | $=4$ | (Beams are taken into account in the evaluation once there are four or more <br> interrupted beams) |
| :--- | :--- | :--- | :--- |

Example: Inverted smoothing of four interrupted beams

| General configuration <br> (module 3) | Index 2100 sub 4: | (Beams are taken into account in the evaluation once there are four or more <br> free beams) |
| :--- | :--- | :--- | :--- |

### 14.5.4 Configuration of smoothing via Profibus interface

$\stackrel{\Perp}{\Perp}$ Assign the desired value for smoothing.

## Example: Smoothing of four interrupted beams

| General settings <br> (module 8) | Parameter Smoothing: | $=4$ |
| :--- | :--- | :--- | | (Beams are taken into account in the evaluation once |
| :--- |
| there are four or more interrupted beams) |

Example: Inverted smoothing of four interrupted beams

| General settings <br> (module 8) | Parameter Inverted smoothing. | $=4$ | (Beams are taken into account in the evaluation once <br> there are four or more free beams) |
| :--- | :--- | :--- | :--- |

### 14.5.5 Configuration of smoothing via RS 485 Modbus interface

$\Leftrightarrow$ Assign the desired value for smoothing

Example: Smoothing of four interrupted beams

| General settings/smoothing <br> (group 4) | Parameter Ox47 smoothing | Write access: |
| :--- | :--- | :--- |
|  |  | 01100047000204000004017579 |
|  |  | Response to write access: <br> 011000470002 F1 DD |

## Example: Inverted smoothing of four interrupted beams

| General settings/smoothing <br> (group 4) | Parameter Ox47 smoothing | Write access: |
| :--- | :--- | :--- |
|  |  | 0110004700020400000104 B6 2A |
|  |  | Response to write access: <br> 011000470002 F1 DD |

### 14.6 Example configuration - Cascading

### 14.6.1 Configuration of a cascading arrangement (general)

The following figure shows an example for a timing sequence of a cascading arrangement with three light curtains.


Figure 14.1: Example: cascading with three light curtains

## Configuring light curtain 1 :

${ }^{4}>$ Configure the trigger settings (triggered, master, total cycle time).

| Cascading configuration |  |
| :--- | :--- |
| Cascading | 1: Active <br> Notice: With cascading operation, the master must also be set to 1 (active)! |
| Function type | 1: Master (sends trigger signal) |
| Master cycle time | Total cycle time $(=$ sum of cycle times of the light curtains LC1+LC2+LC3) <br> duration of a TRIGGER cycle in ms |

${ }^{4}$ ) Configure the digital IOs (pin 5 ) settings.

| Digital IO1 (pin 5) settings |  |
| :--- | :--- |
| Pin 5- Input/output selection | 1: Output |
| Pin 5-Switching behavior | 0: Light switching |
| Pin 5- Output function | 3: Trigger output |

## Configuring light curtain 2:

$\stackrel{\wedge}{\Perp}$ Configure the trigger settings (triggered, slave, delay time).

| Cascading configuration |  |
| :--- | :--- |
| Cascading | 1: Active <br> Notice: With cascading operation, the master must also be set to 1 (active)! <br> Function type <br> Delay time Trigger $\rightarrow$ Scan [us] Slave (expects trigger signal)$\|$ Enter cycle time of light curtain 1 (LC1) |

${ }^{4}$ Configure the digital IOs (pin 5 ) settings.

| Digital IO1 (pin 5) settings |  |
| :--- | :--- |
| Pin 5-Input/output selection | 1: Input |
| Pin 5-Switching behavior | 0: Light switching |
| Pin 5- Output function | 1: Trigger input |

Configuring light curtain 3 :
$\stackrel{\wedge}{ } \Rightarrow$ Configure the trigger settings (triggered, slave, delay time).

| Cascading configuration |  |
| :--- | :--- |
| Cascading | 1: Active <br> Notice: With cascading operation, the master must also be set to 1 (active)! |
| Function type | $0:$ Slave (expects trigger signal) |
| Delay time Trigger $\rightarrow$ Scan [us] | Enter cycle time of light curtain 1 and light curtain 2 ( = sum of cycle times of light curtains LC1 + LC2) |

${ }^{\wedge}>$ Configure the digital IOs (pin 5 ) settings.

| Digital IO1 (pin 5) settings |  |
| :--- | :--- |
| Pin 5- Input/output selection | 1: Input |
| Pin 5-Switching behavior | 0 : Light switching |
| Pin 5- Output function | 1: Trigger input |

### 14.6.2 Configuration of a cascading arrangement via IO-Link interface <br> CML700i frame arrangement for cascading with IO-Link interface wiring



## Configuring light curtain 1:

${ }^{4}>$ Configure the trigger settings (triggered, master, total cycle time).

| Cascading configuration <br> (group 7) | Index 73, bit offset 56 $=1$ | (cascading: active) <br> Notice: With cascading operation, the master must also be set to 1 (active)! |
| :--- | :--- | :--- |
|  | Index 73, bit offset 48 $\quad=1$ | (function type: master - sends trigger signal) |
|  | Index 73, bit offset 32 | (master cycle time: total cycle time of all light curtains (LC1+LC2+LC3)) <br> duration of a TRIGGER cycle in ms |

${ }^{\wedge}>$ Configure the digital IOs (pin 5) settings.

| Digital IO1 (pin 5) settings <br> (group 10) | Index 81, bit offset 24 | $=0$ | (pin 5-input/output selection: output) |
| :--- | :--- | :--- | :--- |
|  | Index 81, bit offset 16 | $=0$ | (pin 5 - switching behavior: light switching) |
|  | Index 81, bit offset 00 | $=3$ | (pin $5-$ output function: trigger output) |

## Configuring light curtain 2 :

$\stackrel{y}{ }{ }^{4}$ Configure the trigger settings (triggered, slave, delay time).

| Cascading configuration <br> (group 7) | Index 73 , bit offset 56 | $=1$ | (cascading: active) <br> Notice: With cascading operation, the master must also be set to 1 (active)! |
| :--- | :--- | :--- | :--- |
|  | Index 73 , bit offset 48 | $=0$ | (function type: slave - expects trigger signal) |
|  | Index 73, bit offset 00 |  | (delay time Trigger $\rightarrow$ Scan [ $\mu \mathrm{s}]$ : enter cycle time of light curtain 1 (LC1)) |

$\stackrel{4}{ }>$ Configure the digital IOs (pin 5 ) settings.

| Digital IO1 (pin 5) settings <br> (group 10) | Index 81, bit offset 24 | $=1$ | (pin 5-input/output selection: input) |
| :--- | :--- | :--- | :--- |
|  | Index 81, bit offset 16 | $=0$ | (pin 5-switching behavior: light switching) |
|  | Index 81, bit offset 08 | $=1$ | (pin 5 - output function: trigger input) |

## Configuring light curtain 3:

$\stackrel{\Perp}{\Perp}$ Configure the trigger settings (triggered, slave, delay time).

| Cascading configuration <br> (group 7) | Index 73, bit offset 56 $=1$ | (cascading: active) <br> Notice: With cascading operation, the master must also be set to 1 (active)! |  |
| :--- | :--- | :--- | :--- |
|  | Index 73, bit offset 48 | $=0$ | (function type: slave - expects trigger signal) |

$\stackrel{\Perp}{ }{ }^{\text {Configure the digital IOs (pin } 5 \text { ) settings. }}$

| Digital IO1 (pin 5) settings <br> (group 10) | Index 81, bit offset 24 | $=1$ | (pin 5 - input/output selection: input) |
| :--- | :--- | :--- | :--- |
|  | Index 81, bit offset 16 | $=0$ | (pin 5 - switching behavior: light switching) |
|  | Index 81, bit offset 08 | $=1$ | (pin 5 - output function: trigger input) |

14.6.3 Configuration of a cascading arrangement via CANopen interface

CML700i frame arrangement for cascading with CANopen interface wiring


## Configuring light curtain 1 :

$\stackrel{4}{ }{ }^{\circ}$ Configure the trigger settings (triggered, master, total cycle time).

| Cascading configuration <br> (module 12) | Index $0 \times 2102$ sub 01 | $=1$ | (cascading: active) <br> Notice: With cascading operation, the master must also be set to 1 (active)! |
| :--- | :--- | :--- | :--- |
|  | Index $0 \times 2102$ sub 02 | $=1$ | (function type: master - sends trigger signal) |
|  | Index $0 \times 2102$ sub 05 | (master cycle time: total cycle time of all light curtains (LC1+LC2+LC3)) <br> duration of a trigger cycle in ms |  |

${ }^{\wedge}>$ Configure the digital IOs (pin 5 ) settings.

| Switching level of the <br> inputs/outputs <br> (module 10) | Index $0 \times 2152$ sub 04 | $=1$ | (pin 5 - input/output selection: output) |
| :--- | :--- | :--- | :--- |
|  | Index $0 \times 2152$ sub 03 | $=0$ | (pin 5 - switching behavior: light switching) |
|  | Index $0 \times 2152$ sub 01 | $=3$ | (pin 5 - output function: trigger output) |

## Configuring light curtain 2 :

${ }^{4}$ Configure the trigger settings (triggered, slave, delay time).

| Cascading configuration <br> (module 12) | Index $0 \times 2102$ sub 01 | $=1$ | (cascading: active) <br> Notice: With cascading operation, the master must also be set to 1 (active)! |
| :--- | :--- | :--- | :--- |
|  | Index $0 \times 2102$ sub 02 | $=0$ | (function type: slave - expects trigger signal) |
|  | Index $0 \times 2102$ sub 03 |  | (delay time Trigger $\rightarrow$ Scan [ $\mu \mathrm{s}]$ : enter cycle time of light curtain 1 (LC1)) |

$\stackrel{4}{ }>$ Configure the digital IOs (pin 5 ) settings.

| Switching level of the <br> inputs/outputs <br> (module 10) | Index $0 \times 2152$ sub 04 | $=1$ | (pin 5-input/output selection: input) |
| :--- | :--- | :--- | :--- |
|  | Index $0 \times 2152$ sub 03 | $=0$ | (pin 5 - switching behavior: light switching) |
|  | Index $0 \times 2152$ sub 02 | $=1$ | (pin 5 - input function: trigger input) |

## Configuring light curtain 3:

$\stackrel{\Perp}{\Perp}$ Configure the trigger settings (triggered, slave, delay time).

| Cascading configuration <br> (module 12) | Index $0 \times 2102$ sub 01 $=1$ | (cascading: active) <br> Notice: With cascading operation, the master must also be set to 1 (active)! |  |
| :--- | :--- | :--- | :--- |
|  | Index $0 \times 2102$ sub 02 | $=0$ | (function type: slave - expects trigger signal) |

$\stackrel{\wedge}{\wedge}$ Configure the digital IOs (pin 5) settings.

| Switching level of the <br> Inputs/outputs <br> (module 10) | Index $0 \times 2152$ sub 04 | $=1$ | (pin $5-$ input/output selection $=$ input) |
| :--- | :--- | :--- | :--- |
|  | Index $0 \times 2152$ sub 03 | $=0$ | (pin $5-$ switching behavior $=$ light switching) |
|  | Index $0 \times 2152$ sub 02 | $=1$ | (pin $5-$ input function $=$ trigger input) |

### 14.6.4 Configuration of a cascading arrangement via Profibus interface

CML700i frame arrangement for cascading with Profibus interface wiring


## Configuring light curtain 1 :

${ }^{4}$ Configure the trigger settings (triggered, master, total cycle time).

| Cascading configuration <br> (module 14) | Parameter Cascading. $=1$ | (active) <br> Notice: With cascading operation, the master must also be set to 1 (active)! |
| :--- | :--- | :--- | :--- |
|  | Parameter Function type $=1$ | (master - sends trigger signal) |
|  | Parameter Master cycle <br> time [ms] | (total cycle time of all light curtains (LC1+LC2+LC3)) <br> duration of a TRIGGER cycle in ms |

${ }^{4}$ ) Configure the digital IOs (pin 5 ) settings.

| Digital IO1 (pin 5) settings <br> (module 12) | Parameter Pin 5-Input/ $=0$ <br> output selection | (output) |
| :--- | :--- | :--- | :--- |
|  | Parameter Pin 5-Input/ $=0$ <br> output selection | (light switching) |
|  | Parameter Pin 5-Output $=3$ <br> function | (trigger output) |

## Configuring light curtain 2 :

$\stackrel{\Perp}{\Perp}$ Configure the trigger settings (triggered, slave, delay time).

| Cascading configuration <br> (module 14) | Parameter Cascading $=1$ | (active) <br> Notice: With cascading operation, the master must also be set to 1 (active)! |
| :--- | :--- | :--- | :--- |
|  | Parameter Function type $=0$ | (slave - expects trigger signal) |
|  | Parameter Delay time <br> Trigger $\rightarrow$ Scan $[\mu s]$ | (enter cycle time of light curtain 1 (LC1)) |

$\left.{ }^{4}\right)$ Configure the digital IOs (pin 5 ) settings.

| Digital IO1 (pin 5) settings <br> (module 12) | Parameter Pin 5-Input/ <br> output selection | (input) |
| :--- | :--- | :--- | :--- |
|  | Parameter Pin 5-Input/ <br> output selection | (light switching) |
|  | Parameter Pin 5-Input <br> function | (trigger input) |

## Configuring light curtain 3 :

$\stackrel{\wedge}{ }{ }^{\circ}$ Configure the trigger settings (triggered, slave, delay time).

| Cascading configuration <br> (module 14) | Parameter Cascading $=1$ | (active) <br> Notice: With cascading operation, the master must also be set to 1 (active)! |
| :--- | :--- | :--- | :--- |
|  | Parameter Function type $=0$ | (slave - expects trigger signal) |
|  | Parameter Delay time <br> Trigger $\rightarrow$ Scan [ $\mu s]$ | (enter cycle time of light curtain 1 and light curtain 2 (= sum of cycle times of <br> light curtains LC1+LC2)) |

$\left.{ }^{4}\right)$ Configure the digital IOs (pin 5) settings.

| Digital IO1 (pin 5) settings <br> (module 12) | Parameter Pin 5-Input/ $=1$ <br> output selection | (input) |
| :--- | :--- | :--- |
|  | Parameter Pin 5-Switch- $=0$ <br> ing behavior | (light switching) |
|  | Parameter Pin 5-Output $=1$ <br> function | (trigger input) |

### 14.6.5 Configuration of a cascading arrangement via RS 485 Modbus interface CML700i frame arrangement for cascading with RS 485 Modbus interface wiring



## Configuring light curtain 1 :

$\stackrel{\Perp}{ }{ }^{〔}$ Configure the trigger settings (triggered, master, total cycle time (e.g., 255 ms )).

| Cascading information <br> (group 7) | Parameter Ox49 cascading |
| :--- | :--- | | Write access: |
| :--- |
|  |
|  |

$\stackrel{\leftrightarrow}{ }{ }^{\text {Configure the digital IOs (pin } 5=\text { trigger output) settings. }}$

| Digital IOs (pin 5) settings <br> (group 10) | Parameter Ox51 Digital /O Pin 5 Settings | Write access: <br> $0110005100020403000000371 B$ |
| :--- | :--- | :--- |
|  |  | Response to write access: <br> 0110005100021019 |

## Configuring light curtain 2 :

${ }^{4}>$ Configure the trigger settings (triggered, slave, delay time (e.g., $10 \mathrm{~ms}=10,000 \mu \mathrm{~s}$ )).

| Cascading information <br> (group 7) | Parameter Ox49 cascading |
| :--- | :--- |
|  |  |
|  | Write access: <br> 01100049000408010010276400010042 A2 <br>  |
| $011000490004101 C$ |  |

${ }^{\Perp}$ Configure the digital IOs (pin 5) settings.

| Digital IOs (pin 5) settings <br> (group 10) | Parameter Ox51 Digital IO Pin 5 Settings | Write access: |
| :--- | :--- | :--- |
|  |  | 0110005100020400010001 A7 5F |
|  |  | Response to write access: <br> 0110005100021019 |

## Configuring light curtain 3:

$\stackrel{4}{4}$ Configure the trigger settings (triggered, slave, delay time (e.g., $25 \mathrm{~ms}=25,000 \mu \mathrm{~s}$ )).

| Cascading information <br> (group 7) | Parameter Ox49 cascading |
| :--- | :--- |
|  |  |
|  | Write access: <br> 01100049000408010061 A8 64000100 1D 9C <br> Response to write access: <br> $011000490004101 C$ |

$\Rightarrow$ Configure the digital IOs (pin 5) settings.

| Digital IOs (pin 5) settings <br> (group 10) | Parameter Ox51 Digital IO Pin 5 Settings | Write access: |
| :--- | :--- | :--- |
|  |  | Response to write access: |
|  |  | 0110005100020400010001 A7 5F |
|  |  |  |

## 15 Connecting to a PC - Sensor Studio

The Sensor Studio configuration software - in combination with an IO-Link USB master - provides a graphical user interface for the operation, configuration and diagnosis of sensors with IO-Link configuration interface (IO-Link devices), independent of the selected process interface.
Each IO-Link device is described by a corresponding IO Device Description (IODD file). After importing the IODD file into the configuration software, the IO-Link device connected to the IO-Link USB master can be operated, configured and checked - conveniently and in multiple languages. An IO-Link device that is not connected to the PC can be configured offline.
Configurations can be saved and reopened as projects for transferring back to the IO-Link device at a later time.

## O Only use the Sensor Studio configuration software for products manufactured by Leuze electronic.

The Sensor Studio configuration software is offered in the following languages: German, English, French, Italian and Spanish.

The FDT frame application of the Sensor Studio supports all languages; all languages may not be supported in the IO-Link device DTM (Device Type Manager).

The Sensor Studio configuration software is designed according to the FDT/DTM concept:

- Make individual configuration settings for the light curtain in the Device Type Manager (DTM).
- The individual DTM configurations of a project can be called up via the frame application of the Field Device Tool (FDT).
- Communication DTM: IO-Link USB master
- Device DTM: IO-Link device/IODD for CML 700i


## NOTICE

## Configuration changes only via the control and the fieldbus interface!

${ }^{4}$ Always perform the configuration for process mode via the control and, if applicable, the fieldbus interface.

In process mode, only the configuration conveyed via the control is active. The configuration changes made via Sensor Studio are only active in process mode if they were previously transmitted 1:1 to the control.

Procedure for the installation of the software and hardware:
$\stackrel{\Perp}{\wedge}$ Install the Sensor Studio configuration software on the PC.
${ }^{\Perp}$ Install the driver for the IO-Link USB master on the PC.
( ${ }^{4}$ ) Connect the IO-Link USB master to the PC.
${ }^{\Perp}$ Connect the CML 700i (IO-Link device) to the IO-Link USB master.
$\stackrel{n}{\Rightarrow}$ Install IO-Link device DTM with IODD file for CML 700i in the Sensor Studio FDT frame.

### 15.1 System requirements

To use the Sensor Studio configuration software, you need a PC or laptop with the following specifications:
Table 15.1: System requirements for Sensor Studio installation

|  |  |
| :---: | :---: |
| Operating system | Windows 7 <br> Windows 8 |
| Computer | - Processor type: 1 GHz or higher <br> - USB interface <br> - CD drive <br> - Main memory <br> - 1 GB RAM (32-bit operating system) <br> - 2 GB RAM (64-bit operating system) <br> - Keyboard and mouse or touchpad |
| Graphics card | DirectX 9 graphic device with WDDM 1.0 or higher driver |
| Additionally required capacity for Sensor Studio and IO-Link device DTM | 350 MB hard drive memory 64 MB main memory |

Administrator privileges on the PC are necessary for installing Sensor Studio.

### 15.2 Installing Sensor Studio configuration software and IO-Link USB master

The installation of the Sensor Studio configuration software is done via supplied data carrier Sensor Studio \& IO-Link USB master.

For subsequent updates, you can find the most recent version of the Sensor Studio configuration software on the Internet at www.leuze.com

### 15.2.1 Installing the Sensor Studio FDT frame

## NOTICE

First install the software!
4) Do not yet connect the IO-Link USB master to the PC.

First install the software.
O If FDT frame software is already installed on your PC, you do not need the Sensor Studio instal-
lation.

You can install the communication DTM (IO-Link USB master) and the device DTM (IO-Link device CML 700i) in the existing FDT frame.
(7) Start the PC and insert the Sensor Studio \& IO-Link USB Master data carrier.

The language selection menu starts automatically.
If the language selection menu does not start automatically, double-click the start.exe file.
$\stackrel{4}{\wedge}$ Select a language for the interface text in the Installation Wizard and software.
The installation options are displayed.
²) Select Leuze electronic Sensor Studio and follow the instructions on the screen.
The Installation Wizard installs the software and places a shortcut on the desktop (

### 15.2.2 Installing drivers for IO-Link USB master

$\stackrel{4}{4}$ Select the IO-Link USB Master installation option and follow the instruction on the screen.
The Installation Wizard installs the software and places a shortcut on the desktop ( ) .

### 15.2.3 Connecting IO-Link USB master to the PC

The light curtain is connected to the PC via the IO-Link USB master (see table 20.22).
$\stackrel{ }{\wedge}$ Connect the IO-Link USB master to the plug-in power supply unit or the mains supply.
$\bigcirc$
Included in the delivery contents of the IO-Link USB master is a USB interconnection cable for
! connecting the PC to the IO-Link USB master as well as a plug-in power supply unit and a short description.

The mains supply of the IO-Link USB master via the plug-in power supply unit is only activated if IO-Link USB master and PC are connected via the USB interconnection cable.
$\left.{ }^{4}\right)$ Connect the PC to the IO-Link USB master.


1 IO-Link USB master
2 Plug-in power supply unit
3 PC
Figure 15.1: PC connection via the IO-Link USB master
${ }^{4}$ ) The wizard for searching for new hardware starts and installs the driver for the IO-Link USB master on the PC.

### 15.2.4 Connect the IO-Link USB master to the light curtain

## Prerequisites:

- IO-Link USB master and PC are connected via the USB interconnection cable.
- IO-Link USB master is connected to the mains supply with the plug-in power supply unit.


## NOTICE

## Connect the plug-in power supply unit for IO-Link USB master!

$\stackrel{\Perp}{\Perp}$ To connect a light curtain, the plug-in power supply unit must be connected to the IO-Link USB master and the mains supply.
The voltage supply via the USB interface of the PC is permissible only for IO-devices with a current consumption of up to 40 mA at 24 V .

Included in the delivery contents of the IO-Link USB master is a USB interconnection cable for connecting the PC to the IO-Link USB master as well as a plug-in power supply unit and a short description.

The voltage supply of the IO-Link USB master and the light curtain via the plug-in power supply unit is only activated if IO-Link USB master and PC are connected via the USB interconnection cable.
(4) Connect the IO-Link USB master to the receiver.
$\stackrel{\Perp}{ }{ }^{\text {CML }} 700$ i with analog output or IO-Link interface:
Connect the IO-Link USB master to interface X1 on the receiver with the connection cable (see figure 15.2).
The connection cable is not included in the delivery contents and must be ordered separately if needed (see chapter 20.5).


1 Receiver
2 IO-Link USB master
3 Plug-in power supply unit
4 PC
Figure 15.2: CML 700i (analog/IO-Link) connection to the IO-Link USB master
${ }^{\wedge}$ CML 700i with Profibus, RS 485 Modbus, CANopen or IO-Link interface:
Connect the IO-Link USB master to the short end of the Y-connection cable (see figure 15.3).
If the Y-connection cable is too short to connect the IO-Link USB master, use a interconnection/synchronization cable to extend the cable (to be ordered separately, see table 20.4).


1 CML 700i receiver
2 IO-Link USB master
$3 \quad$ Plug-in power supply unit
4 PC
Figure 15.3: CML 700i (fieldbus) connection to the IO-Link USB master

### 15.2.5 Installing the DTM and IODD

Prerequisites:

- The light curtain is connected to the PC via the IO-Link USB master.
- FDT frame and driver for IO-Link USB master are installed on the PC.
${ }^{\wedge}$ Select the IO-Link device DTM (User Interface) installation option and follow the instructions on the screen.
The Installation Wizard installs the DTM and the IO Device Description (IODD) for the light curtain.
$\stackrel{O}{\square}$
DTM and IODD for all IO-Link devices currently available from Leuze electronic are installed.


### 15.3 Starting the Sensor Studio <br> configuration software

Prerequisites:

- The light curtain has been mounted (see chapter 6) and connected (see chapter 7) correctly.
- The Sensor Studio configuration software is installed on the PC (see chapter 15.2 "Installing Sensor Studio configuration software and IO-Link USB master").
- The light curtain is connected to the PC via the IO-Link USB master (see chapter 15.2 "Installing Sensor Studio configuration software and IO-Link USB master").
${ }_{4}^{4}$ Start the Sensor Studio configuration software by double-clicking the Sensor Studio icon ( $\Delta$ ).
The Mode selection of the Project Wizard is displayed automatically or under the File menu item.
${ }^{4}$ Select the Device selection without communication connection (offline) configuration mode and click on [Next].
The Project Wizard displays the device selection list of the configurable devices.


Figure 15.4: Device selection for CML 700i measuring light curtain
ヶ Select the connected light curtain according to the configuration in the device selection and click on [Next].
In the Device description in the Device selection list, the values for the bit rate and PD length configuration parameters for the respective light curtain are listed. Factory settings on delivery:
Bit rate: COM2
PD length: 2 bytes
The device manager (DTM) of the connected light curtain starts with the offline view for the Sensor Studio configuration project.
4) Establish the online connection to the connected light curtain.

In the Sensor Studio FDT frame, click on the [Establish connection with device] button ( $D_{\text {) }}$ ).
In the Sensor Studio FDT frame, click on the [Online parameters] button ( $P_{x}$ ).
The IO-Link USB master synchronizes with the connected light curtain and the current configuration data and process data are displayed in the device manager (DTM).


Figure 15.5: Configuration project: Sensor Studio device manager (DTM) for CML 700i
$\stackrel{y}{\wedge}$ The menus of the Sensor Studio device manager (DTM) can be used to change or read out the configuration of the connected light curtain.
The user interface of the Sensor Studio device manager (DTM) is largely self-explanatory.
The online help system provides information on the menu items and adjustment parameters. Select the Help menu item in the menu [?].

## Error message when [establishing connection with the device]

If the device selected in the Device selection list of the Sensor Studio Project Wizard does not match the configuration (bit rate and PD length) of the connected light curtain, an error message is displayed.
Under IDENTIFICATION > CxL-7XX Device IDs, you will find a list with the assignment of the device IDs displayed in the error message to the device description in the device selection list.
${ }^{4}$ ) Change the device selection in the Device selection list according to the configuration (bit rate and PD length) of the connected light curtain.

Alternatively, you can set the configuration (bit rate and PD-length) of the light curtain in the receiver control panel corresponding to the device selection in the Device selection list.
$\stackrel{\Perp}{\Perp}$ In the Sensor Studio FDT frame, click on the [Establish connection with device] button ( $D$ ).

### 15.4 Short description of the Sensor Studio configuration software

This chapter contains information and explanations on the individual menu items and adjustment parameters of the Sensor Studio configuration software and the device manager (DTM) for CML 700i measuring light curtains.

This chapter does not include a complete description of the Sensor Studio configuration software.

Complete information on the FDT frame menu and on the functions in the device manager (DTM) can be found in the online help system.

The device managers (DTM) for light curtains of the Sensor Studio configuration software have the following main menus and functions:

- IDENTIFICATION (see chapter 15.4.2)
- CONFIGURATION (see chapter 15.4.3)
- PROCESSsee chapter 15.4.4
- DIAGNOSIS (see chapter 15.4.5) each function. Select the Help menu item in the menu [?]


### 15.4.1 FDT frame menu

$\square$ You can find complete information on the FDT frame menu in the online help system. Select the Help menu item in the menu [?].

### 15.4.2 IDENTIFICATION function

- Operating information: Information on operating the device manager (DTM)
- Technical description: The available original operating instructions of the device in pdf format
- CML-7XX: Table with the assignment of device IDs to the device description in the device selection list in the Sensor Studio Project Wizard.
The information is needed if an error message is displayed when connecting with the device.


### 15.4.3 CONFIGURATION function

- Save permanently. Configuration changes via Sensor Studio are effective immediately but are lost if the device is de-energized.
With Save permanently, the configuration set via Sensor Studio is stored in non-volatile memory in the device.


## NOTICE

Configuration for process mode only via the control!
${ }^{4}$ Always configure process mode via the control and, if applicable, the fieldbus interface.
In process mode, only the configuration conveyed via the control is active. The configuration changes made via Sensor Studio are only active in process mode if they were previously transmitted $1: 1$ to the control.

- Teach: The sensitivity of the teach event (see chapter 8.2 "Teaching the environmental conditions") can only be set via the Sensor Studio configuration software.
- Upload device data set from device ( (1) ): The configuration is uploaded from the device to the device manager (DTM), e.g., to update the online view in Sensor Studio after the configuration was changed via the receiver control panel.
- Upload device data set from device ( $\mathbb{\nabla}$ ) / Synchronize with device ( © ) :
- If the [Upload device data set from device] button ( $\mathbb{1}$ ) is displayed in the device manager (DTM), the Sensor Studio display shows the current configuration of the light curtain.
- If the [Synchronize with device] button ( © ) is displayed in the device manager (DTM), the Sensor Studio display is not consistent with the current configuration of the light curtain.

If parameters are changed in the device manager (DTM) that affect other parameters (e.g., if changing the beam mode causes the configured logical beams to change), the changes to these parameters are configured in the device - but are not yet displayed in the Sensor Studio display. Click on the [Synchronize with device] button ( (3) ) to synchronize the Sensor Studio display with the current configuration of the light curtain. Following successful synchronization, the [Upload device data set from device] button ( $\mathbb{\|}$ ) is displayed in the device manager(DTM).

### 15.4.4 PROCESS function

- The Process function offers graphical visualizations of the process data of the connected light curtain.


Figure 15.6: Graphical visualization: object position

- [Cyclical refresh] button ( © ): Starts the cyclical acquisition of the process data, which are graphically depicted under Numerical display, Beam-stream display and Areas and outputs. Each graphical display covers up to 300 seconds.
- Beam-stream display. Using the [Show or hide the graphical cursor] button ( $\#$ ), you can move the graphical cursor in the visualization, e.g., to evaluate the time difference between two events.


Figure 15.7: Graphical visualization: Beam-stream display

### 15.4.5 DIAGNOSIS function

The DIAGNOSIS function offers the following commands.

- Reset device, i.e., restart the connected light curtain
- Store configuration in non-volatile memory (see chapter 15.4.3)


### 15.4.6 Exiting Sensor Studio

After completing the configuration settings, close the Sensor Studio configuration software
$\left.{ }^{4}\right)$ Exit the program via File > Exit.
$\stackrel{4}{4}$ Save the configuration settings as a configuration project on the PC.
You can open the configuration project again at later time via File > Open or via the Sensor Studio Project Wizard ( ) .

## 16 Troubleshooting

### 16.1 What to do in case of error?

After switching on the light curtain, display elements (see chapter 3.4) assist in checking the proper function and troubleshooting.
In case of error, you can determine the error from the LED displays. With the error message you can determine the cause of the error and initiate measures to rectifying it.

## NOTICE

If the light curtain responds with an error display, you will often be able to eliminate the cause yourself!
$\stackrel{\wedge}{ }$ Switch off the system and leave it switched off.
${ }^{\Perp}$ Analyze and eliminate the cause of the fault using the following table.
${ }^{4}$ If you are unable to rectify the fault, contact the Leuze electronic branch responsible for you or call the Leuze electronic customer service (see chapter 18 "Service and support").

### 16.2 Operating displays of the LEDs

Table 16.1: Receiver LED displays - state and causes

| LED green | LED yellow | State | Possible cause |
| :--- | :--- | :--- | :--- |
| ON <br> (continuous <br> light) | - | Sensor ready |  |
| OFF | OFF | Sensor not ready | Interruption of the operating voltage; <br> Light curtain in start-up phase |
| OFF | Flashing <br> $(15 \mathrm{~Hz})$ | Missing function reserve | Soiling of the lens covers <br> Misalignment of transmitter or <br> receiver <br> Operating range exceeded |
| Flashing synchronously <br> (3 Hz) | Teach running | Soiling of the lens covers <br> Operating range exceeded |  |
| Flashing synchronously <br> (9 Hz) | Teach error | No connection between transmitter <br> and receiver <br> Operating voltage too low <br> Receiver is not compatible with the <br> transmitter |  |
| Flashing alternately (9 Hz) | System error |  |  |

Table 16.2: LED displays - causes and measures

| Faults | Possible cause | Measure |
| :--- | :--- | :--- |
| Teach error | Soiling of the lens covers <br> Poor alignment of transmitter and <br> receiver | Clean the lens cover on the receiver <br> and on the transmitter. <br> Check alignment. |
| Function reserve too low | Poor alignment of transmitter and <br> receiver <br> Soiling of the lens covers | Adjust alignment. <br> Test with shorter distance between <br> transmitter and receiver. <br> Clean the lens cover on the receiver <br> and on the transmitter. |
| Alignment signal too low | Poor alignment of transmitter and <br> receiver <br> Soiling of the lens covers | Adjust alignment. <br> Test with shorter distance between <br> transmitter and receiver. <br> Clean the lens cover on the receiver <br> and on the transmitter. |
| Outputs are not active or <br> change their state without a <br> contour change in the mea- <br> surement field | Configuration data is read or writ- <br> ten | End configuration communication. |

O During teaching, the system checks whether the signals of all beams are within a certain corridor.
1 If there are considerable deviations in the signal strength, this results in a teaching error and is indicated on the LEDs. The cause may be partial soiling of the lens cover.

Measure: clean the lens covers on the transmitter and receiver!

### 16.3 Error codes in the display

The following error messages can be output in the form of error codes in the device display.

Table 16.3: Normal mode

| Error code | Description |
| :--- | :--- |
| RxS $0 \times 0100$ | CxL in normal mode, start-up phase still running |
| RxS $0 \times 0180$ | CxL reconfigures itself after a configuration. Process data is invalid. |
| RxS $0 \times 0190$ | The measurement system is not active (after a stop command or if the first trigger pulse <br> is missing). |
| RxS 0x0200 | The "Leuze AutoControl ACON function" has detected soiling. |
| RxS 0x0300 | Teach parameters have been changed (teaching must be done) or default values are <br> active. |
| RxS 0x0FFF | CxL shuts down. Process data is invalid. |

Table 16.4: Warnings

| Error code | Description | Possible cause (s) |
| :---: | :---: | :---: |
| RxS 0x1000 | Device in teach mode, no new process data available | - Distance between transmitter and receiver too large or too small <br> - Poor alignment <br> - Soiling <br> - Extraneous light, especially mutual interference <br> - Beams are interrupted, but blanking is deactivated <br> - The maximum number of blanking areas is not sufficient <br> - The number of beams to be blanked is greater than or equal to the number of all logical beams |
| RxS 0x1100 | Teaching error |  |
| RxS 0x11xy | The device could not end teach, no new process data available |  |
| RxS 0x111x | Blanking error |  |
| RxS 0x112x | Error due to weak signal Individual beams do not reach the minimum reception level |  |
| RxS 0x113x | Internal error Device has reached the power limit |  |

Table 16.5: Errors (can be corrected)

| Error code | Description | Measures |
| :--- | :--- | :--- |
| RxS 0x2000 | No communication possible between transmitter and <br> receiver. | Check cable. |
| RxS 0x2001 | Receiver/transmitter inconsistency. <br> The receiver is not compatible with the transmitter. | Replace transmitter. |
| RxS 0x2100 | The supply voltage is not sufficient. | Check voltage supply. |
| RxS 0x2200 | EEPROM data corrupt. | Reset device to factory set- <br> tings. |
| RxS 0x23xy | Configuration error. <br> xy gives information on the type of configuration error. | Contact service (see <br> chapter 18). <br> Reset device to factory set- <br> tings. <br> Check parameters and <br> parameter relation. |

Table 16.6: Serious errors (cannot be corrected)

| Faults | Description | Measures |
| :--- | :--- | :--- |
| RxS 0x3000 | Hardware error, no details available |  |
| RxS 0x3001 | Hardware error, transmitter 9V supply |  |
| RxS 0x3002 | Hardware error, transmitter 5V supply | Return device following |
| consultation with Service |  |  |
| department (see |  |  |
| chapter 18) |  |  |

## 17 Care, maintenance and disposal

### 17.1 Cleaning

In the event of dust build-up on the sensor:
${ }^{\Perp}$ Clean the sensor with a soft cloth; use a cleaning agent (commercially available glass cleaner) if necessary.

## NOTICE

Do not use aggressive cleaning agents!
$\stackrel{4}{4}$ Do not use aggressive cleaning agents such as thinner or acetone for cleaning the light curtains.
Use of improper cleaning agents can damage the lens cover.

### 17.2 Servicing

Usually, the light curtain does not require any maintenance by the operator.
Repairs to the device must only be carried out by the manufacturer.
${ }^{〔}$ For repairs, contact your responsible Leuze electronic subsidiary or Leuze electronic customer service (see chapter 18).

### 17.2.1 Firmware update

A firmware update can only be performed by Leuze electronic customer service on-site or at the company headquarters.
$\stackrel{\text { r }}{ } \rightarrow$ For firmware updates, contact your responsible Leuze electronic subsidiary or Leuze electronic customer service (see chapter 18).

### 17.3 Disposing

For disposal observe the applicable national regulations regarding electronic components.

## 18 Service and support

Defective devices are repaired in our service center competently and quickly. Leuze electronic offers you an extensive service packet to keep any necessary system downtimes to a minimum.

Our service center requires the following information:

- Customer number
- Part designation or part number
- Serial number or batch number
- Reason for return with description

Telephone number for 24-hour standby service:
+49 (0) 7021 573-0

Service hotline:
+49 (0) 7021 573-123
Monday to Thursday, 8.00 a.m. to 5.00 p.m. (UTC+1)
Friday, 8.00 a.m. to 4.00 p.m. (UTC+1)

E-mail:
service.detect@leuze.de

Repair service and returns:
Procedure and Internet form can be found at
www.leuze.com/repair
Return address for repairs:
Service Center
Leuze electronic GmbH + Co. KG
In der Braike 1
D-73277 Owen / Germany

## 19 Technical data

### 19.1 General specifications

Table 19.1: Optical data

| Light source | LED (modulated light) |
| :--- | :--- |
| Wavelength | 940 nm (infrared light) |

Table 19.2: Measurement field data: Operating range limit and measurement field length of the CML 720i

| Beam spacing [mm] | ${\text { Typ. op. range limit }{ }^{\text {a }}[\mathrm{m}]}^{l\|l\|}$ Measurement field length ${ }^{\text {b) }[\mathrm{mm}]}$ |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  | min. | max. | min. | max. |
| 5 | 0.1 | 4.0 | 160 | 2960 |
| 10 | 0.2 | 8.0 | 160 | 2880 |
| 20 | 0.2 | 8.0 | 150 | 2870 |
| 40 | 0.2 | 8.0 | 290 | 2850 |

a) Typ. operating range limit: min./max. attainable range without function reserve for parallel-beam scanning.
b) Measurement field lengths and beam spacings specified in fixed rasters, see ordering table.

Table 19.3: CML 720i Operating ranges

| Beam spacing [mm] | Operating range $[\mathrm{m}]$ <br> Parallel-beam |  | Operating range $[\mathrm{m}]$ <br> Diagonal-beam |  | Operating range $[\mathrm{m}]$ <br> Crossed-beam |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | min. | max. | min. | max. | min. | max. |
| 5 | 0.1 | 3.0 | 0.2 | 2.2 | 0.2 | 1.9 |
| 10 | 0.3 | 6.0 | 0.3 | 4.5 | 0.3 | 3.8 |
| 20 | 0.3 | 6.0 | 0.3 | 4.5 | 0.3 | 3.8 |
| 40 | 0.3 | 6.0 | 0.6 | 4.5 | 0.6 | 3.8 |

Table 19.4: CML 720i profile and measurement field lengths

| Measurement field <br> length B [mm] <br> with beam spacing A <br> 5 mm | Measurement field <br> length B [mm] <br> with beam spacing A <br> 10 mm | Measurement field <br> length B $[\mathrm{mm}]$ <br> with beam spacing A <br> 20 mm | Measurement field <br> length B $[\mathrm{mm}]$ <br> with beam spacing A <br> 40 mm | Profile length L <br> $[\mathrm{mm}]$ |
| :--- | :--- | :--- | :--- | :--- |
| 160 | 160 | 150 | - | 168 |
| 240 | - | - | - | 248 |
| 320 | 320 | 310 | 290 | 328 |
| 400 | - | - | - | 408 |
| 480 | 480 | - | - | 488 |
| 560 | - | - | 568 |  |


| Measurement field length $B$ [mm] <br> with beam spacing A 5 mm | Measurement field length $B$ [mm] <br> with beam spacing A 10 mm | Measurement field length $B$ [mm] <br> with beam spacing $A$ 20 mm | Measurement field length $B$ [mm] <br> with beam spacing $A$ 40 mm | Profile length L [mm] |
| :---: | :---: | :---: | :---: | :---: |
| 640 | 640 | 630 | 610 | 648 |
| 720 | - | - | - | 728 |
| 800 | 800 | 790 |  | 808 |
| 880 | - | - | - | 888 |
| 960 | 960 | 950 | 930 | 968 |
| 1040 | - | - | - | 1048 |
| 1120 | 1120 | 1110 | - | 1128 |
| 1200 | - | - | - | 1208 |
| 1280 | 1280 | 1270 | 1250 | 1288 |
| 1360 | - | - | - | 1368 |
| 1440 | 1440 | 1430 | - | 1448 |
| 1520 | - | - | - | 1528 |
| 1600 | 1600 | 1590 | 1570 | 1608 |
| 1680 | - | - | - | 1688 |
| 1760 | 1760 | 1750 | - | 1768 |
| 1840 | - | - | - | 1848 |
| 1920 | 1920 | 1910 | 1890 | 1928 |
| 2000 | - | - | - | 2008 |
| 2080 | 2080 | 2070 | - | 2088 |
| 2160 | - | - | - | 2168 |
| 2240 | 2240 | 2230 | 2210 | 2248 |
| 2320 | - | - | - | 2328 |
| 2400 | 2400 | 2390 | - | 2408 |
| 2480 | - | - | - | 2488 |
| 2560 | 2560 | 2550 | 2530 | 2568 |
| 2640 | - | - | - | 2648 |
| 2720 | 2720 | 2710 | - | 2728 |
| 2800 | - | - | - | 2808 |
| 2880 | 2880 | 2870 | 2850 | 2888 |
| 2960 | - | - | - | 2968 |

Table 19.5: Data on the time behavior of the CML 720i

| Response time per beam $^{\text {a) }}$ | $30 \mu \mathrm{~s}$ |
| :--- | :--- |
| Readiness delay | $\leq 400 \mathrm{~ms}$ |

a) cycle time $=$ number of beams $\times 0.03 \mathrm{~ms}+0.4 \mathrm{~ms}$. The minimum cycle time is 1 ms .

Table 19.6: Electrical data

| Operating voltage $U_{B}$ | $18 \ldots 30 \mathrm{VDC}$ (incl. residual ripple) |
| :--- | :--- |
| Residual ripple | $\leq 15 \%$ within the limits of $U_{B}$ |
| Open-circuit current | see table 19.7 |

Table 19.7: CML 720i open-circuit current

| Measurement field length <br> $[\mathrm{mm}]$ | Current consumption [mA] (without load at switching output) |  |  |
| :--- | :--- | :--- | :--- |
|  | at $U_{B} 24$ VDC | at $U_{B} 18$ VDC | at $U_{B} 30$ VDC |
| 160 | 135 | 165 | 125 |
| 320 | 165 | 200 | 145 |
| 640 | 215 | 275 | 190 |
| 960 | 270 | 345 | 235 |
| 1440 | 350 | 455 | 300 |
| 1920 | 435 | 650 | 365 |
| 2880 | 600 | 780 | 500 |

Table 19.8: Interface data

| Inputs/outputs | 2 or 4 pins can be configured as input or output |
| :--- | :--- |
| Switching output current | Max. 100 mA |
| Signal voltage active/not active | $\geq 8 \mathrm{~V} / \leq 2 \mathrm{~V}$ |
| Activation delay | $\leq 1 \mathrm{~ms}$ |
| Input resistance | Approx. $6 \mathrm{k} \Omega$ |
| Analog interfaces | $0 \ldots 10(11) \mathrm{V}$ and 0(4) ... 20(24) mA |
| Digital interfaces | IO-Link (230.4 kbit/s; 38.4 kbit/s) <br> CANopen (max. 1 Mbit/s) <br> Profibus (max. 3 Mbit/s) <br> RS 485 Modbus (921 kbit/s) |

Table 19.9: Mechanical data

| Housing | Continuous-cast aluminum |
| :--- | :--- |
| Lens cover | PMMA plastic |
| Connection technology | M12 connectors <br> (8-pin / 5-pin) |

Table 19.10: Environmental data

| Temperature range (operation) | $-20^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$ |
| :--- | :--- |
| Ambient temperature (storage) | $-30^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$ |
| Protective circuit | Transient protection; <br> polarity reversal protection; <br> short circuit protection for all outputs (provide external pro- <br> tective circuit for inductive load for this purpose!) |

Table 19.11: Certifications

| Degree of protection | IP 65 |
| :--- | :--- |
| Safety class | III |
| Certifications | UL 508, CSA C22.2 No.14 <br> light source: exempt group (in acc. with EN 62471) |
| Standards applied | IEC 60947-5-2 |

### 19.2 Timing

In principle, the individual beams are always processed sequentially for light curtains. The internal controller starts transmitter 1 and then activates only the corresponding receiver 1 to measure the received light power. If the measured value exceeds the switch-on threshold, this first beam is evaluated as an uninterrupted/free beam.
The time between activation of the transmitter and evaluation in the receiver is referred to as the response time per beam.

In the CML 720i the response time per beam is $=30 \mu \mathrm{~s}$.
The total cycle time for the evaluation of all beams and transmission to the interface is calculated as follows:
Cycle time $=$ number of beams $x$ response time per beam + constant
Example: cycle time $=192$ beams $\times 0.03 \mathrm{~ms}+0.4 \mathrm{~ms}=6.16 \mathrm{~ms}$
$\stackrel{\circ}{\square}$
The minimum cycle time is 1 ms , i.e., the cycle time is never less than 1 ms , even with very short light curtains with a small number of beams.

Table 19.12: Profile and measurement field lengths, cycle times for CML 720i

| Measurement field length B [mm] |  | Profile length L [mm] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| with beam <br> spacing A <br> 5 [mm] | Cycle time [ms] | with beam spacing A 10 [mm] | Cycle time [ms] | with beam spacing A 20 [mm] | Cycle time [ms] | with beam spacing A 40 [mm] | Cycle time [ms] |  |
| 160 | 1.36 | 160 | 1.00 | 150 | 1.00 | - | - | 168 |
| 240 | 1.84 | - | - | - | - | - | - | 248 |
| 320 | 2.32 | 320 | 1.36 | 310 | 1.00 | 290 | 1.00 | 328 |
| 400 | 2.8 | - | - | - | - | - | - | 408 |
| 480 | 3.28 | 480 | 1.84 | 470 | 1.12 | - | - | 488 |
| 560 | 3.76 | - | - | - | - | - | - | 568 |
| 640 | 4.24 | 640 | 2.32 | 630 | 1.36 | 610 | 1.00 | 648 |
| 720 | 4.72 | - | - | - | - | - | - | 728 |


| Measurement field length B [mm] |  | Measurement field length B [mm] |  | Measurement field length B [mm] |  | Measurement field length B [mm] |  | Profile length <br> L [mm] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| with beam spacing A 5 [mm] | Cycle time [ms] | with beam <br> spacing A <br> 10 [mm] | Cycle time [ms] | with beam <br> spacing A <br> 20 [mm] | Cycle time [ms] | with beam spacing A 40 [mm] | Cycle time [ms] |  |
| 800 | 5.2 | 800 | 2.8 | 790 | ?? |  |  | 808 |
| 880 | 5.68 | - | - | - | - | - | - | 888 |
| 960 | 6.16 | 960 | 3.28 | 950 | 1.84 | 930 | 1.12 | 968 |
| 1040 | 6.64 | - | - | - | - | - | - | 1048 |
| 1120 | 7.12 | 1120 | 3.76 | 1110 | 2.08 | - | - | 1128 |
| 1200 | 7.6 | - | - | - | - | - | - | 1208 |
| 1280 | 8.08 | 1280 | 4.24 | 1270 | 2.23 | 1250 | 1.36 | 1288 |
| 1360 | 8.56 | - | - | - | - | - | - | 1368 |
| 1440 | 9.04 | 1440 | 4.72 | 1430 | 2.56 | - | - | 1448 |
| 1520 | 9.52 | - | - | - | - | - | - | 1528 |
| 1600 | 10.0 | 1600 | 5.2 | 1590 | 2.8 | 1570 | 1.6 | 1608 |
| 1680 | 10.48 | - | - | - | - | - | - | 1688 |
| 1760 | 10.96 | 1760 | 5.68 | 1750 | 3.04 | - | - | 1768 |
| 1840 | 11.44 | - | - | - | - | - | - | 1848 |
| 1920 | 11.92 | 1920 | 6.16 | 1910 | 3.28 | 1890 | 1.84 | 1928 |
| 2000 | 12.4 | - | - | - | - | - | - | 2008 |
| 2080 | 12.88 | 2080 | 6.64 | 2070 | 3.52 | - | - | 2088 |
| 2160 | 13.36 | - | - | - | - | - | - | 2168 |
| 2240 | 13.84 | 2240 | 7.12 | 2230 | 3.76 | 2210 | 2.08 | 2248 |
| 2320 | 14.32 | - | - | - | - | - | - | 2328 |
| 2400 | 14.8 | 2400 | 7.6 | 2390 | 4.0 | - | - | 2408 |
| 2480 | 15.28 | - | - | - | - | - | - | 2488 |
| 2560 | 15.76 | 2560 | 8.08 | 2550 | 4.24 | 2530 | 2.32 | 2568 |
| 2640 | 16.24 | - | - | - | - | - | - | 2648 |
| 2720 | 16.72 | 2720 | 8.56 | 2710 | 4.48 | - | - | 2728 |
| 2800 | 17.2 | - | - | - | - | - | - | 2808 |
| 2880 | 17.68 | 2880 | 9.04 | 2870 | 4.72 | 2850 | 2.56 | 2888 |
| 2960 | 18.16 | - | - | - | - | - | - | 2968 |

## Limits for detecting objects

The detection of objects and the evaluation of the data depend on the following factors:

- Beam resolution and cycle time of the light curtain
- Movement speed of the objects
- Transmission rate of the data bytes
- Cycle time of the PLC


## Minimum object diameter for detection perpendicular to beam plane

For a moving object, the cycle time of the light curtain must be shorter than the period of time that the object to be detected is located in the beam plane.

For an object that moves vertically to the beam plane, the following apply:

```
\(v_{\text {max }}=(\mathrm{L}-10 \mathrm{~mm})^{\prime}\left(\mathrm{t}_{\mathrm{z}}\right)\)
    \(\mathrm{v}_{\text {max }} \quad[\mathrm{m} / \mathrm{s}] \quad=\) Maximum object speed
    \(\mathrm{L} \quad[\mathrm{m}] \quad=\) Length of the object in the direction of movement
    \(\mathrm{t}_{\mathrm{z}}\) [s] = Cycle time of the light curtain
```

or

$$
L_{\min }=v \cdot t_{z}+10 m m
$$

$\mathrm{L}_{\text {min }} \quad[\mathrm{m}] \quad=$ Length of the object in the direction of movement (minimum length)
v [m/s] = Speed of the object
$\mathrm{t}_{2}$ [s] = Cycle time of the light curtain

## NOTICE

Minimum length of the gap between two successive objects!
$\stackrel{\leftrightarrow}{\Perp}$ The gap between two successive objects must be greater than the minimum object diameter.

### 19.3 Minimum object diameter for stationary objects

The minimum object diameter of a stationary object is determined by the beam spacing and optic diameter. Minimum object diameter for "parallel"-beam mode:
Because objects also need to be reliably detected in the transition area between two beams, the minimum object diameter is:

| Beam spacing | Minimum object diameter |  |
| :--- | :--- | :--- |
| 5 mm | Beam spacing +5 mm | $=10 \mathrm{~mm}$ |
| $10 \mathrm{~mm} / 20 \mathrm{~mm} / 40 \mathrm{~mm}$ | Beam spacing +10 mm | $=20 \mathrm{~mm} / 30 \mathrm{~mm} / 50 \mathrm{~mm}$ |

## NOTICE

Minimum object diameter for "crossed beam" mode!
In "crossed beam" mode, the object diameter in the center area is reduced to $1 / 2 \times$ beam spacing.

### 19.4 Dimensional drawings



Figure 19.1: CML 700i with axial or with rear connector outlet

### 19.5 Dimensional drawings: Accessories



Figure 19.2: BT-2L mounting bracket


Figure 19.3: BT-2Z parallel bracket


Figure 19.4: BT-2R1 swivel mount (shown in two mounting views)


Figure 19.5: BT-2SSD and BT-2SSD-270 swiveling mounting brackets


Figure 19.6: BT-2P40 clamp bracket

## 20 Ordering information and accessories

### 20.1 Nomenclature

Part designation:
CMLbbbi- fss-xxxx.a/ii-eee-ooo
Table 20.1: Part number code

| CML | Operating principle: measuring light curtain |
| :--- | :--- |
| bbbi | Series: 720i for CML 720i <br> Series: 730i for CML 730i* |
| f | Function classes: <br> T: Transmitter <br> R: Receiver |
| ss | Beam spacing: <br> 05: 5 mm <br> $10: 10$ mm <br> $20: 20$ mm <br> $40: 40$ mm |
| xxxx | Measurement field length [mm], dependent on beam spacing: <br> For values see tables |
| a | Equipment: <br> A: axial connector outlet <br> R: rear connector outlet |
| ii | Interface: <br> L: IO-Link <br> CN: CANopen <br> PB: Profibus <br> CV: Analog current and voltage output <br> D3: RS 485 Modbus |
| ooo | Electrical connection: <br> M12: M12 connector |
| eee Not available in the design with explosion protection. |  |

Table 20.2: Part descriptions, examples

| Part designation | Features |
| :--- | :--- |
| CML720i-T10-1580.A/ <br> CN-M12-EX | CML 720i, transmitter, beam spacing 10 mm , measurement field length <br> 1580 mm , axial connector outlet, CANopen interface, M12 connector, explosion <br> protection (zones 2 + 22) |
| CML720i-T05-1920.A/ <br> CN-M12 | CML 720i, transmitter, beam spacing 5 mm, measurement field length <br> 1920 mm, axial connector outlet, CANopen interface, M12 connector |
| CML720i-T05-1920.A/ <br> D3-M12 | CML 720i, transmitter, beam spacing 5 mm, measurement field length <br> 1920 mm, axial connector outlet, RS 485 Modbus interface, M12 connector |


| Part designation | Features |
| :--- | :--- |
| CML730i-T20-2720.A- <br> M12 | CML 730i, transmitter, beam spacing 20 mm , measurement field length <br> 2720 mm , axial connector outlet, M12 connector |
| CML730i-R20-2720.R/ <br> PB-M12 | CML 730i, receiver, beam spacing 20 mm, measurement field length 2720 mm, <br> rear connector outlet, Profibus interface, M12 connector |
| CML730i-R20-2720.R/ <br> D3-M12 | CML 730i, transmitter, beam spacing 20 mm, measurement field length <br> 2720 mm, rear connector outlet, RS 485 Modbus interface, M12 connector |

### 20.2 Accessories - CML 700i with IO-Link/analog interface



## PWR IN/OUT

1 Receiver (R)
2 Transmitter ( T )
3 Connection cable (M12 socket, 8-pin)
4 Synchronization cable (M12 plug/socket, 5-pin)
Figure 20.1: Electrical connection - CML 700i with IO-Link/analog interface

### 20.2.1 IO-Link analog interface (connection in the switch cabinet: screw terminals)


$1 \quad$ X2/X3 interconnection cable (transmitter - receiver synchronization), see table 20.4
2 X1 connection cable (IO-Link/analog signal, digital IO, power for connection to control in switch cabinet), see table 20.3

Figure 20.2: IO-Link interface (analog)
Table 20.3: X1 cable accessories - CML 700i with IO-Link/analog interface

| Part no. | Part designation | Description |
| :--- | :--- | :--- |
| X1 connection cables for CML 700i (IO-Link/analog signal, digital IO, power for connection to control in <br> switch cabinet);see figure 20.2 |  |  |
| 50104591 | K-D M12A-8P-2m-PUR | Connection cable, M12 socket, axial, 8-pin, length <br> $2,000 \mathrm{~mm}$, shielded PUR cable, open cable end |
| 50104590 | K-D M12A-8P-5m-PUR | Connection cable, M12 socket, 8-pin, length <br> $5,000 \mathrm{~mm}$, shielded PUR cable, open cable end |
| 50106882 | K-D M12A-8P-10m-PUR | Connection cable, M12 socket, 8-pin, length <br> 10,000 <br> mm, shielded PUR cable, open cable end |
| 429178 | CB-M12-8GF | M12 socket, axial, 8-pin, user configurable |

X1 cable (IO-Link/analog): core colors

- Pin1 = white
- Pin2 = brown
- Pin3 = green
- $\operatorname{Pin} 4=y e l l o w$
- Pin5 = gray
- Pin6 = pink
- Pin7 = blue
- Pin8 = red

$\stackrel{\square}{\square}$The specified core colors apply only if the cables from Leuze electronic are used.

Table 20.4: X2/X3 cable accessories - CML 700i with IO-Link/analog interface

| Part no. | Part designation | Description |
| :--- | :--- | :--- |
| X2/X3 interconnection cables for CML 700i (transmitter - receiver synchronization); see figure 20.2 |  |  |
| 50129779 | KDS DN-M12-5A-M12-5A-P3-010 | Interconnection cable, M12 plug/socket, axial, <br> $5-$ pin, A-coded, length 1,000 mm, shielded, PUR |
| 50129780 | KDS DN-M12-5A-M12-5A-P3-020 | Interconnection cable, M12 plug/socket, axial, <br> 5-pin, A-coded, length 2,000 mm, shielded, PUR |
| 50129781 | KDS DN-M12-5A-M12-5A-P3-050 | Interconnection cable, M12 plug/socket, axial, <br> 5-pin, A-coded, length 5,000 mm, shielded, PUR |
| 50129782 | KDS DN-M12-5A-M12-5A-P3-100 | Interconnection cable, M12 plug/socket, axial, <br> 5-pin, A-coded, length 10,000 mm, shielded, PUR |
| 50129783 | KDS DN-M12-5A-M12-5A-P3-200 | Interconnection cable, M12 plug/socket, axial, <br> 5-pin, A-coded, length 20,000 mm, shielded, PUR |

### 20.2.2 IO-Link interface (connection to IO-Link master)


$1 \quad$ X2/X3 interconnection cables (transmitter - receiver synchronization), see table 20.6
2 X1 connection cable (IO-Link, power to IO-Link master with M12 connections), see table 20.5
Figure 20.3: IO-Link interface (connection to IO-Link master)
Table 20.5: X1 cable accessories - CML 700i with IO-Link interface

| Part no. | Part designation | Description |
| :--- | :--- | :--- |
| X1 interconnection cables for CML 700i (IO-Link, power to IO-Link master with M12 connections); see <br> figure 20.3 | (I2 |  |
| 50120999 | K-DS M12A-8P-4P-2m-L-PUR | Interconnection cable: M12 socket, 8-pin, A- <br> coded; shielded PUR cable, length 2,000 mm; <br> M12 plug, 4-pin, A-coded |
| 50121000 | K-DS M12A-8P-4P-5m-L-PUR | Interconnection cable: M12 socket, 8-pin, A- <br> coded; shielded PUR cable, length 5,000 mm; <br> M12 plug, 4-pin, A-coded |

Table 20.6: X2/X3 cable accessories - CML 700i with IO-Link interface

| Part no. | Part designation | Description |
| :--- | :--- | :--- |
| X2/X3 interconnection cables for CML 700i (transmitter - receiver synchronization); see figure 20.3 |  |  |
| 50129779 | KDS DN-M12-5A-M12-5A-P3-010 | Interconnection cable, M12 plug/socket, axial, <br> 5-pin, A-coded, length 1,000 mm, shielded, PUR |
| 50129780 | KDS DN-M12-5A-M12-5A-P3-020 | Interconnection cable, M12 plug/socket, axial, <br> 5-pin, A-coded, length 2,000 mm, shielded, PUR |


| Part no. | Part designation | Description |
| :--- | :--- | :--- |
| 50129781 | KDS DN-M12-5A-M12-5A-P3-050 | Interconnection cable, M12 plug/socket, axial, <br> 5-pin, A-coded, length 5,000 mm, shielded, PUR |
| 50129782 | KDS DN-M12-5A-M12-5A-P3-100 | Interconnection cable, M12 plug/socket, axial, <br> 5-pin, A-coded, length 10,000 mm, shielded, PUR |
| 50129783 | KDS DN-M12-5A-M12-5A-P3-200 | Interconnection cable, M12 plug/socket, axial, <br> 5-pin, A-coded, length 20,000 mm, shielded, PUR |

### 20.3 Accessories - CML 700i with CANopen, Profibus or RS 485 Modbus interface

### 20.3.1 CANopen interface



Figure 20.4: CANopen interface

Table 20.7: X1/X3 cable accessories - CML 700i with CANopen interface

| Part no. | Part designation | Description |
| :--- | :--- | :--- |
| X1/X3 Y-connection and interconnection cables for CML 700i (transmitter - receiver synchronization <br> (X1/X3) + power); see figure 20.4 |  |  |
| 50118182 | K-Y1 M12A-2m-M12A-S-PUR | Y-connection cable: duo-socket M12 (receiver <br> X3), 8-pin, A-coded; shielded PUR cable, length <br> 150 mm, M12 plug, 5-pin (power); shielded PUR <br> cable, length 2,000 mm, M12 socket, 5-pin (trans- <br> mitter) |
| 50118183 | K-Y1 M12A-5m-M12A-S-PUR | Y-connection cable: duo-socket M12 (receiver <br> X3), 8-pin, A-coded; shielded PUR cable, length <br> 150 mm, M12 plug, 5-pin (power); shielded PUR <br> cable, length 5,000 mm, M12 socket, 5-pin (trans- <br> mitter) |
| 50122336 | K-Y1 M12A-10m-M12A-S-PUR | Y-connection cable: duo-socket M12 (receiver <br> X3), 8-pin, A-coded; shielded PUR cable, length <br> 150 mm, M12 plug, 5-pin (power); shielded PUR <br> cable, length 10,000 mm, M12 socket, 5-pin <br> (transmitter) |
| 50122337 | K-Y1 M12A-20m-M12A-S-PUR | Y-connection cable: duo-socket M12 (receiver <br> X3), 8-pin, A-coded; shielded PUR cable, length <br> 150 mm, M12 plug, 5-pin (power); shielded PUR <br> cable, length 20,000 mm, M12 socket, 5-pin <br> (transmitter) |

Table 20.8: PWR IN/digital IO cable accessories - CML 700i with CANopen interface

| Part no. | Part designation | Description |
| :--- | :--- | :--- |
| X1 short open end of the Y-connection cable for CML 700i (PWR IN/digital IO); see figure 20.4 |  |  |
| 50104555 | K-D M12A-5P-2m-PVC | Connection cable: M12 socket, 5-pin, A-coded; <br> PVC cable, length 2,000 mm, open cable end |
| 50104557 | K-D M12A-5P-5m-PVC | Connection cable: M12 socket, 5-pin, A-coded; <br> PVC cable, length 5,000 mm, open cable end |
| 50104559 | K-D M12A-5P-10m-PVC | Connection cable: M12 socket, 5-pin, A-coded; <br> PVC cable, length 10,000 mm, open cable end |
| 50104567 | K-D M12A-5P-2m-PUR | Connection cable: M12 socket, 5-pin, A-coded; <br> PUR cable, length 2,000 mm, open cable end |
| 50104569 | K-D M12A-5P-5m-PUR | Connection cable: M12 socket, 5-pin, A-coded; <br> PUR cable, length 5,000 mm, open cable end |

PWR IN/digital IO cable accessories: core colors

- Pin1 = brown
- Pin2 = white
- Pin3 = blue
- Pin4 = black
- Pin5 = gray
$\square$
The specified core colors apply only if the cables from Leuze electronic are used.

Table 20.9: X2 cable accessories - CML 700i with CANopen interface

| Part no. | Part designation | Description |
| :--- | :--- | :--- |
| X2 Y-interconnection cables CANopen for CML 700i (BUS IN, BUS OUT); see figure 20.4 |  |  |
| 50118185 | K-YCN M12A-M12A-S-PUR | Y-connection cable CANopen: duo-socket M12, <br> 5-pin, A-coded (receiver X2); shielded PUR cable, <br> length 250 mm to M12 plug, 5-pin (BUS IN); <br> shielded PUR cable, length 350 mm, M12 socket, <br> 5-pin (BUS OUT) |
| 50118184 | K-YCN M12A-5m-M12A-S-PUR | Y-connection cable CANopen: duo-socket M12, <br> 5-pin, A-coded (receiver X2); shielded PUR cable, <br> length 250 mm to M12 plug, 5-pin (BUS IN); <br> shielded PUR cable, length 5,000 mm, M12 <br> socket, 5-pin (BUS OUT) |

Table 20.10: Termination/bus termination accessories - CML 700i with CANopen interface

| Art. no. | Part designation | Description |
| :--- | :--- | :--- |
| Termination/bus termination for CML 700i (terminating resistor);see figure 20.4 |  |  |
| 50040099 | TS 01-5-SA | Terminating connector for CANopen interface <br> (BUS OUT), with integrated terminating resistor |

Table 20.11: Cable accessories - CML 700i with CANopen interface

| Part no. | Part designation | Description |
| :--- | :--- | :--- |
| Y-interconnection cables CANopen for CML 700i;see figure 20.4 |  |  |
| 50129779 | KDS DN-M12-5A-M12-5A-P3-010 | Interconnection cable, M12 plug/socket, axial, <br> 5-pin, A-coded, length 1,000 mm, shielded, PUR |
| 50129780 | KDS DN-M12-5A-M12-5A-P3-020 | Interconnection cable, M12 plug/socket, axial, <br> 5-pin, A-coded, length 2,000 mm, shielded, PUR |
| 50129781 | KDS DN-M12-5A-M12-5A-P3-050 | Interconnection cable, M12 plug/socket, axial, <br> 5-pin, A-coded, length 5,000 mm, shielded, PUR |
| 50129782 | KDS DN-M12-5A-M12-5A-P3-100 | Interconnection cable, M12 plug/socket, axial, <br> 5-pin, A-coded, length 10,000 mm, shielded, PUR |
| 50129783 | KDS DN-M12-5A-M12-5A-P3-200 | Interconnection cable, M12 plug/socket, axial, <br> 5-pin, A-coded, length 20,000 mm, shielded, PUR |

### 20.3.2 Profibus or RS 485 Modbus interface



Figure 20.5: Profibus or RS 485 Modbus interface
Table 20.12: X1/X3 cable accessories - CML 700i with Profibus or RS 485 Modbus interface

| Part no. | Part designation | Description |
| :--- | :--- | :--- |
| X1/X3 Y-connection and interconnection cables for CML 700i (transmitter - receiver synchronization <br> (X1/X3) + power); see figure 20.5 |  |  |
| 50118182 | K-Y1 M12A-2m-M12A-S-PUR | Y-connection cable: duo-socket M12 (receiver <br> X3), 8-pin, A-coded; shielded PUR cable, length <br> 150 mm, M12 plug, 5-pin (power); shielded PUR <br> cable, length 2,000 mm, M12 socket, 5-pin (trans- <br> mitter) |


| Part no. | Part designation | Description |
| :--- | :--- | :--- |
| 50118183 | K-Y1 M12A-5m-M12A-S-PUR | Y-connection cable: duo-socket M12 (receiver <br> X3), 8-pin, A-coded; shielded PUR cable, length <br> 150 mm, M12 plug, 5-pin (power); shielded PUR <br> cable, length 5,000 mm, M12 socket, 5-pin (trans- <br> mitter) |
| 50122336 | K-Y1 M12A-10m-M12A-S-PUR | Y-connection cable: duo-socket M12 (receiver <br> X3), 8-pin, A-coded; shielded PUR cable, length <br> 150 mm, M12 plug, 5-pin (power); shielded PUR <br> cable, length 10,000 mm, M12 socket, 5-pin <br> (transmitter) |
| 50122337 | K-Y1 M12A-20m-M12A-S-PUR | Y-connection cable: duo-socket M12 (receiver <br> X3), 8-pin, A-coded; shielded PUR cable, length <br> 150 mm, M12 plug, 5-pin (power); shielded PUR <br> cable, length 20,000 mm, M12 socket, 5-pin <br> (transmitter) |

Table 20.13: PWR IN/digital IO cable accessories - CML 700i with Profibus or RS 485 Modbus interface

| Part no. | Part designation | Description |
| :--- | :--- | :--- |
| X1 short open end of the Y-connection cable for CML 700i (PWR IN/digital IO); see figure 20.5 |  |  |
| 50104555 | K-D M12A-5P-2m-PVC | Connection cable: M12 socket, 5-pin, A-coded; <br> PVC cable, length 2,000 mm, open cable end |
| 50104557 | K-D M12A-5P-5m-PVC | Connection cable: M12 socket, 5-pin, A-coded; <br> PVC cable, length 5,000 mm, open cable end |
| 50104559 | K-D M12A-5P-10m-PVC | Connection cable: M12 socket, 5-pin, A-coded; <br> PVC cable, length 10,000 mm, open cable end |
| 50104567 | K-D M12A-5P-2m-PUR | Connection cable: M12 socket, 5-pin, A-coded; <br> PUR cable, length 2,000 mm, open cable end |
| 50104569 | K-D M12A-5P-5m-PUR | Connection cable: M12 socket, 5-pin, A-coded; <br> PUR cable, length 5,000 mm, open cable end |

PWR IN/digital IO cable accessories: core colors

- Pin1 = brown
- $\operatorname{Pin} 2=$ white
- Pin3 = blue
- Pin4 = black
- Pin5 = gray
$\stackrel{0}{\square}$
The specified core colors apply only if the cables from Leuze electronic are used.

Table 20.14: X2 cable accessories - CML 700i with Profibus or RS 485 Modbus interface

| Part no. | Part designation | Description |
| :--- | :--- | :--- |
| X2 Y-connection cables Profibus/RS 485 Modbus for CML 700i (X2, BUS IN, BUS OUT, potential-free), <br> see figure 20.5 |  |  |
| 50123263 | K-YPB M12A-M12A-S-PUR | Profibus Y-connection cable: duo-plug M12 axial, <br> 5-pin (2 wires), B-coded (receiver X2); shielded <br> PUR cable, length 250 mm to M12 plug, 5-pin <br> (2 wires; BUS IN); shielded PUR cable, length <br> 350 mm to M12 socket, 5-pin (2 wires; BUS OUT) |
| 50123265 | K-YPB M12A-5m-M12A-S-PUR | Profibus Y-connection cable: duo-plug M12 axial, <br> 5-pin (2 wires), B-coded (receiver X2); shielded <br> PUR cable, length 250 mm to M12 plug, 5-pin <br> (2 wires; BUS IN); shielded PUR cable, length <br> 5,000 mm to M12 socket, 5-pin (2 wires; <br> BUS OUT) |

Table 20.15: Cable accessories - CML 700i with Profibus or RS 485 Modbus interface

| Part no. | Part designation | Description |
| :--- | :--- | :--- |
| Interconnection cables for CML 700i (BUS IN); see figure 20.5 |  |  |
| 50104096 | KB PB-1000-SBA | Interconnection cable, M12 plug, 4-pin, B-coded; <br> shielded PUR cable, length 1,000 mm; M12 <br> socket, axial, 4-pin, B-coded |
| 50104097 | KB PB-2000-SBA | Interconnection cable, M12 plug, 4-pin, B-coded; <br> shielded PUR cable, length 2,000 mm; M12 <br> socket, axial, 4-pin, B-coded |
| 50104098 | KB PB-5000-SBA | Interconnection cable, M12 plug, 4-pin, B-coded; <br> shielded PUR cable, length 5,000 mm; M12 <br> socket, axial, 4-pin, B-coded |
| 50104099 | KB PB-10000-SBA | Interconnection cable, M12 plug, 4-pin, B-coded; <br> shielded PUR cable, length 10,000 mm; M12 <br> socket, axial, 4-pin, B-coded |

Table 20.16: Cable accessories - CML 700i with Profibus or RS 485 Modbus interface

| Part no. | Part designation | Description |
| :--- | :--- | :--- |
| Connection cables for CML 700i (BUS IN);see figure 20.5 |  |  |
| 50104181 | KB PB-2000-BA | Connection cable: M12 socket, 5-pin (2 wires), <br> B-coded; shielded PUR cable, length 2,000 mm; <br> open cable end |
| 50104180 | KB PB-5000-BA | Connection cable: M12 socket, 5-pin (2 wires), <br> B-coded; shielded PUR cable, length 5,000 mm; <br> open cable end |
| 50104179 | KB PB-10000-BA | Connection cable: M12 socket, 5-pin (2 wires), <br> B-coded; shielded PUR cable, length 10,000 mm; <br> open cable end |
| 50104178 | KB PB-15000-BA | Connection cable: M12 socket, 5-pin (2 wires), <br> B-coded; shielded PUR cable, length 15,000 mm; <br> open cable end |

Table 20.17: Interconnection cable/terminating resistor accessories - CML 700i with Profibus or RS 485 Modbus-interface

| Part no. | Part designation | Description |
| :--- | :--- | :--- |
| Interconnection cable with terminating resistor for CML 700i (X2 (Bus IN), potential-free), see <br> figure 20.5 |  |  |
| 50124297 | K-SSPB M12A-M12A-2P-0.3m-S- <br> PUR | Profibus connection cable: M12 plug, 5-pin <br> (2 wires), B-coded (BUS IN); shielded PUR cable, <br> length 300 mm; M12 plug, 4-pin, B-coded with <br> integrated terminating resistor for Profibus / <br> RS 485 Modbus (receiver X2) |

Table 20.18: Cable socket accessories - CML 700i with Profibus or RS 485 Modbus interface

| Part no. | Part designation | Description |
| :--- | :--- | :--- |
| Cable socket for CML 700i (for configuring connection cables with ground reference) |  |  |
| 50038538 | KD 02-5-BA | Cable socket: M12 socket, 5-pin, B-coded; user <br> configurable |

### 20.3.3 Profibus/RS 485 Modbus interface (alternative terminating resistor)



Figure 20.6: Profibus or RS 485 Modbus interface (alternative terminating resistor)

Table 20.19: Terminating resistor accessories - CML 700i with Profibus or RS 485 Modbus interface

| Part no. | Part designation | Description |
| :--- | :--- | :--- |
| T-adapter for CML 700i (X2 (BUS IN, BUS OUT)); see figure 20.6 |  |  |
| 50109834 | KDS BUS OUT M12-T-5P | T-adapter Profibus: M12 plug, 5-pin, B-coded <br> (receiver X2); M12 plug, 5-pin, B-coded (BUS IN); <br> M12 socket, 5-pin, B-coded (BUS OUT) |
| Terminating resistor for CML 700i (BUS OUT);see figure 20.6 |  |  |
| 50038539 | TS 02-4-SA | Terminating connector for Profibus or <br> RS 485 Modbus interface (BUS OUT), with inte- <br> grated terminating resistor |

### 20.3.4 Profibus/RS 485 Modbus interface (configuration with subsequent slave)

Table 20.20: Cable accessories - CML 700i with Profibus or RS 485 Modbus interface

| Part no. | Part designation | Description |
| :--- | :--- | :--- |
| Interconnection cables for CML 700i (BUS OUT) |  |  |
| 50104188 | K-PB-2000-SA | Interconnection cable: M12 socket, $5-$ pin (2 wires) <br> B-coded; shielded PUR cable, length 2,000 mm; <br> open cable end |
| 50104187 | K-PB-5000-SA | Interconnection cable: M12 socket, $5-$ pin (2 wires), <br> B-coded; shielded PUR cable, length 5,000 mm; <br> open cable end |

### 20.4 Accessories - fastening technology

Table 20.21: Fastening technology accessories

| Part no. | Part designation | Description |
| :--- | :--- | :--- |
| Mounting technology |  | L mounting bracket (angled), 2 x |
| 429056 | BT-2L | Z mounting bracket (parallel), 2 x |
| 429057 | BT-2Z | $360^{\circ}$ swivel mount, 2 x incl. 1 MLC cylinder |
| 429046 | BT-2R1 | Swiveling mounting bracket with shock absorber, <br> $\pm 8^{\circ}, 70$ mm long, 2 x |
| 429058 | BT-2SSD | Swiveling mounting bracket with shock absorber, <br> $\pm 8^{\circ}, 70$ mm long, 4 x |
| 429059 | BT-4SSD | Swiveling mounting bracket with shock absorber, <br> $\pm 8^{\circ}, 270$ mm long, 2 x |
| 429049 | BT-2P40 | Clamp bracket |
| 424417 | BT-10NC60 | STiding block with M6 thread, 10 x |

### 20.5 Accessories - PC connection

Table 20.22: Accessories - PC connection configuration

| Part no. | Part designation | Description |
| :--- | :--- | :--- |
| IO-Link USB master V2.0 |  |  |
| 50121098 | SET MD12-US2- <br> IL1.1 + accessories | IO-Link USB master V2.0 <br> Plug-in power supply unit (24 V/24 W) with inter- <br> national adapters <br> High-speed USB 2.0 connection cable; USB A to <br> Mini -USB <br> Data carrier with software, drivers and documenta- <br> tion |
| Adapter cables for CML 700i (IO-Link, analog) |  |  |
| 50120999 | K-DS M12A-8P-4P-2m L-PUR | Adapter cable: M12 socket, 8-pin, B-coded; PUR <br> cable, length 2,000 mm; M12 plug, 5-pin, B-coded |
| 50121000 | K-DS M12A-8P-4P-5m L-PUR | Adapter cable: M12 socket, 8-pin, B-coded; PUR <br> cable, length 5,000 mm; M12 plug, 5-pin, B-coded |

### 20.6 Scope of delivery

- 1 transmitter incl. 2 sliding blocks (profile length from 2 m : 3 sliding blocks; profile length from 2.5 m : 4 sliding blocks)
- 1 receiver incl. 2 sliding blocks, (profile length from $2 \mathrm{~m}: 3$ sliding blocks; profile length from $2.5 \mathrm{~m}: 4$ sliding blocks)
- 1 set of operating instructions (PDF file on data carrier)

Connection and interconnection cables, mounting brackets, IO-Link USB master (incl. Sensor Studio configuration software), etc., are not included in the delivery contents but must rather be ordered separately.
$\stackrel{O}{\square}$ Devices with rear connector outlet are also delivered with a cylinder and a screw. These extra parts are needed for mounting with the BT-2R1 swivel mount; see table 20.21.

## 21 EC Declaration of Conformity

The measuring light curtains of the CML series have been developed and manufactured in accordance with the applicable European standards and directives.
The manufacturer of the product, Leuze electronic GmbH + Co. KG in D-73277 Owen, possesses a certified quality assurance system in accordance with ISO 9001.

BSD-disclaimer for Modbus
Copyright (c) 2006 Christian Walter [wolti@sil.at](mailto:wolti@sil.at)
All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the documentation and/or other materials provided with the distribution.
3. The name of the author may not be used to endorse or promote products derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE AUTHOR "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

[^0]:    $\stackrel{y}{4}$ Select Main Settings > Modbus > Slave Address > Enter value.
    $\stackrel{4}{4}$ Select Main Settings > Modbus > Bit rate > Enter value.
    M Select Main Settings $>$ Modbus $>$ Parity $>$ Enter value.
    ${ }^{4}$ S Select Main Settings > Modbus > Silent Interval > Enter value.
    The bit rate, the parity, the silent interval and the slave address are configured.
    Other possible configuration steps are performed via the Sensor Studio configuration software (see chapter 15)
    Process mode is configured via the RS 485 Modbus interface module of the control-specific software.

