A Leuze electronic

the sensor people

MA 235i

Modular interfacing unit for Leuze Ident and RS 232 devices on CANopen

Sales and Service

Germany

Sales Region North
 Phone 07021/573-306

Fax 07021/9850950
Postal code areas
20000-38999
40000-65999
97000-97999

Sales Region South
Phone 07021/573-307
Fax 07021/9850911
Postal code areas
66000-96999

Sales Region East
Phone 035027/629-106
Fax 035027/629-107
Postal code areas
01000-19999
39000-39999 98000-99999

Worldwide

AR (Argentina)
Condelectric S.A.
Fax Int + 541148301053

AT (Austria)

Schmachtl GmbH
Tel. Int. + 43732 7646-0
Fax Int. +43732 7646-785
AU + NZ (Australia + New Zealand)
Balluff-Leuze Pty. Ltd.
Tel. Int. + 61397204100
Fax Int. + 61397382677

$B E$ (Belgium)

Leuze electronic nv/sa
Tel. Int. +322253 16-00
Fax Int. + 322253 15-36

BG (Bulgaria)

ATICS
Tel. Int. + 35928476244
Fax Int. + 35928476244

BR (Brasil)

Leuze electronic Ltda.
Tel. Int. $+55115180-6130$
Fax Int. + 5511 5180-6141
CH (Switzerland)
Leuze electronic AG
Fax Int +41417845657

CL (Chile)

Imp. Tec. Vignola S.A.I.C.
Tel. Int. + 563235 11-11
Fax Int. +563235 11-2

CN (China)

Leuze electronic Trading
(Shenzhen) Co. Ltd.
Tel. Int. + 8675586264909
Fax Int. + 8675586264901
CO (Colombia)
Componentes Electronicas Ltda.
Tel. Int. + 5743511049
Fax Int. +5743511019
CZ (Czech Republic)
Schmachtl CZ s.r.o.
Tel. Int. + 420244 0015-00
Fax Int. + 420244 9107-00
DK (Denmark)
Leuze electronic Scandinavia ApS Tel. Int. + 4548173200

ES (Spain)
Leuze electronic S.A
Tel. Int. + 34934097900
Fax Int. +349349035820

FI (Finland)

SKS-automaatio Oy
Tel. Int. + 35820 764-61
Fax Int. + 35820 764-6820
FR (France)
Leuze electronic Sarl
Tel. Int. + 33160 0512-20
Fax Int. + 33160 0503-65
GB (United Kingdom)
Leuze electronic Ltd
Tel. In 44148040 85-00

GR (Greece)
UTECO A.B.E.E
Tel. Int. + 302111206900 Fax Int. +302111206999

HK (Hong Kong)
Sensortech Company
Tel. Int. + 85226510188 Fax Int. +85226510388
HR (Croatia)
Tipteh Zagreb d.o.o
Tel. Int. + 38513816574
Fax Int. + 38513816577
HU (Hungary)
Kvalii Automatika Kft.
Tel. Int. + 3612722242
Fax Int. + 3612722244
ID (Indonesia)
P.T. Yabestindo Mitra Utama Tel. Int. + 622192861859
Fax Int. +62216451044

IL (Israel)
Galoz electronics Ltd.
Tel. Int. + 97239023456 Fax Int. +97239021990

IN (India)
$\mathrm{M}+\mathrm{V}$ Marketing Sales Pvt Ltd
Tel. Int. + 911244121623
Fax Int. + 91124434233
IT (Italy)
Leuze electronic S.r.I.
Tel. Int. + 390226 1106-43 Fax Int. + 390226 1106-40

JP (Japan)
C. Illies \& Co., Ltd.

Tel. Int. + 81334434143
Fax Int. +81334434118
KE (Kenia)
Profa-Tech Ltd
Tel. Int. + 25420 828095/6
Fax Int. + 25420828129

KR (South Korea)

Leuze electronic Co., Ltd. Tel. Int. + 82313828228 Fax Int. +82313828522
MK (Macedonia)
Tipteh d.o.o. Skopje
Fax Int + 38923174107

MX (Mexico)

Movitren S.A.
Tel. Int. + 52 8183718616 Fax Int. + 528183718588

MY (Malaysia)

Ingermark (M) SDN.BHD
Tel. Int. +60360 3427-88
Fax Int. $+603603421-88$
NG (Nigeria)
SABROW HI-TECH E. \& A. LTD
Tel. Int. + 2348033386366
Fax Int. +2348033384463518
NL (Netherlands)
Leuze electronic BV
Fex Int + 31418 65 35-44

NO (Norway)

Tel. Int. +473556 20-70
Fax Int. + 473556 20-99
PL (Poland)
Balluff Sp.zo. o
Tel. Int. + 48713384929
Fax Int. +48713384930
PT (Portugal)
LA2P, Lda.
Tel. Int. + 351214447070
Fax Int. +351214447075
RO (Romania)
Tel. Int. +40256201346
Tel. Int. + 40256201346

RS (Republic of Serbia)
Tipteh d.o.o. Beograd
Tipteh d.o.o. Beograd
Tel. Int. +381113131057
Fel. Int. + 381113131057
RU (Russian Federation)
ALL IMPEX 2001
Tel. Int. + 74959213012
Fax Int. + 74956462092
SE (Sweden)
Leuze electronic Scandinavia ApS
Tel. Int. +46 380-490951
SG + PH (Singapore +
Philippines)
Balluff Asia Pte Ltd
Tel. Int. +656252 43-84
Fax Int. $+65625290-60$
SI (Slovenia)
Tipteh d.o.o.
Tel. Int. + 3861200 51-50
Fax Int. + 3861200 51-51
SK (Slowakia)
Schmachtl SK s.r.o
Tel. Int. +421258275600
Fax Int. + 421258275601
TH (Thailand)
Industrial Electrical Co. Ltd
Tel. Int. + 6626426700
Fax Int. + 6626424250
TR (Turkey)
Leuze electronic San.ve Tic.Ltd.Sti
Tel. Int. + 902164566704
Fax Int. + 902164563650
TW (Taiwan)
Great Cofue Technology Co., Ltd.
Tel. Int. + 88622983 80-77
Fax Int. + 88622985 33-73
UA (Ukraine)
SV Altera OOO
Tel. Int. + 380444961888
Fax Int. + 380444961818
US + CA (United States +
Canada)
Leuze electronic, Inc
Tel. Int. + 1248 486-4466
Fax Int. + 1248 486-6699
ZA (South Africa)
Countapulse Controls (PTY.) Ltd.
Tel. Int. + 27116 1575-56
Fax Int. +27116 1575-13
© All rights reserved, especially the right of reproduction and translation. Copying or reproduction in any form require the written consent of the manufacturer.
Product names are used without a guarantee of free usage.
Changes reflecting technical improvements may be made.
1 General information 5
1.1 Explanation of symbols 5
1.2 Declaration of Conformity 5
1.3 Description of functions 6
1.4 Definition of terms 7
2 Safety notices 8
2.1 General safety notices 8
2.2 Safety standards 8
2.3 Intended use 8
2.4 Working safely 9
3 Fast commissioning / operating principle 10
3.1 Mounting 10
3.2 Device arrangement and selection of the mounting location 10
3.3 Electrical connection 10
3.3.1 Connecting the Leuze device 11
3.3.2 Connecting the power supply and the bus cable 13
3.4 Starting the device. 13
3.5 MA 235i on the CANopen 13
4 Device description 14
4.1 General Information to the connector units 14
4.2 Characteristics of the connector units 14
4.3 Device construction 15
4.4 Operating modes 16
4.5 Fieldbus systems 17
4.5.1 CANopen 18
5 Specifications 21
5.1 General specifications 21
5.2 Dimensioned drawings 22
5.3 Type overview 23
6 Installation and mounting 24
6.1 Storage, transportation 24
6.2 Mounting 25
6.3 Device arrangement 26
6.3.1 Selecting a mounting location 26
6.4 Cleaning 26
7 Electrical connection 27
7.1 Safety notices for the electrical connection 27
7.2 Electrical connection 28
7.2.1 PWR IN - voltage supply / switching input/output 28
7.2.2 PWR OUT switching input/output 30
7.3 BUS IN 30
7.4 BUS OUT 31
7.4.1 Termination of the CANopen bus 31
7.5 Device interfaces 32
7.5.1 RS 232 device interface (accessible after opening the device, internal) 32
7.5.2 Service interface (internal) 33
8 Status displays and operational controls 34
8.1 LED status indicators 34
8.1.1 LED indicators on the circuit board 34
8.1.2 LED indicators on the housing 35
8.2 Internal interfaces and operational controls 36
8.2.1 Overview of operational controls of the. 36
8.2.2 Connector X30 ... connectors 38
8.2.3 RS 232 service interface - X33 38
8.2.4 S10 service switch 38
8.2.5 Rotary switch S4 for device selection 39
8.2.6 Switch for address selection in the fieldbus 40
8.2.7 Switch for setting the baud rate 40
$9 \quad$ Configuration 41
9.1 Connecting the service interface 41
9.2 Reading out information in Service mode 41
10 Telegram 44
10.1 Structure of the fieldbus telegram 44
10.2 Description of the input bytes (status bytes) 45
10.2.1 Structure and meaning of the input bytes (status bytes) 45
10.2.2 Detailed description of the bits (input byte 0) 45
10.2.3 Detailed description of the bits (input byte 1) 48
10.3 Description of the output bytes (control bytes) 48
10.3.1 Structure and meaning of the output bytes (control bytes) 48
10.3.2 Detailed description of the bits (output byte 0) 49
10.3.3 Detailed description of the bits (output byte 1) 50
10.4 RESET function / deleting memory 51
11 Modes 52
11.1 Functionality of the data exchange 52
11.1.1 Reading slave data in Collective mode (gateway -> PLC) 53
11.1.2 Writing slave data in Collective mode (PLC -> gateway) 53
11.1.3 Command mode 56
12 Commissioning and configuration. 58
12.1 Measures to be performed prior to the initial commissioning 58
12.1.1 Connecting the power supply and the bus cable 60
12.2 Starting the device 60
12.3 MA 235i in the CANopen system 61
12.4 Starting the MA $235 i$ in the CANopen system 62
12.4.1 Device profile 62
12.4.2 Object directories 63
12.4.3 SDOs and PDOs 63
12.4.4 SDOs 63
12.4.5 PDOs 64
12.4.6 Object index 65
12.5 Setting the read parameters on the Leuze device 69
12.5.1 Specific feature for the use of hand-held scanners (bar code and 2D devices, combi devices with RFID) 70
12.5.2 Specific features in the operation of an RFM/RFI. 71
13 Diagnostics and troubleshooting 72
13.1 General causes of errors 72
13.2 Interface errors 73
14 Type overview and accessories 74
14.1 Part number code 74
14.2 Type overview 74
14.3 Accessory terminating resistor 74
14.4 Accessory connectors 74
14.5 Accessory ready-made cables for voltage supply 75
14.5.1 Contact assignment of PWR connection cable 75
14.5.2 Specifications of the cables for voltage supply 75
14.5.3 Order codes of the cables for voltage supply 76
14.6 Accessory ready-made cables for bus connection 76
14.6.1 General information 76
14.6.2 Contact assignment of M12-CANopen connection cable KB DN 76
14.6.3 Specifications of M12-CANopen connection cable KB DN 77
14.6.4 Order codes of M12-CANopen connection cable KB DN 77
14.7 Accessory ready-made cables for connecting Leuze Ident devices 78
14.7.1 Order codes for the device connection cables 78
14.7.2 Contact assignment for the device connection cables 78
15 Maintenance 79
15.1 General maintenance information 79
15.2 Repairs, servicing 79
15.3 Disassembling, packing, disposing 79
16 Specifications for Leuze end devices 80
16.1 Standard setting, KONTURflex (S4 switch position 0) 80
16.2 Bar code reader BCL 8 (S4 switch position 1) 82
16.3 Bar code reader BCL 22 (S4 switch position 2) 83
16.4 Bar code reader BCL 32 (S4 switch position 3) 84
16.5 Bar code reader BCL 300i, BCL 500i (S4 switch position 4). 85
16.6 Bar code reader BCL 90 (S 4 switch position 5) 86
16.7 LSIS 122 (S4 switch position 6) 87
16.8 LSIS 4x2i (S4 switch position 7) 88
16.9 Hand-held scanner (S4 switch position 8) 89
16.10 RFI, RFM, RFU RFID readers (S4 switch position 9). 90
16.11 BPS 8 bar code positioning system (S4 switch position A) 91
16.12 AMS distance measurement device, ODSL xx optical distance sensors with RS 232 interface (S4 switch position B) 92
16.13 Modular interfacing unit MA 3x (S4 switch position C) 94
16.14 Resetting the parameters (S4 switch position F) 95
17 Appendix. 96
17.1 ASCII Table. 96

1 General information

1.1 Explanation of symbols

The symbols used in this operating manual are explained below.

Attention!

This symbol precedes text messages which must strictly be observed. Failure to comply with this information results in injuries to persons or damage to the equipment.

Notice!

This symbol indicates text passages containing important information.

1.2 Declaration of Conformity

The MA 235i modular interfacing units have been designed and manufactured in accordance with applicable European directives and standards.

Notice!

The Declaration of Conformity for these devices can be requested from the manufacturer.
The manufacturer of the product, Leuze electronic GmbH + Co. KG in D-73277 Owen, possesses a certified quality assurance system in accordance with ISO 9001.
C

1.3 Description of functions

The MA 235i modular interfacing unit is used to connect Leuze devices directly to the fieldbus.
Bar code reader:
BCL 8, 22, 32, 300i, 500i, 90
2D code reader:
LSIS 122, LSIS 4x2i
Hand-held scanner
RFID read-write devices:
ITxxxx, HFU/HFM

Bar code positioning system:
Distance measurement device:
Optical distance sensors:
Measuring light curtain:
multiNet master connection box:
Additional RS 232 devices:
RFM 12, 32, 62 \& RFI 32, RFU 61, 81
BPS 8
AMS 200
ODSL 9, ODSL 30, ODSL 96B
KONTURflex to Quattro-RSX/M12
MA 3x
Scales, third-party devices
This is accomplished by transmitting the data from the DEV via an RS 232 (V.24) interface to the MA 235i where a module converts it into the CANopen format. The data format on the RS 232 interface corresponds to the Leuze standard data format (9600bd, 8N1 and STX, data, CR, LF).
The corresponding Leuze devices are selected using a rotary code switch on the circuit board of the connector unit. Many additional RS 232 devices can be connected through a universal position.
Leuze electronic can only provide support for the devices offered in the product range.

1.4 Definition of terms

For better understanding of the explanations provided in this document, a definition of terms follows below:

- Bit designation:

The 1 st bit or byte begins with count number " 0 " and means bit/byte 2^{0}.

- Data length:

Size of a valid, continuous data packet in bytes.

- EDS file (electronic data sheet):

Description of the device for the control.

- Consistent:

Data which belongs together with regard to content and which must not be separated is referred to as consistent data. When identifying objects, it must be ensured that the data is transmitted completely and in the correct order, otherwise the result is falsified.

- Leuze device (DEV):

Leuze devices, e.g., bar code readers, RFID readers, VisionReader...

- Online command:

These commands refer to the respective, connected ident device and may be different depending on the device. These commands are not interpreted by the MA 235i, but are instead transmitted transparently (see description of Ident device).

- CR:

Cross reference.

- Perspective of I/O data in the description:

Output data is data which is sent by the control to the MA. Input data is data which is sent by the MA to the control.

- Toggle bits:

Status toggle bit
Each change of state indicates that an action was performed, e.g., bit ND (new data): each change of state indicates that new received data was transmitted to the PLC. Control toggle bit
An action is performed on each change of state, e.g., bit SDO: on each change of state, the registered data is sent by the PLC to the MA $235 i$.

2 Safety notices

2.1 General safety notices

Documentation

All entries in this technical description must strictly be observed, in particular those in the "Safety notices" section. Keep this technical description in a safe place. It should be available at all times.

Safety regulations

Observe the locally applicable legal regulations and the rules of the employer's liability insurance association.

Repair

Repairs must only be carried out by the manufacturer or an authorized representative.

2.2 Safety standards

The devices of the series MA 2xxi were developed, manufactured and tested in accordance with the applicable safety standards. They correspond to the state of the art.

2.3 Intended use

Attention!

The protection of personnel and the device is guaranteed only if the device is operated in a manner corresponding to its intended use.

Areas of application

The MA 235i modular interfacing unit is used for connecting Leuze devices such as bar code or 2D code readers, hand-held scanners, RFID read-write devices, etc. directly to the fieldbus. A detailed list can be found in "Description of functions" on page 6.

2.4 Working safely

Attention!

Access to or changes on the device, except where expressly described in this operating manual, is not authorized.

Safety regulations

Observe the locally applicable legal regulations and the rules of the employer's liability insurance association.

Qualified personnel

Mounting, commissioning and maintenance of the device must only be carried out by qualified personnel.
Electrical work must be carried out by a certified electrician.

3 Fast commissioning / operating principle

Notice!
Below you will find a short description for the initial commissioning of the CANopen gateway MA 235i. Detailed explanations for the listed points can be found throughout the handbook.

3.1 Mounting

The gateway mounting plate MA 235i can be mounted in two different ways:

- using four threaded holes (M6) or
- using two M8x6 screws on the two lateral grooves.

3.2 Device arrangement and selection of the mounting location

Ideally, the MA 235i should be mounted so that it is easily accessible near the Ident device in order to ensure good operability, e.g., for configuring the connected device.
Detailed information can be found in chapter 6.3.1.

3.3 Electrical connection

The devices from the MA 2xxi family feature four M12 connectors/sockets which are coded differently depending on the interface.
The voltage supply (PWR IN) as well as the switching inputs/outputs (PWR OUT or PWR IN) are connected there. The number and function of the switching inputs/outputs is dependent on the connected end device.

An internal RS 232 interface is used for connecting the respective Leuze device. Another internal RS 232 interface functions as a service interface for configuring the connected device via a serial null modem cable.

Figure 3.1: MA 235i connections
Detailed information can be found in chapter 7.

3.3.1 Connecting the Leuze device

${ }^{4}$ To connect the Leuze device to the internal RS 232 device interface, open the housing of the MA 235i and guide the corresponding device cable (see chapter 14.7, e.g., KB 031 for BCL 32) through the middle threaded opening.
${ }^{4}$) Connect the cable to the internal device interface (X30, X31 or $\mathbf{X 3 2}$, see chapter 7.5.1).
${ }^{4}$ Use rotary switch $\mathbf{S 4}$ (see chapter 8.2.5) to select the connected device.
${ }_{4}$ Now screw the PG cable gland into the threaded opening to provide strain relief and ensure protection class IP 65.

Set CANopen device address

By setting the CANopen address, the MA $235 i$ is assigned its respective station number. Each network device is thereby automatically informed that it is a slave on the CANopen with its specific address and that it is initialized and queried by the PLC.
The CANopen permits an address range from 0 to 127, the MA a range from 0 to 99 . Other addresses must not be used for data communication.
${ }_{4}{ }^{\text {Set }}$ Se the stion address of the gateway using the two rotary switches S1 and S2 (ones and tens places).

Figure 3.2: Rotary switch for setting the address

Set CANopen baud rate on the MA

The CANopen baud rate is defined for the entire network in the planning tool/control. The baud rate is set on the MA $235 i$ via the baud rate selector switch. Only if the baud rates are the same is communication with the MA 235i possible.
${ }_{4}^{4}$ Set the baud rate of the gateway via the S3 rotary switch to the value defined in the control.

Figure 3.3: Rotary switch for setting baud rate

Switch position	Baud rate [kBd]
0	auto
1	10
2	20
3	50
4	100
5	125
6	250
7	500
8	800
9	1000

${ }^{4}$) Finally, close the housing of the MA 235i.

Attention!

Only then may the supply voltage be applied.
Upon startup of the MA 235i, the device selection switch is queried and the gateway automatically sets itself to the Leuze device.

Connecting functional earth FE

${ }^{4}$ Ensure that the functional earth (FE) is connected correctly.
Unimpaired operation is only guaranteed when the functional earth is connected properly. All electrical disturbances (EMC couplings) are discharged via the functional earth connection.

3.3.2 Connecting the power supply and the bus cable

${ }^{4}$ Ideally, use the ready-made cables listed in chapter 14.5.3 to connect the gateway to the power supply via the PWR IN connection.
(4) The ready-made cables listed in chapter 14.6.4 are preferred for connecting the gateway to the fieldbus via the HOST / BUS IN connection.
${ }^{4}$) If applicable, use the BUS OUT connection if you would like to construct a network with linear topology.

3.4 Starting the device

${ }^{4}$) Apply the supply voltage +18 ... 30VDC (typ. +24VDC); the MA $235 i$ starts up. The PWR LED displays that it is ready for operation.

3.5 MA 235i on the CANopen

$\stackrel{4}{4}$ Install the EDS file corresponding to the MA 235i in your planning tool/the control.

Notice!

You can find the EDS file at: www.leuze.com
The MA $235 i$ is configured in the planning tool/control by means of the EDS file. The MA $235 i$ is assigned an address in the planning tool, which then has to be set in the MA 235i via the S1 and S2 address switches. Only if the addresses are the same between the MA 235i and the control can communication be established.

After all parameters have been set in the planning tool/control, the download to the MA 235i takes place. The set parameters are now stored on the MA $235 i$.

Afterwards, all MA 235i parameters should be stored via upload in the control. This aids in retaining the parameters during device exchanges, as they a re now also stored centrally in the control.
The CANopen baud rate is defined for the entire network in the planning tool/control. The baud rate is set on the MA 235i via the S3 baud rate selector switch.
Only if the baud rates are the same is communication with the MA $235 i$ possible.

Detailed information can be found in chapter 12.

4 Device description

4.1 General Information to the connector units

The modular interfacing unit of the MA $2 x x i$ family is a versatile gateway for integrating Leuze RS 232 devices (e.g., BCL 22 bar code readers, RFID devices, RFM 32, AMS 200) in the respective fieldbus. The MA 2xxi gateways are intended for use in industrial environments with a high protection class. Various device versions are available for the conventional fieldbuses. With a stored parameter structure for the connectable RS 232 devices, commissioning could hardly be simpler.

4.2 Characteristics of the connector units

A special characteristic of the MA 235i device family are three function modes:

1. Transparent mode

In this function mode, the MA 235i functions as a pure gateway with automatic communication from and to the PLC. Absolutely no special programming by the user is necessary for this purpose. The data is not buffered or stored temporarily, however. Instead, it is "passed on".
The programmer must make certain to retrieve the data from the input memory of the PLC at the right time, as it is otherwise overwritten by new data.
2. Collective mode

In this operating mode, data and telegram parts are temporarily stored in the memory (buffer) of the MA and sent to the RS 232 interface or to the PLC in a telegram by means of bit activation. In this mode, however, all communication control must be programmed on the PLC.
This function mode is helpful, for example, for very long telegrams or when one or more codes with long code lengths are read.
3. Command mode

With this special operating mode, it is possible to use the first bytes of the data range to transmit predefined commands to the connected device by means of bit activation. For this purpose, device-dependent commands (so-called online commands) are predefined via the device selection switch, see chapter 16 "Specifications for Leuze end devices".

4.3 Device construction

The MA 235i modular interfacing unit is used for interconnecting Leuze devices, such as the BCL 8, BCL 22, etc., directly to the fieldbus. This is accomplished by transmitting the data from the Leuze device via an RS 232 (V.24) interface to the MA 235i where a module converts it into the fieldbus format. The data format of the RS 232 interface corresponds to the standard Leuze data format.

Figure 4.1: Connection of a Leuze device (BCL, RFI, RFM, VR) to the fieldbus
The cable of the respective Leuze device is guided through cable bushings with PG cable glands into the MA 235i and connected there with the PCB connectors.
The MA $235 i$ is intended as a gateway for any RS 232 devices, e.g., BCL 90 with MA 90, hand-held scanners, scales or for coupling a multiNet network.
The RS 232 cables are internally connectable using JST plug connectors. The cable can be connected to the device using a stable PG cable gland which provide strain relief and protection against contamination.
With the help of adapter cables with Sub-D 9 or open cable end, other RS 232 devices can also be connected.

4.4 Operating modes

For fast commissioning, the MA 235i offers an additional operating mode, the "Service mode", in addition to the "Standard mode". In this operating mode, the Leuze device can, for example, be configured on the MA $235 i$ and the network settings of the MA can be displayed. To do this, you need a PC/laptop with a suitable terminal program, as BCL-Config from Leuze or similar.

Service switch

Select between "operation" and "service" modes with the service switch. You have the following options:

Pos. RUN:

Operation
The Leuze device is connected to the fieldbus and communicates with the PLC.

Pos. DEV:

Service Leuze device
The connection between the Leuze device and the fieldbus is interrupted. With this switch position, you can communicate directly with the Leuze device at the fieldbus gateway via RS 232. You can send online commands via the service interface, configure the Leuze device using the corresponding BCL- BPS-, ...-Config configuration software and have the read data of the Leuze device output.

Pos. MA:

Service fieldbus gateway
With this switch setting, your PC/terminal is connected with the fieldbus gateway.In doing so, the current setting values of the MA (e.g. address, RS 232 parameters) can be called up via a command.

Figure 4.2: Service-switch switch positions

Notice!

If the service switch is on one of the service settings, the CAN LED flashes on the front side of the device, see chapter 8.1.2 "LED indicators on the housing".

Furthermore, on the control, the SMA service bit of the status bytes signals that the MA is in service mode.

Service interface

The service interface can be accessed once the MA $235 i$ housing cover has been removed and features a 9-pin Sub-D connector (male). A crossed RS 232 connection cable is required to make the RxD, TxD and GND connections.

Figure 4.3: Connecting the service interface to a PC/terminal

Attention!

For the service PC to function, the RS 232 parameters must be the same as those of the MA. The Leuze standard setting of the interface is 9600 bd, $8 N 1$ and STX, data, CR, LF.

4.5 Fieldbus systems

Various product variants of the MA 2xxi series are available for connecting to different fieldbus systems such as PROFIBUS DP, PROFINET-IO, DeviceNet, CANopen and Ethernet or EtherCAT.

4.5.1 CANopen

General information on CANopen

Figure 4.4: Bus topology
The CAN bus is a serial 2-wire bus system to which all participants are connected in parallel (i.e., using short stub cables). To avoid reflections, the bus must be terminated with a terminating resistor of 120 ohm at each end of the trunk line. Terminating resistors are also required for very short trunk line cable lengths.
If the MA $235 i$ is the last participant in the trunk line, the trunk line can be terminated via the M12 bus OUT connection. For this purpose, Leuze electronic offers an M12 terminating resistor, see chapter 14 "Type overview and accessories".

Bus line (trunk line)

For CAN, the maximum cable length of the trunk line is predominantly limited by the signal propagation time. The multi-master bus-access process (arbitration) requires that the signals are present virtually simultaneously at all nodes/participants. Therefore, the cable length of the trunk cable must be adapted to the baud rate.

Baud rate	Bus length
$1 \mathrm{Mbit} / \mathrm{s}$	$<20 \mathrm{~m}$
$800 \mathrm{kbit} / \mathrm{s}$	$<50 \mathrm{~m}$
$500 \mathrm{kbit} / \mathrm{s}$	$<100 \mathrm{~m}$
$250 \mathrm{kbit} / \mathrm{s}$	$<250 \mathrm{~m}$
$125 \mathrm{kbit} / \mathrm{s}$	$<500 \mathrm{~m}$
$50 \mathrm{kbit} / \mathrm{s}$	$<1000 \mathrm{~m}$
$20 \mathrm{kbit} / \mathrm{s}$	$<2500 \mathrm{~m}$

Stub cables (drop lines)

If possible, stub cables should be avoided because they cause signal reflections as a matter of principle. Generally, the reflections caused by stub cables are not critical, however, if the following stub cable lengths are not exceeded.

Baud rate	Length of stub cables	Total length of all stub cables
$1 \mathrm{Mbit} / \mathrm{s}$	$<1 \mathrm{~m}$	$<5 \mathrm{~m}$
$800 \mathrm{kbit} / \mathrm{s}$	$<1 \mathrm{~m}$	$<25 \mathrm{~m}$
$500 \mathrm{kbit} / \mathrm{s}$	$<1 \mathrm{~m}$	$<25 \mathrm{~m}$
$250 \mathrm{kbit} / \mathrm{s}$	$<10 \mathrm{~m}$	$<50 \mathrm{~m}$
$125 \mathrm{kbit} / \mathrm{s}$	$<20 \mathrm{~m}$	$<100 \mathrm{~m}$
$50 \mathrm{kbit} / \mathrm{s}$	$<50 \mathrm{~m}$	$<250 \mathrm{~m}$
$20 \mathrm{kbit} / \mathrm{s}$	$<50 \mathrm{~m}$	$<250 \mathrm{~m}$

Attention!

Stub cables must not be fitted with terminating resistors. If the MA 235i is integrated into a stub cable, the M12 bus OUT connection must not be terminated.

Figure 4.5: Prohibited networking within a stub cable

Attention!

MA 235i should not be networked with each other within a stub cable. The max. permissible cable length of a stub cable must not be exceeded. Taps and multi-taps permit a wide range of topologies.

Address assignment

Notice!

The participant-specific address for CANopen is also called the Node ID. Throughout this handbook, the term "address" is used, which is identical to "Node ID".

Each participant connected to CANopen is assigned its own address (Node ID). Up to 127 participants can be connected to one network. The addresses of the MA range from 1 to 99. The address 0 is usually reserved for the CANopen master.

Notice!

The "Layer Setting Services (LSS)" function is not supported by the MA 235i. For this reason, the address must be set manually. See "Switch for address selection in the fieldbus" on page 40.

Baud rate setting

The MA 235i supports the following baud rates:
$1 \mathrm{Mbit} / \mathrm{s}$
800kbit/s
500kbit/s
250kbit/s
$125 \mathrm{kbit} / \mathrm{s}$
100kbit/s
50kbit/s
20kbit/s
10kbit/s
The default setting of the gateway is "auto".

Notice!

The "Layer Setting Services (LSS)" function is not supported by the MA 235i. The baud rate must be set manually. See "Switch for setting the baud rate" on page 40.

5 Specifications

5.1 General specifications

Electrical data

Interface type 1

Interface type 2
Service interface data format
Switching input/output
Operating voltage
Power consumption
Max stress on the connector (PWR IN/OUT)
Hand-held scanner operating voltage
Indicators
CAN LED

PWR LED

Mechanical data

Protection class

Weight
Dimensions (HxWxD)
Housing
Connection

Environmental data
Operating temperature range
Storage temperature range
Air humidity

CANopen, integrated switch, BUS: $\quad 1 \times \mathrm{M} 12$ connector (A-coded), 1x M12 socket (A-coded)
PWR/IO: 1x M12 connector (A-coded), 1x M12 socket (A-coded)
RS 232
RS 232, 9-pin Sub-D connector, Leuze standard
data bit: 8, parity: None, stop bit: 1
1 switching input/1 switching output
device-dependent voltage
18 ... 30VDC
max. 5VA (without DEV, current consumption max. 300mA)
3A
4.75 ... 5.25VDC / max. 1A
bus state ok
bus error
power
collection error

IP 65
(with screwed-on M12 and connected Leuze device)
700 g
$130 \times 90 \times 41 \mathrm{~mm} /$ with plate: $180 \times 108 \times 41 \mathrm{~mm}$ diecast aluminum
$2 \times \mathrm{M} 12$: BUS IN / BUS OUT CANopen
1 connector: RS 232
$1 \times$ M12: Power IN/GND and switching input/output
1 x M12: Power OUT/GND and switching input/output
$0^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C}$
$-20^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$
max. 90% rel. humidity, non-condensing

Vibration
Shock
Electromagnetic compatibility

IEC 60068-2-6, test FC
IEC 60068-2-27, test Ea
EN 61000-6-3:2007 (interference emissions for residential, commercial and light-industrial environments) EN 61000-6-2:2005 (interference rejection for industrial sectors)

5.2 Dimensioned drawings

Figure 5.1: MA 235idimensioned drawing

5.3 Type overview

The following versions of the MA 2xxi gateway family are available for facilitating the integration of Leuze RS 232 devices in the various fieldbus types.

Fieldbus		Device type		
Part no.				
PROFIBUS DP V0	MA 204i	50112893		
Ethernet TCP/P	MA 208i	50112892		
PROFINET-IO RT	MA 248i	50112891		
DeviceNet	MA 255i	50114156		
CANopen	MA 235i	50114154		
EtherCAT	MA 238i	50114155		
EtherNet/P	MA 258i	50114157		

Table 5.1: \quad Type overview MA 2xxi

6 Installation and mounting

6.1 Storage, transportation

Attention!

When transporting or storing, package the device so that it is protected against collision and humidity. Optimal protection is achieved when using the original packaging. Heed the required environmental conditions specified in the technical data.

Unpacking

$\stackrel{\text { ® }}{ }$ Check the packaging for any damage. If damage is found, notify the post office or shipping agent as well as the supplier.
${ }^{4}$ Check the delivery contents using your order and the delivery papers:

- Delivered quantity
- Device type and model as indicated on the name plate
- Brief manual

The name plate provides information as to what MA 2xxi type your device is. For specific information, please refer to the package insert or chapter 14.2.

Name plate of the connector unit

Figure 6.1: MA 235idevice name plate
${ }^{4}$ Save the original packaging for later storage or shipping.
If you have any questions concerning your shipment, please contact your supplier or your local Leuze electronic sales office.
(4) Observe the applicable local regulations when disposing of the packaging materials.

6.2 Mounting

The gateway mounting plate MA 235i can be mounted in two different ways:

- using four threaded holes (M6) or
- using two M8 screws on the two lateral grooves.

Fastening by means of four M6 or two M8 screws

Figure 6.2: Fastening options

6.3 Device arrangement

Ideally, the MA $235 i$ should be mounted so that it is easily accessible near the Ident device in order to ensure good operability - e.g., for configuring the connected device.

6.3.1 Selecting a mounting location

In order to select the right mounting location, several factors must be considered:

- The permissible cable lengths between the MA $235 i$ and the host system depending on which interface is used.
- The housing cover should be easily accessible, so that the internal interfaces (device interface for connecting the Leuze device via PCB connectors, service interface) and other operational controls are easy to reach.
- Maintaining the required environmental conditions (temperature, humidity).
- Lowest possible chance of damage to the MA 235i by mechanical collision or jammed parts.

6.4 Cleaning

${ }^{4}$ Clean the housing of the MA 235i with a soft cloth after mounting. Remove all packaging remains, e.g. carton fibers or Styrofoam balls.

Attention!

Do not use aggressive cleaning agents such as thinner or acetone for cleaning the device.

7 Electrical connection

The fieldbus gateways MA $2 \times x i$ are connected using differently-coded M12 connectors. An RS 232 device interface allows the respective devices to be connected with system connectors. The device cables are equipped with a prefabricated PG cable gland.
Coding varies and the design is implemented as either socket or connector depending on the HOST (fieldbus) interface and function. For the exact design, refer to the corresponding description of the MA 2xxi device type.

Notice!

The corresponding mating connectors and ready-made cables are available as accessories for all cables. For further information, see chapter 14 "Type overview and accessories".

Figure 7.1: Location of the electrical connections

7.1 Safety notices for the electrical connection

Attention!

Before connecting the device please ensure that the supply voltage matches the value printed on the nameplate.
Connection of the device and cleaning must only be carried out by a qualified electrician. Ensure that the functional earth (FE) is connected correctly. Unimpaired operation is only guaranteed when the functional earth is connected properly.
If faults cannot be corrected, the device should be removed from operation and protected against possible commissioning.

Attention!

For UL applications, use is only permitted in class 2 circuits in accordance with the NEC (National Electric Code).

The fieldbus gateways are designed in accordance with safety class III for supply by PELV (protective extra-low voltage with reliable disconnection).

Notice!
Protection class IP65 is achieved only if the connectors and caps are screwed into place!

7.2 Electrical connection

The MA 235i features two M12 connectors/sockets for voltage supply; each is A-coded.
The voltage supply (PWR IN) as well as the switching inputs/outputs (PWR OUT or PWR IN) are connected there. The number and function of the switching inputs/outputs is dependent on the connected end device. Two additional M12 connectors/sockets are used for connection to the fieldbus. Both of these connections are A-coded.
An internal RS 232 interface is used for connecting the respective Leuze device. Another internal RS 232 interface functions as a service interface for configuring the connected device via a serial null modem cable.

Figure 7.2: MA 235i connections
Described in detail in the following are the individual connections and pin assignments.

Attention!

Voltage supply and bus cable are coded in the same way. Please observe the printed connection designations

7.2.1 PWR IN - voltage supply / switching input/output

PWR IN (5-pin connector, A-coded)			
PWR IN	Pin	Name	Remark
	1	VIN	Positive supply voltage $+18 \ldots+30 \mathrm{VDC}$
	2	SWIO_2	Switching input/switching output 2
	3	GND	Negative supply voltage OVDC
	4	SWIO_1	Switching input/switching output 1
	5	FE	Functional earth
	Thread	FE	Functional earth (housing)

Table 7.1:
PWR IN pin assignment

Notice!

The designation and function of the SWIO depends on the connected device. Please observe the following table!

Device	PIN 2	PIN 4
BCL 22/BCL 32	SWOUT_1	SWIN_1
BCL 8	SW_0	SW_I
Hand-held scanner/BCL 90	n.c.	n.c.
RFM/RFU/RFI	SWOUT_1	SWIN_1
LSIS 122	SWOUT	SWIN
LSIS 4x2/BCL 500	configurable 101 / SWIO 3 102 / SWIO 4	configurable
KONTURflex	n.c.	n.c.
ODSL 9, ODSL 96B	Q1	n.c.
ODSL 30	Q1	active/reference (on SWIN_1, PWRIN)

Table 7.1: Device-specific function of the SWIOs

Supply voltage

Attention!

For UL applications, use is only permitted in class 2 circuits in accordance with the NEC (National Electric Code).

The fieldbus gateways are designed in accordance with safety class III for supply by PELV (protective extra-low voltage with reliable disconnection).

Connecting functional earth FE

Notice!

Ensure that the functional earth (FE) is connected correctly. Unimpaired operation is only guaranteed when the functional earth is connected properly. All electrical disturbances (EMC couplings) are discharged via the functional earth connection.

Switching input/output

The MA $235 i$ is equipped with the SWIO_1 and SWIO_2 switching inputs/outputs. This is located on the PWR IN M12 connector and on the PWR OUT M12 connector. The connection of the switching inputs/outputs from PWR IN to PWR OUT can be interrupted by means of a jumper. In this case, only the switching input and output on PWR IN are active.

The function of the switching inputs and outputs is dependent on the connected Leuze device. Detailed information on this topic can be found in the respective operating instructions.

7.2.2 PWR OUT switching input/output

PWR OUT (5-pin socket, A-coded)			
	Pin	Name	Remark
	1	VOUT	Voltage supply for additional devices (VOUT identical to VIN at PWR IN)
	2	SWIO_2	Switching input/switching output 2
	3	GND	GND
	4	SWIO_1	Switching input/switching output 1
	5	FE	Functional earth
	Thread	FE	Functional earth (housing)

Table 7.2: PWR OUT pin assignment

Notice!

The maximum admissible current of the PWR OUT and IN connectors is maximum 3A. To be subtracted from this is the current consumption of both the MA and of the connected end device.

The function of the switching inputs and outputs is dependent on the connected Leuze device. Detailed information on this topic can be found in the respective operating instructions.
On delivery, the SWIO 1/2 are connected in parallel on PWR IN/OUT. This connection can be separated with a jumper.

7.3 BUS IN

The MA 235i makes a CANopen interface available as host interface.

BUS IN (5-pin plug, A-coded)			
DRAIN 1	Pin	Name	Remark
	1	Drain	Shield
	2	V+	Supply voltage data V_{+}
	3	V-	Supply voltage data V-
	4	CAN_H	Data signal CAN_H
	5	CAN_L	Data signal CAN_L
M12 connector (A-coded)	Thread	FE	Functional earth (housing)

Table 7.3: \quad Pin assignment HOST / BUS IN
${ }_{4} \rightarrow$ For the host connection of the MA 235i, the ready-made "KB DN/CAN-xxxxx-Bx" cables are preferred, see table 14.5 Bus connection cable for the MA 235ion page 77.

7.4 BUS OUT

BUS OUT (5-pin socket, A-coded)			
BUS OUT	Pin	Name	Remark
	1	Drain	Shield
CAN_L 4	2	V+	Supply voltage data V+
	3	V-	Supply voltage data V-
	4	CAN_H	Data signal CAN_H
	5	CAN_L	Data signal CAN_L
M12 socket (A-coded)	Thread	FE	Functional earth (housing)

Table 7.4: Pin assignment HOST/BUS OUT
(4) For the host connection of the MA 235i, the ready-made "KB DN/CAN-xxxxx-Bx" cables are preferred, see table 14.5 Bus connection cable for the MA 235ion page 77.

If you use user-configurable cables, note the following:

Notice!

Ensure adequate shielding. For the devices and ready-made cables offered by Leuze electronic, the shield is on PIN 1.

7.4.1 Termination of the CANopen bus

If the gateway is the last physical CANopen participant in the trunk line, it must be terminated with a terminating resistor (see "Accessory terminating resistor" on page 74).

\bigcirc Notice!

1
Stub cables must not be fitted with terminating resistors. If the MA 235i is integrated into a stub cable, the BUS OUT connection must not be terminated.

7.5 Device interfaces

Figure 7.3: Open the MA 235i

7.5.1 RS 232 device interface (accessible after opening the device, internal)

The device interface is prepared for the system plugs (PCB connectors) for Leuze devices RFI xx, RFM xx, BCL 22 as well as BCL 32, VR with KB 031.

Figure 7.4: RS 232 device interface
The standard devices are connected with 6- or 10-pin connector piece to X31 or X32, respectively. For hand-held scanners, BCL 8 and BPS 8 with 5VDC $\pm 10 \%$ supply (from the MA) on pin 9, the 12-pin X30 PCB connection is available as well.
By using an additional cable (cf. "Type overview and accessories" on page 74), the system connection can be established on M12 or 9-pin Sub-D, e.g., for hand-held scanners.

Notice!
When using third-party devices, check the pin assignment and voltage without fail.

7.5.2 Service interface (internal)

Figure 7.5: RS 232 service switch and service interface
Following activation, this interface enables access via the RS 232 to the connected Leuze device and the MA for configuration using the 9-pin Sub-D. The connection between the fieldbus interface and the device interface is switched off during access. The fieldbus itself is, however, not interrupted as a result.
The service interface can be accessed once the MA $235 i$ housing cover has been removed and features a 9-pin Sub-D connector (male). A crossed RS 232 connection cable is required to make the RxD, TxD and GND connections. A hardware handshake via RTS, CTS is not supported at the service interface.

Figure 7.6: Connecting the service interface to a PC/terminal

Attention!

For the service PC to function, the RS 232 parameters must be the same as those of the MA. The Leuze standard setting of the interface is 9600Bd, 8N1 and STX, data, CR, LF.

Notice!

To configure the devices connected to the external interface, e.g., BCL 8 (JST plug connector "X30"), a cable specially configured for this purpose is necessary. The service switch must be in the "DEV" or "MA" position (Service Leuze device/MA).

8 Status displays and operational controls

Figure 8.1: LED indicators on the MA $235 i$

8.1 LED status indicators

8.1.1 LED indicators on the circuit board LED (Status)

$$
0
$$

off
\bigcirc
continuous green light

0
continuous orange light
flashing green-orange
ons

Device OFF

- no operating voltage or device defect

Device ok

- readiness for operation

Device error / firmware available

Device in boot mode

- no firmware

8.1.2 LED indicators on the housing

PWR LED

PWR O	off	Device OFF - no operating voltage or device error
PWR	continuous green light	Device ok - self test successfully finished - ready
PWR	flashing green	Device ok, device in service mode

8.2 Internal interfaces and operational controls

8.2.1 Overview of operational controls of the

The operational controls of the MA 235i are described in the following. The figure shows the MA $235 i$ with opened housing cover.

A Switches S 1 and S 2 for address selection
B Rotary switch S 4 for device selection
C Service switch
D RS 232 Sub-D service interface
E Jumper for bridging, separating switching input/output PWR IN/OUT
F 3 JST plug connectors: connection of the Leuze devices
G Switch S3 for selecting the baud rate

Figure 8.2: Front view: operational controls of the MA 235i

Circuit board element desig.	Function
X1 Operating voltage	PWR IN M12 connector for operating voltage (18 ... 30VDC) MA 235i and connected Leuze device xx
X2 Output voltage	PWR OUT M12 connector for other devices (MA, BCL, sensor, ...) VOUT = VIN max. 3A
X4 HOST interface	BUS IN HOST interface for connecting to the fieldbus
X5 HOST interface	BUS OUT Second BUS interface for creating a network with other participants in a linear topology
X30 Leuze device	JST plug connector with 12 pins Connection of the Leuze devices with $4.75 \ldots 5.25 \mathrm{VDC} / 1 \mathrm{~A}$ (BCL 8, BPS 8 and hand-held scanner)
X31 Leuze device	JST plug connector with 10 pins Connection of the Leuze devices (BCL, RFI, RFM,...) Pin VINBCL with standard setting $=\mathrm{V}+(18-30 \mathrm{~V})$
X32 Leuze device	JST plug connector with 6 pins Connection of the Leuze devices (BCL, RFI, RFM,...) Pin VINBCL with standard setting $=\mathrm{V}+(18-30 \mathrm{~V})$
X33 RS 232 service interface	9-pin SUB-D connector RS 232 interface for service/setup operation. Enables the connection of a PC via serial null modem cable for configuring the Leuze device and the MA 235i
S4 Rotary switch	Rotary switch ($0 \ldots$ F) for device selection Standard setting $=0$
S10 DIP switch	Service switch Switch between service Leuze device (DEV), service fieldbus gateway (MA) and operation (RUN). Standard setting = operation.
$\begin{array}{\|l\|} \hline \mathrm{J} 1, \mathrm{~J} 2 \\ \text { Jumper } \end{array}$	Bridging, separating switching input/output (interruption of connection between the two PWR M12 connectors of the SWIO 1 or SWIO 2)
S1 Rotary switch	Rotary switch ($0 \ldots 9$) for address selection $10^{\wedge} 0$ Standard setting: position 0
S2 Rotary switch	Rotary switch ($0 \ldots$) for address selection $10^{\wedge} 1$ Standard setting: position 0
S3 Rotary switch	Baud rate selector switch pos 0-9 (auto, 10/20/50/100/125/250/500/800/ 1000 kBd) Default setting = pos 0 (auto)

8.2.2 Connector X30 ... connectors

PCB connectors X30 ... X32 are available in the MA 235i for connecting the respective Leuze devices via RS 232.

Figure 8.3: Connections for Leuze devices

Attention!

Several Leuze devices may not be connected to the MA 235i simultaneously, as only one RS 232 interface can be operated.

8.2.3 RS 232 service interface - X33

The X33 RS 232 interface facilitates the configuration of the Leuze device and the MA 235i via PC, which is connected by means of a serial null modem cable.

X33 pin assignment - service connector

SERVICE (9-pin SUB-D connector)			
	Pin	Name	Remark
	2	RXD	Receive Data
	3	TXD	Transmit Data
	5	GND	Functional earth

Table 8.1: SERVICE pin assignment

8.2.4 S10 service switch

The S10 DIP switch can be used to select between the "operation" and "service" modes, i.e. you switch between the following options here:

- Operation (RUN) = default setting
- Service Leuze device (DEV) and
- Service fieldbus gateway (MA)

Figure 8.4: DIP switch service - operation

For further information on the corresponding options, see chapter 4.4 "Operating modes".

8.2.5 Rotary switch S4 for device selection

The S4 rotary switch is used to select the Leuze end device.

Figure 8.5: Rotary switch for device selection
The following switch positions are assigned to the Leuze devices:

Leuze device	Switch position
Standard setting Other RS 232 devices such as KONTURflex QUATTRO	0
BCL 8	1
BCL 22	2
BCL 32	3
BCL 300i, BCL 500i	4
BCL 90	5
LSIS 122	6

Leuze device	Switch position
LSIS 4x2i	7
Hand scanner	8
RFID (RFI xx, RFM xx, RFU xx)	9
BPS 8	A
AMS,	
ODS 9, ODSL 30, 0DSL 96B	B
MA 3x	C
Reset to factory setting	F

The gateway is set via the switch position on the Leuze device. If the switch position is changed, the device must be restarted, since the switch position is only queried after switching off completely and then restarting the device.

Notice!

In switch position "0", a distance of >20ms must be maintained between two telegrams so they can be distinguished from one another.

The parameters of the Leuze end devices are described in chapter 16.

8.2.6 Switch for address selection in the fieldbus

The gateway features the $\mathbf{S 1}$ and $\mathbf{S} 2$ rotary switches (ones and tens digits) for setting the station address.

Figure 8.6: Rotary switch for setting the address
Further information on the respective address ranges and the addressing procedure can be found in chapter 12.1.

8.2.7 Switch for setting the baud rate

You can set the baud rate for data transmission with the $\mathbf{S} 3$ rotary switch.

Figure 8.7: Rotary switch for setting baud rate

Switch position	Baud rate [kBd]
0	auto
1	10
2	20
3	50
4	100
5	125
6	250
7	500
8	800
9	1000

9 Configuration

The MA $235 i$ is configured using the EDS file via the device manager of the control. The connected device is normally configured via the service interface of the MA with the help of a suitable configuration program.
The respective configuration programs - e.g. for bar code readers the BCL-Config, for RFID devices the RF-Config etc. - and the associated documentation are provided on the Leuze home page www.leuze.com.

Notice!
In order to display the help texts, a PDF viewer program (not included in the delivery contents) must also be installed. For important information on configuring and on the configurable functions, please refer to the description of the respective device.

Notice!

The size of the input and output data is permanently set for CANopen: the MA 235i always provides the process data for transmission in this form: 8 bytes $T x$ and 8 bytes Rx.

9.1 Connecting the service interface

The RS 232 service interface is connected after opening the device cover of the MA 235i via the 9 -pin Sub-D and a cross-wired null modem cable (RxD/TXD/GND). For connection, see chapter "Service interface (internal)" on page 33.
The service interface is activated with the help of the service switch and establishes a direct connection to the connected device with the "DEV" (Leuze device) or "MA" (gateway) setting.

9.2 Reading out information in Service mode

4) After starting up in the "RUN" switch position, set the service switch of the MA to the "MA" position.
${ }^{4}$ Now start one of the following terminal programs: e.g., BCL, RF, BPS Config.
Alternatively, you can also use the Windows tool "Hyperterminal".
${ }^{4}$) Start the program.
${ }^{4}$ Select the correct COM port (e.g., COM1) and set the interface as follows:

Figure 9.1: COM port settings

Notice!

Observe that STX, data, CR, LF framing must be set on the PC terminal program so that communication is possible with the connected Leuze device.

Commands

You can now call up information on the MA 235i by sending the following commands.

v	General service information.
s	Enable memory mode for the last frames.
\mathbf{l}	The memory mode shows the last RX and TX frames for ASCII and fieldbus.

[^0]
Information

Version	Version information.
Firmware date	Firmware date.

Table 9.2: General firmware information

Selected scanner	Currently selected Leuze device (selected via switch S4).
Gateway mode	Transparent or Collective mode.
Ring buffer fill level	Current fill level of the ring memory in Collective mode (ASCII->Fieldbus). 1024 bytes max.
Received ASCII Frames	Number of received ASCII frames.
ASCII Framing Error (GW)	Number of received framing errors.
Number of Received CTB's	Number of CTB commands.
Number of Received SFB's	Number of SFB commands.
Command-Buffer fill level	Current fill level of the ring memory in Command mode (fieldbus->ASCII). 1024 bytes max.
Number of send fieldbus frames	Number of frames sent via the fieldbus.
Number of invalid commands	Number of invalid commands.

Table 9.3: General gateway information

ND	Current status of ND bit.
Data loss	Current status of data loss bit.

Table 9.4: Current states of the status and control bits

ASCII-Start-Byte	Currently configured start byte (dependent on switch position S4).
ASCII-End-Byte1	Currently configured stop byte 1 (dependent on switch position S4).
ASCII-End-Byte2	Currently configured stop byte 2 (dependent on switch position S4).
ASCII baud rate	Currently configured baud rate (dependent on switch position S4).
ASCII warm start status	Indicates whether the ASCII memory has detected and accepted a valid configuration.

Table 9.5: ASCII configuration

Input Data length	Length of the data received (Rx, 8Byte).
Output Data length	Length of the data supplied (Tx, 8Byte).
Node ID	Participant address of the address switch.
Baud Rate[kBaud]	Set baud rate.

Table 9.6: CANopen parameters MA 235i

10 Telegram

10.1 Structure of the fieldbus telegram

All operations are performed by control and status bits. Two bytes of control information and two bytes of status information are available for this purpose. The control bits are a part of the output module and the status bits are a part of the input bytes. The data starts with the third byte.
If the actual data length is longer than the data length configured in the gateway, only part of the data is transmitted; the remaining data is lost. In this case, the DL (data loss) bit is set.

The following telegram structure is used between PLC -> fieldbus gateway:

7	6	5	4	3	2	1	0	Control byte 0
ND	Address 4	Address 3	Address 2	Address 1	Address 0	Broadcast	Command mode	
				CTB	SFB		R-ACK	Control byte 1
Data byte / parameter byte 0								Data
Data byte / parameter byte 1								
\ldots								

This telegram structure is used between fieldbus gateway -> PLC:

7	6	5	4	3	2	1	0		
ND	B0	DL	BLR	DEX	SMA		W-ACK		
DLC7	DLC6	DLC5	DLC4	DLC3	DLC2	DLC1	DLC0	\quad	Status byte 0
:---									

Data byte / parameter byte 0
Data byte / parameter byte 1
\ldots

Data

Only the data part with the corresponding frame (e.g., STX, CR \& LF) is then transmitted between the fieldbus gateway and the Leuze end device. The two control bytes are processed by the fieldbus gateway.
The corresponding control and status bits and their meaning are specified in section 10.2 and section 10.3.
Further information on the broadcast control bytes and address bits $0 \ldots 4$ can be found in chapter "Modular interfacing unit MA 3x (S4 switch position C)" on page 94.

10.2 Description of the input bytes (status bytes)

10.2.1 Structure and meaning of the input bytes (status bytes)

7	6	5	4	3	2	1	0
ND	B0	DL	BLR	DEX	SMA		W-ACK
DLC7	DLC6	DLC5	DLC4	DLC3	DLC2	DLC1	DLCO
Data byte / parameter byte 0							
Data byte / parameter byte 1							
\ldots							

Status byte 0

Status byte 1

Table 10.1: \quad Structure of the input bytes (status bytes)

Bits of the input byte (status byte) 0

Bit no.	Designation	Meaning
0	W-ACK	Write-Acknowledge (write confirmation when using buffer)
2	SMA	Service mode active(service mode activated)
3	DEX	Data exist (data in transmit buffer)
4	BLR	Next block ready (new block ready)
5	DL	Data loss
6	BO	Buffer overflow
7	ND	New data only in Transparent mode

Bits of the input byte (status byte) 1

Bit no.	Designation	Meaning
$0 \ldots 7$	DLC0 \ldots DLC7	Data Length Code (length of the following user data)

Notice!

T-bit means toggle bit, i.e. this bit changes its state on each event ("0" \rightarrow "1" or "1" \rightarrow "0").

10.2.2 Detailed description of the bits (input byte 0)

Bit 0: Write-Acknowledge: W-ACK
This bit is only relevant for writing slave data in blocks, see chapter 11.1.2 (buffer data on RS 232). It toggles when data from the PLC are sent to the MA with CTB or SFB.

Input data	Description	Addr.	Data type	Value range	Default
	Write-Acknowledge (write confirmation) Write handshake Indicates that the data was successfully sent by the PLC to the gateway. Write-Acknowledge is indicated via this bit. The W-ACK bit is toggled by the fieldbus gateway whenever atransmit com- mand has been successfully executed. This applies both for the transmission of data to the transmit buffer with the CTB command and for sending the transmit buffer contents with the SFB command.	0.0	Bit	O->1: Successfully written $1->0:$ Successfully written	0

Bit 2: Service mode active: SMA

Input data	Description	Addr.	Data type	Value range	Default
SMA	Service mode active (SMA) The SMA bit is set if the service switch is set to "MA" or "DEV", i.e. if the device is in eitherfieldbus gateway or Leuze device service mode. This is also indicated by a flashing PWR LED on the front side of the device. Upon changing to the nor- mal operating mode "RUN", the bit is reset.	0.2	Bit	0: Device in operat- ing mode 1: Device in service mode	Oh

Bit 3: Data exist: DEX

This bit is only relevant for reading slave data in Collective mode relevant, see chapter 11.1.1.

Input data	Description	Addr.	Data type	Value range	Default
DEX	Data exist (data in transmit buffer) Indicates that further data is stored in the transmit buffer which is ready for transmission to the control. This flag bit is always set to high ("1") by the fieldbus gateway as long as data is in the buffer.	0.3	Bit	0: No data in the transmit buffer 1: Further data in the transmit buffer	Oh

Bit 4: Next block ready to transmit: BLR

This bit is only relevant for reading slave data in Collective mode relevant, see chapter 11.1.1.

Input data	Description	Addr.	Data type	Value range	Default
	Next block ready to transmit (new block ready) The Block Ready toggle bit changes its state whenever the fieldbus gateway has removed received data from the receive buffer and registered it in the corresponding receive- data bytes. This signals to the master that the quantity of data indicated in the DLC bits to be present in the input data bytes originated in the data buffer and is current.	0.4	Bit	$0->1:$ Data transmitted $1->0:$ Data transmitted	0

Bit 5: Data loss: DL

This bit is important for monitoring data transmission in Transparent and Collective mode.

Input data	Description	Addr.	Data type	Value range	Default
	Data loss (Data transmission monitoring) This bit is set until the device is reset (bit pattern see chapter 10.4 "RESET function / deleting memory") in case gateway data was not able to be sent to the PLC and was lost. Fur- thermore, this bit is set in case the configured data frame, e.g. 8 bit, should be smaller than the data to be transmitted to the PLC, e.g. bar code with 20 digits. In this case, the first 8digits are transmitted to the PLC, the restare truncated and are lost. In this process, the Data loss bit is also set.	0.6	Bit	$0->1:$ Data loss	0
DL					

Bit 6: Buffer overflow: BO
This bit is only relevant in Collective mode.

Input data	Description	Addr.	Data type	Value range	Default
B0	Buffer overflow (buffer overflow) This flag bit is set to high ("1") when the buffer overflows. The bit is automatically reset when the buffer again has memory space available. While the B0 bit is set, the RTS sig- nal of the serial interface is deactivated. The memory size of the gateway for the data of both the PLC and the Leuze end device is 1 kByte.	0.6	Bit	$0->1$: Buffer overflow $1>0:$ Buffer 0.k.	0

Bit 7: New data: ND

This bit is only relevant in Transparent mode.

Input data	Description	Addr.	Data type	Value range	Default
ND	New data (new data) This bit is toggled on each data set that is sent from the gate- way to the PLC. This can be used to differentiate between multiple, identical data sets that are sent to the PLC.	0.7	Bit	$0->1 ; 1->0:$ On each status change for new data	0

10.2.3 Detailed description of the bits (input byte 1)

Bit 0 ... 7: Data length code: DLCO ... DLC7

Input data	Description	Addr.	Data type	Value range	Default
DLCO ... DLC7	Data length code (number of user data in bytes) Stored in these bits is the number of user data bytes trans- mitted to the PLC which follow.	1.7	Bit	1.0 $1_{\mathrm{h}}\left(00001_{\mathrm{b}}\right) \ldots$ $\mathrm{FF}_{\mathrm{h}}\left(00255_{\mathrm{b}}\right)$	Oh (00000b)

10.3 Description of the output bytes (control bytes)

10.3.1 Structure and meaning of the output bytes (control bytes)

7	6	5	4	3	2	1	0
ND	Address 4	Address 3	Address 2	Address 1	Address 0	Broadcast	Command mode
				CTB	SFB		R-ACK

Control byte 0

Control byte 1

Data byte 1
Data byte 2
\ldots

Table 10.2: Structure of the output bytes (control bytes)
Bits of the output byte (control byte) 0

Bit no.	Designation	Meaning
0	Command mode	Command mode
1	Broadcast	Broadcast (only relevant with a connected MA 3x)
$2 \ldots 6$	Address $0 . .4$	Address bits 0.. 4 (only relevant with a connected MA 3x)
7	ND	New data

Bits of the output byte (control byte) 1

Bit no.	Designation	Meaning
0	R-ACK	Read-Acknowledge
2	SFB	Send data from transmit buffer
3	CTB	Copy to transmit-buffer

10.3.2 Detailed description of the bits (output byte 0)

Bit 0: Command mode: Command mode

Output data	Description	Addr.	Data type	Value range	Default
	Command mode This bit is used to activate Command mode. In Command mode, no data is sent by the PLC to the Leuze end device via the gateway. In Command mode, various bits that execute corresponding commands depending on the selected Leuze device can be set in the data- or parameter field. For further information, see chapter 11.1.3 "Command mode".	0.0	Bit	0: Default, transpar- ent data transmis- sion $1:$ Command mode	0

The following two control bits ("Bit 1: Broadcast: Broadcast" on page 49 and "Bits 2 ... 6: address bits 0 .. 4 : address 0 .. $4^{\prime \prime}$ on page 49) are only relevant with a connected MA $3 x$. With other devices, these fields are ignored.

Bit 1: Broadcast: Broadcast

Output data	Description	Addr.	Data type	Value range	Default
Broadcast	Broadcast A broadcast only functions with a multiNet network con- nected via the MA 3x. If this bit is activated, the gateway automatically adds the broadcast command "00B" before the data. This is directed at all participants in the multiNet.	0.1	Bit	0: No broadcast $1:$ Broadcast	0

Bits 2 ... 6: address bits 0 .. 4: address 0 .. 4

Output data	Description	Addr.	Data type	Value range	Default
Address $0 . .4$	Address bits 0 .. 4 As with the broadcast command, individual devices in the multiNet can also be addressed via the MA $3 x$. In this case, the corresponding address of the device precedes the data field telegram.	$\begin{aligned} & 0.2 \\ & \ldots \\ & 0.6 \end{aligned}$	Bit	00000: Addr. 0 00001: Addr. 1 00010: Addr. 2 00011: Addr. 3 ...	0

Bit 7: New data: ND

Output data	Description	Addr.	Data type	Value range	Default
ND	New data This bit is needed if several identical pieces of data are to be sent in sequence.	0.7	Bit	$0->1 ; 1->0:$ On each status change for new data	0

10.3.3 Detailed description of the bits (output byte 1)

Bit 0: Read-Acknowledge: R-ACK

This bit is only relevant for writing slave data in blocks (Collective mode), see chapter 11.1.2.

Output data	Description	Addr.	Data type	Value range	Default
	Read-Acknowledge (read confirmation) Toggle bit: Indicates to the fieldbus gateway that the "old" data has been processed and that new data can be received. At the end of a read cycle, this bit must be toggled in order to be able to receive the next data set. This toggle bit is switched by the master after valid received data has been read out of the input bytes and the next datablock can be requested. If the gateway detects a signal change in the R-ACK bit, the next bytes are automatically written from the receive buffer to the input data words and the BLR bit tog- gled. Further toggling erases the memory (to 00h).	1.0	Bit	Written \& ready for the next transmis- sion	0

Bit 2: Send data from buffer: SFB

This bit is only relevant for writing slave data in blocks (Collective mode), see chapter 11.1.2.

Output data	Description	Addr.	Data type	Value range	Default
SFB	Send data from buffer (send data from the gateway transmit buffer to the RS 232)	Toggle bit: changing this bit causes all data which was copied to the transmit buffer of the fieldbus gateway via the CTB bit to be transmitted to the RS 232 interface or the connected Leuze device.	1.2	Bit	0->1: Data to RS 232 $1->0:$ Data to RS 232

Bit 3: Copy to transmit buffer: CTB

This bit is only relevant for writing slave data in blocks (Collective mode), see chapter 11.1.2.

Output data	Description	Addr.	Data type	Value range	Default
	Copy to transmit buffer (transmission data to transmit buffer) Toggle bit: Changing this bit writes the data from the PLC to the transmit buffer of the fieldbus gateway. This is used, for example, for long command strings which must be transmit- ted to the connected ident device. The CTB toggle bit is switched whenever transmit data is not to be sent directly via the serial interface, but instead trans- ferred to the transmit buffer.	1.3	Bit	0->1: Data in buffer 1->0: Data in buffer	0

Notice!

The state change of the CTB bit signals the MA that the data is going into the buffer; therefore, it's essential to observe the order!
When the CTB is not used, the telegram (which fits in one cycle) is transmitted directly to the RS 232 interface. Please make sure it is complete!

10.4 RESET function / deleting memory

For many applications, it is helpful to be able to reset the MA buffer (in Collective mode) or status bits.

The following bit pattern can be transmitted from the PLC for this purpose (if $>20 \mathrm{~ms}$ is pending):

$$
\begin{array}{ll}
\text { Control byte 0: } & 10101010(\mathrm{AAh}) \\
\text { Control byte 1: } & 10101010(\mathrm{AAh}) \\
\text { OUT data byte 0/parameter byte 0: } & \text { AAh } \\
\text { OUT data byte 1/parameter byte 1: } & \text { AAh }
\end{array}
$$

This sets the memory or status/control bits to 00h.
Please observe that the data image may need to be updated by toggling in Collective mode.

11 Modes

11.1 Functionality of the data exchange

The fieldbus gateway has two different modes that can be selected via the PLC:

- Transparent mode (standard setting)

In Transparent mode, all data is sent 1:1 and directly by the serial end device to the PLC. It is not necessary to use status and control bits here. However, only data bytes possible for one transmission cycle are transmitted - all others are lost.
The distance between two successive telegrams (without frame) must be more than 20 ms , since there is otherwise no clear separation between them.
ASCII characters are typically expected as data content; under certain circumstances, the MA therefore detects different control characters as invalid characters in the data range and truncates them. At 00_{n} in the data range, the MA cuts the telegram off because unnecessary bytes are also filled with 00_{h}.

- Collective mode

In Collective mode, the data of the serial end device is stored temporarily in the fieldbus gateway by toggling the CTB bit and is not sent to the PLC in blocks until prompted to do so by the PLC.
On the PLC, a status bit (DEX) then signals that new data is ready for retrieval. This data is then read out from the fieldbus gateway in blocks (toggle bit).
In order to distinguish between the individual telegrams on the PLC, in Collective mode the serial frame is sent to the PLC in addition to the data.

The size of the buffer is 1 kByte .

Notice!

In Collective mode, the CTB and SFB bits are needed for communication handling via the buffer. Telegrams that can also be completely transmitted in one cycle in Collective mode (including data frame) go directly through. If PLC data is provided and transferred without a state change of the CTB bit, it goes directly to the RS 232 interface with the set telegram data length. Incomplete (incl. data frame) or faulty telegrams can cause error messages in the connected device!

Combination with the Command mode is possible.
Data exchange in blocks must be programmed on the PLC.

11.1.1 Reading slave data in Collective mode (gateway -> PLC)

If the Leuze device transmits data to the fieldbus gateway, the data is stored temporarily in a buffer. The PLC is signaled via the "DEX" bit that data is ready for retrieval in the memory. Data is not automatically transmitted.
If no further user data is present in the MA $235 i$ ("DEX" bit = "0"), the "R-ACK" bit must be toggled once as read confirmation to release data transmission for the next read cycle.
If the buffer still contains more data ("DEX" bit = "1"), the next remaining user data present in the buffer is transmitted by toggling the "R-ACK" control bit. This process is to be repeated until the "DEX" bit returns to " 0 "; all data has then been removed from the buffer. "R-ACK" must be toggled here again once more as a terminating read confirmation in order to release data transmission for the next read cycle.
Used status and control bits:

- DLC
- BLR
- DEX
- R-ACK

11.1.2 Writing slave data in Collective mode (PLC -> gateway)

Writing in blocks

The data sent by the master to the slave is first collected in a "transmit buffer" by setting the "CTB" bit (Copy to transmit buffer). Please observe that data provided is transmitted directly by toggling the bit.
The data is then sent in the order received from the buffer to the connected Leuze device via the serial interface with the command: "SFB" (Send data from transmit buffer). Please don't forget the suitable data frame!
Afterward, the buffer is again empty and can be written with new data.

Notice!

With this function, it is possible to temporarily store longer data strings in the gateway independent of how many bytes the used fieldbus can transmit at once. With this function, longer PT sequences or RFID write sequences, for example, can be transmitted, since the connected devices can, in this way, receive their commands (e.g., PT or W) in a continuous string. The respective frame (STX CR LF) is needed to differentiate between the individual telegrams.

Used status and control bits:

- CTB
- SFB
- W-ACK

If PLC data is provided and transferred without a state change of the CTB bit, it goes directly to the RS 232 interface with the set telegram data length. Incomplete (incl. data frame) or faulty telegrams can cause error messages in the connected device!

Examples for the activation of a Leuze device

In the data part (starting at byte 2) of the telegram to the gateway, a "+" (ASCII) is sent for activation.

This means that the hex value "2B" (corresponds to a "+") is to be entered in control or output byte 2. To deactivate the reading gate, a "2D" (hex) must be used instead (corresponds to a "-" ASCII).

7	6	5	4	3	2	1	0
ND	Address 4	Address 3	Address 2	Address 1	Address 0	Broadcast	Command mode
				CTB	SFB		R-ACK

Control byte 0

Control byte 1

Data byte 1
Data byte 2
\ldots

Data

7	6	5	4	3	2	1	0	Output byte 0
0	0	0	0	0	0	0	0	Output byte 1
0	0	0	0	0	0	0	0	Output byte 2
0	0	0	0	0	0	B	2	Output byte 3
0	0	0	0	0	0	0	0	

7	6	5	4	3	2	1	0	
0	0	0	0	0	0	0	0	Output byte 0
0	0	0	0	0	0	0	0	Output byte 1
0	0	0	0	0	0	B	2	Output byte 2
0	0	0	0	0	0	0	0	Output byte 3

Collective mode sequence diagram
Send long online commands to the DEV, read RS 232 answer from DEV

Figure 11.1: Data transmission scheme with long online commands

11.1.3 Command mode

One specific feature is the so-called Command mode, which is defined via the output control byte 0 (bit 0) ... and enables the control of the connected device per bit.
If the Command mode is activated (Command mode = "1"), no data is sent by the PLC to the Leuze end device via the gateway. The data from the MA to the PLC is transmitted in the selected operating mode (Transparent/Collective).
With the Command mode, it is possible to set various device-specific bits in the data- or parameter field that execute the corresponding serial commands (e.g., v, +, -, etc.). If, for example, the version of the Leuze end device is to be queried, the corresponding bit is to be set so that a " v " is sent to the Leuze device with the $<S T X>v<C R><L F>$ frame.
The Leuze end device also answers the gateway with data (e.g. bar code content, NoRead, device version, etc.) in response to most commands. The answer is immediately passed on to the PLC by the gateway.

Notice!

The parameters available for the individual Leuze devices are listed in chapter 16.
Command mode cannot be used with hand-held scanners.

Examples for the activation of a Leuze device

In Command mode, control or output byte 0.0 is to be set for activating the Command mode. Only the corresponding bit (control or output byte 2.1) then needs to be set for activating and deactivating the reading gate.

7	6	5	4	3	2	1	0	
0	0	0	0	0	0	0	1	Output byte 0
0	0	0	0	0	0	0	0	Output byte 1
0	0	0	0	0	0	1	0	Output byte 2
0	0	0	0	0	0	0	0	Output byte 3

Command mode sequence diagram

Set control byte 0, bit 0.0 to 1

Figure 11.2: Execution of command after activation of the Command mode

Notice!

Further information on fieldbus telegram structure can be found in chapter 10.1. A specification of all usable commands can be found in chapter "Specifications for Leuze end devices" on page 80.

12 Commissioning and configuration

12.1 Measures to be performed prior to the initial commissioning

${ }^{4}$ Before commissioning, familiarize yourself with the operation and configuration of the MA $235 i$.
${ }^{4}$) Before connecting the supply voltage, recheck all connections and ensure that they have been properly made.

The Leuze device must be connected to the internal RS 232 device interface.

Connecting the Leuze device

${ }^{4}$) Open the housing of the MA 235i and guide the corresponding device cable (e.g., KB 031 for BCL 32) through the middle threaded opening.
${ }^{4}$) Connect the cable to the internal device interface (X30, X31 or X32, see chapter 7.5.1).
${ }^{4}$ Use rotary switch S4 (see chapter 8.2.5) to select the connected device.
${ }_{4}{ }^{4}$ Now screw the PG cable gland into the threaded opening to provide strain relief and ensure protection class IP 65.

Set CANopen device address

By setting the CANopen address, the MA $235 i$ is assigned its respective station number. Each network device is thereby automatically informed that it is a slave on the CANopen with its specific address and that it is initialized and queried by the PLC.
The CANopen permits an address range from 0 to 127, the MA a range from 0 to 99 . Other addresses must not be used for data communication.
${ }^{4}$ Set the station address of the gateway using the two rotary switches S1 and S2 (ones and tens places).

Figure 12.1: Rotary switch for setting the address

Set CANopen baud rate on the MA

The CANopen baud rate is defined for the entire network in the planning tool/control. The baud rate is set on the MA 235i via the baud rate selector switch. Only if the baud rates are the same is communication with the MA $235 i$ possible.
${ }_{4}^{4}$ Set the baud rate of the gateway via the S3 rotary switch to the value defined in the control.

Figure 12.2: Rotary switch for setting baud rate

Switch position	Baud rate [kBd]
0	auto
1	10
2	20
3	50
4	100
5	125
6	250
7	500
8	800
9	1000

${ }^{4}$ Finally, close the housing of the MA $235 i$.

Attention!

Only then may the supply voltage be applied.
Upon startup of the MA 235i, the device selection switch is queried and the gateway automatically sets itself to the Leuze device.

PWR IN		LEUZE Device	HOST/BUS IN	
M12 connector (A-coded)	M12 socket (A-coded)		M12 connector (A-coded)	M12 socket (A-coded)

Figure 12.3: Connections of the MA 235i seen from below, device on mounting plate
$\stackrel{4}{4}$ Check the applied voltage. It must be in the range between +18V ... 30VDC.

Connecting functional earth FE

${ }^{4}$ Ensure that the functional earth (FE) is connected correctly.
Unimpaired operation is only guaranteed when the functional earth is connected properly. All electrical disturbances (EMC couplings) are discharged via the functional earth connection.
On delivery, the SWIO 1/2 are connected in parallel on PWR IN/OUT. This connection can be separated with a jumper.

12.1.1 Connecting the power supply and the bus cable

${ }^{4}$) Ideally, use the ready-made cables listed in chapter 14.5.3 to connect the gateway to the power supply via the PWR IN connection.
4) The ready-made cables listed in chapter 14.6.4 are preferred for connecting the gateway to the fieldbus via the HOST / BUS IN connection.
${ }^{4}$) If applicable, use the BUS OUT connection if you would like to construct a network with linear topology.

12.2 Starting the device

(4) Apply the supply voltage $+18 \ldots 30 \mathrm{VDC}$ (typ. +24 VDC); the MA $235 i$ starts up. The PWR LED displays that it is ready for operation.

12.3 MA $235 i$ in the CANopen system

$\stackrel{4}{4}$ Install the EDS file corresponding to the MA 235i in your planning tool/the control.

Notice!

You can find the EDS file at: www.leuze.com

The MA $235 i$ is configured in the planning tool/control by means of the EDS file. The MA $235 i$ is assigned an address in the planning tool, which then has to be set in the MA 235i via the S1 and S2 address switches. Only if the addresses are the same between the MA 235i and the control can communication be established.

After all parameters have been set in the planning tool/control, the download to the MA $235 i$ takes place. The set parameters are now stored on the MA $235 i$.

Afterwards, all MA 235i parameters should be stored via upload in the control. This aids in retaining the parameters during device exchanges, as they a re now also stored centrally in the control.
The CANopen baud rate is defined for the entire network in the planning tool/control. The baud rate is set on the MA 235i via the S 3 baud rate selector switch.
Only if the baud rates are the same is communication with the MA 235i possible.

In a CANopen network, all participants have in principle equal privileges. Each participant can initiate its data transmission independently. Here, the arbitration specified by the CIA controls the access of the individual participants to the network. Generally, each CAN participant listens in on the bus. The transmission process is started only if the bus is not occupied by another CAN participant. When transmitting, the current bus status is always compared to the own transmitted frame.
If several participants start a transmission simultaneously, the arbitration process decides which participant gains access to the network next. The individual participants are integrated into a prioritization scheme via their bus address and the type of data to be transmitted (index address of the data). Process data (PDOs) of a device are transmitted with a higher priority than, for example, variable objects (SDOs) of a device.
The node address of the participant is another criterion for prioritizing a participant in the network. The smaller the node address, the higher the priority of the participant in the network.
Since every participant compares its own priority with that of the other participants at the time of bus access, the participants with low priority discontinue their transmission activities immediately. The participant with the highest priority obtains temporary access to the bus. The arbitration process controls the access of all participants so that even participants with a low priority have access to the bus.

12.4 Starting the MA 235i in the CANopen system

During starting up, the gateway runs through different states which are explained in brief in the following.

INIT

The MA $235 i$ initializes itself. No direct communication between the master and MA $235 i$ is possible. The CANopen master will transfer the MA $235 i$ step by step into the "operational" state.

In the status change from "INIT" to "PREOP", the TwinCAT or master writes the so-called CANopen address (=station address) to the respective register of the CANopen slave controller (here: MA 235i). This CANopen address is typically specified in relation to the position, i.e., the master's address is 1000, the first slave's address is 1001, etc. This is also called the auto-increment method.

PRE-OPERATIONAL

The master and the MA $235 i$ exchange application-specific initializations and devicespecific parameters. In the PRE-OPERATIONAL state, configuration is initially possible via SDOs only.

SAFE-OPERATIONAL

The "Start Input Update" command puts the gateway into the "Safe-Operational" state. The master produces output data, but input data are not considered. This means the MA 235i does not return output data (=PLC input data) in SAFEOP. The gateway does not process input process data (=PLC output data). Mailbox communication via CoE services is possible.

OPERATIONAL

The "Start Output Update" command puts the gateway into the OPERATIONAL state. In this state, the MA $235 i$ supplies valid input data and the master valid output data. After the MA 235i has detected the data received via the process data service, the state transition is confirmed by the MA 235i. If the activation of the output data was not possible, the gateway remains in the SAFE OPERATIONAL state and outputs an error message.

12.4.1 Device profile

CANopen describes the characteristics of participants in so-called profiles. However, a device profile for gateways is not defined.
The MA $235 i$ is designed as a slave participant and cannot take on master functionality.

12.4.2 Object directories

All process data and parameters are stored as objects in the MA 235i. The object directory of the MA $235 i$ is the compilation of all process data and parameters of the gateway.
An object directory is structured such that some objects within a device profile are mandatory while others are freely definable and stored in the manufacturer-specific object area.
The objects are uniquely identified using an index addressing scheme. The structure of the object directory, the assignment of the index numbers, as well as some mandatory entries are specified in the CIA standard DS301 for CANopen.

EDS file

For the user, the object directory of the MA 235i is stored as an EDS file (Electronic Data Sheet).
The EDS file contains all objects with index, sub-index, name, data type, default value, minimum and maximum, and access privileges. That means the EDS file describes the entire functionality of the MA 235i, and it is possible to adjust both the communication of the gateway with the control and the RS 232 interface.

Notice!
The size of the input and output data is permanently set for CANopen: the MA 235i always provides the process data for transmission in this form: 8 bytes $T x$ and 8 bytes Rx.

The EDS file has the name MA 235i.eds and is available for download on the Leuze home page.

Vendor ID for the MA 235i

The Vendor ID assigned by Leuze electronic for the MA $235 i$ is $121_{h}=289_{d}$.
Detailed information on the device description file and the object directory can be found in chapter 12.4.6.

12.4.3 SDOs and PDOs

The data exchange in CANopen distinguishes between service data objects (SDOs), which are used for transmitting the service data (parameters) from and to the object directory, and process data objects (PDOs), which are used to exchange the current process states.

12.4.4 SDOs

By using SDOs, all entries of the object directory can be accessed. Within one SDO call, only one object can be accessed at any one time. For this reason, a service data telegram must have a protocol structure which describes the exact target address by means of index and sub-index addressing. SDO telegrams place a part of the SDO addressing into the user data area. Eventually, a user data area with a width of 4 bytes out of the possible 8 bytes of user data remains for each SDO telegram.
The target address always responds to SDO transfers.
In the following, the index and sub-index address of the MA 235i parameters and variables can be found in the individual object descriptions.

12.4.5 PDOs

PDOs are objects (data, variables and parameters) from the object directory compiled (mapped) by the device manufacturer. A maximum of 8 bytes of user data from various objects can be mapped into one PDO.
A PDO can be received and evaluated by each participant (node). The model is referred to as the producer-consumer procedure.
Since there is no protocol structure in the telegram of a PDO, the participants in the network for whom these data are intended must know how the user data in the data area of the PDO are structured (which data are stored where in the user data area).

The exchange of process data is supported by the MA $235 i$ via the following accesses:

- Event-controlled data transfer

Here, the data of a node are transmitted as a message whenever a change to the present state occurs.

- Polling with remote frames

The CAN node which has been defined as master in the network requests the desired information via query (via remote frame). The participant which has this information (or the required data) responds by sending the requested data.

- Synchronized mode

CANopen permits simultaneous querying of inputs and states of different participants and the simultaneous change of outputs or states. For this purpose, one uses the synchronization telegram (SYNC) transmitted by a master.
The SYNC telegram is a broadcast to all network devices with high priority and without data content. Generally, the master sends the SYNC telegram cyclically.
Participants working in synchronized mode read their data when receiving the SYNC message and then transmits them immediately afterwards as soon as the bus permits this (see explanation regarding arbitration process).
As the SYNC process can very quickly lead to high bus loads, another distinction is made between "event-controlled synchronization" and a "timer synchronization".

- Time-controlled transmission

In this case, the transmission of a PDO is triggered when an adjustable time period has elapsed. The time-controlled transmissions are set individually for each PDO via the so-called "inhibit time" or an "event timer". The respective parameters can be found in the objects 1800_{h} to 1803_{h} for the corresponding PDOs.

- Node monitoring

Heartbeat and guarding mechanisms are available for failure monitoring of the MA 235i. This is particularly important for CANopen, as the MA 235i may not respond regularly in the event-controlled operating mode. In case of guarding, the participants are cyclically queried for their state via data request telegrams (remote frame). In case of heartbeat, the nodes transmit their state themselves.
Heartbeat and guarding / life time are standard communication objects from the DS301 CANopen specification. The corresponding objects here are:

- Heartbeat 1017h
- Guarding / Life time factor $100 C_{h}$ and $100 D_{h}$

12.4.6 Object index

The object directory of the MA $235 i$ is the compilation of all process data and parameters of the MA.
The following overview table shows all objects supported by the MA $235 i$.

Object address in hex	CANopen-specific object area
1000	Device Type
1008	Manufacturer Device Name (contains the device name of the manufacturer)
1018	Identity Object (contains general information regarding the device)
2000	Inputs (Input Data, 8 bytes by 8 bytes (Rx))
2200	Outputs (Output Data, 8 bytes by 8 bytes (Tx))
3000	Serial line mode
3001	Serial Settings (RS 232)

Afterwards, you will find the respective detailed descriptions of the individual objects.

12.4.6.1 Object 1000_{n} Device Type

The object describes the MA $235 i$ device type.

Index	Sub- index	Name	Data type	Access	Value range			Remark
(hex)	(hex)				Minimum	Maximum	Default	
1000	--	Device type	u32	ro	--	--	0000	

12.4.6.2 Object 1008 ${ }_{\mathrm{h}}$ Manufacturer Device Name

This object contains the name of the gateway.

Index	Sub- index (hex)	Name	Data type	Access	Value range			Remark
(hex)		Minimum	Maximum	Default				
1008	--	Manufac- turer Device Name	u32	ro	--	--	MA235i V1.x.x.x	Device names of the manufacturer

12.4.6.3 Object 1018 ${ }_{\mathrm{h}}$ Manufacturer Device Name

This object contains general specifications about the MA $235 i$.

Index	Sub- index (hex)	Name	Data type	Access	Value range			Remark
1018	01	Vendor ID	u32	ro	--	--	121_{h}	Manufacturer ID number
	02	Product Code	u32	ro	--	--	$\mathrm{F1}_{\mathrm{h}}$	
	03	Revision	u32	ro	--	--	--	
	04	Serial Number	u32	ro	--	--		

The Vendor ID assigned by Leuze electronic for the MA $235 i$ is $121_{h}=289_{d}$.

12.4.6.4 Object $\mathbf{2 0 0 0}_{\mathrm{h}}$ Inputs

The object describes the input data of the MA 235i, which is transmitted cyclically, 8 bytes by 8 bytes ($R x$).

Index	Sub-	Name	Data type	Access	Value range			Remark
(hex)	(hex)				Minimum	Maximum	Default	
2000	--	8 Byte Input	u32	rw		--	x00	

12.4.6.5 Object 2200_{h} Outputs

The object describes the output data of the MA 235i, which is transmitted cyclically, 8 bytes by 8 bytes (Tx).

Index	Sub- index (hex)	Name	Data type	Access	Value range			Remark
(hex)				Minimum	Maximum	Default		
2200	--	8 Byte 0utput	u32	rw	--	--	x00	

12.4.6.6 Object 3000_{h} Serial Line Mode

The object describes the function mode of the MA $235 i$.

Index	Sub- index (hex)	Name	Data type	Access	Value range		Remark	
(hex)			Minimum	Maximum	Default			
3000	--	Data Mode	u32	rw	--	--	Transparent Mode (0)	

Parameter value:
$0=$ Transparent Mode
$1=$ Collective Mode

12.4.6.7 Object 3001_{h} Serial Settings

The object describes the serial RS 232 settings of the MA $235 i$.

Index	Sub- index (hex)	Name	Data type	Access	Value range		Remark	
3001	--	Serial Set- tings	u 32	rw	--	--		Minimum

Use Rotary Switch

Parameter value:
$0=$ use rotary switch (default)
$1=$ use EDS settings

RS 232 Baud Rate

Parameter value:

$$
\begin{aligned}
3 & =300 \\
6 & =600 \\
12 & =1200 \\
24 & =2400 \\
48 & =4800 \\
96 & =9600 \text { (default) } \\
192 & =19200 \\
384 & =38400 \\
576 & =57600 \\
1152 & =15200
\end{aligned}
$$

RS 232 Data Bits

Parameter value:
$7=7$ bits
$8=8$ bits (default)

RS 232 Parity

Parameter value:
1 = none (default)
2 = even
3 = odd

RS 232 Stop Bits

Parameter value:
$1=1$ bit (default)
$2=2$ bits

12.5 Setting the read parameters on the Leuze device

Commissioning the Leuze device

To commission a read station, you must prepare the Leuze device on the MA 235i for its reading task. Communication with the Leuze device occurs via the service interface.

Notice!

For further information on connecting and using the service interface, see chapter 9 "Configuration".

↔ To do this, connect the Leuze device to the MA 235i.
Depending on the Leuze device, this occurs either via a connection cable (accessory no.: KB 031-1000) or directly on the MA 235i. The service connector and corresponding switches can be accessed with the housing cover open.
${ }^{\Perp}$ Select the "DEV" service switch position.

Connect the service interface; call up the terminal program

${ }^{4}$ Connect your PC to the service connector via the RS 232 cable.
${ }_{4}{ }^{4}$ On the PC, call up a terminal program (e.g., BCL-Config) and check whether the interface (COM 1 orCOM 2) to which you have connected the MA 235i is set to the following Leuze standard setting: 9600 baud, 8 data bits, no parity, 1 stop bit and STX, data, CR, LF.

You can download the config. tool from www.leuze.com for BCL, RFID, VR etc.

In order to communicate with the connected Leuze device, the STX, data, CR, LF framing must be set on the PC terminal program, as the Leuze device is preconfigured ex works for this frame character.

STX (O2h):	
CR (ODh):	
LF (OAh):	
	Postfix 1
Postfix 2	

Operation

${ }^{4}$ Switch the MA 235i to switch position "RUN" (operation).
The Leuze device is now connected to the fieldbus. Activation of the Leuze device can now occur via the switching input on the MA 235i, via the process data word Out bit 1 (bit 0.2) or by transmitting a "+" command to the Leuze device (see chapter 16 "Specifications for Leuze end devices"). For further information on the fieldbus transmission protocol, see chapter 10 "Telegram".

Reading out information in service mode

${ }^{4}$ Set the service switch of the gateway to switch position "MA" (gateway).
${ }^{4}$ Send a " v " command to call up all service information of the MA $235 i$.
An overview of the available commands and information can be found in chapter "Reading out information in Service mode" on page 41.

12.5.1 Specific feature for the use of hand-held scanners

 (bar code and 2D devices, combi devices with RFID)

Notice!

A description of the device configuration and the required codes can be found in the respective documentation at www.leuze.com.
12.5.1.1 Cable-connected hand-held scanners on the MA 235i

All hand-held scanners and mobile combi devices available in the Leuze electronic product line can be used with the corresponding connection cable.
When using the MA 235i, the voltage supply of the hand-held scanner ($4.75 \ldots 5.25 \mathrm{VDC} /$ at 1 A) can be connected to the interface by means of a cable via the 9 -pin Sub-D connector (voltage on PIN 9). The corresponding cable is to be selected for the respective hand-held scanner and ordered separately. The 9-pin Sub-D cable (KB JST-HS-300, part no. 50113397) is connected to this cable, which is connected to the MA 235i. This cable must also be ordered separately.
In this example, triggering occurs by means of a trigger button on the hand-held scanner.

Notice!

When using third-party devices, check the pin assignment and interface settings without fail and adjust them if necessary.

12.5.1.2 Wireless hand-held scanners on the MA 235i

All wireless hand-held scanners and mobile combi devices available in the Leuze electronic product line can be used with the corresponding connection cable via the base station.
A 230VAC connection (socket) is usually necessary for the charging station. Here, a data connection of the charging station is established with the MA 235i. The corresponding cable is to be selected for the respective hand-held scanner and ordered separately. The 9-pin Sub-D cable (KB JST-HS-300, part no. 50113397) is connected to this cable, which is connected to the MA 235i. This cable must also be ordered separately.
In this example, triggering occurs by means of a trigger button on the hand-held scanner. The following codes for configuring the devices are necessary for these devices as well.

12.5.2 Specific features in the operation of an RFM/RFI

When using the MA $235 i$ in connection with an RFID device, we recommend a data width of at least 24 bytes to be able to transmit information to or from the reader in a telegram.

Shown here is a sample telegram for a write command in combination with an RFID device.

Notice!

Also note that all characters which are sent to a transponder are hex-encoded ASCII characters. Each of these (hexadecimal) characters is, in turn, to be handled as an individual ASCII character and converted to hexadecimal format for transmission via the fieldbus.

Example:

7	6	5	4	3	2	1	0
00	00	00	00	00	00	00	00
00	00	00	00	00	00	00	00

34	35	31	31	30	35	30	57
00	00	34	37	33	37	35	36

13 Diagnostics and troubleshooting

If problems should occur during commissioning of the MA 235i you can refer to the following table. Typical errors and their possible causes are described here as well as tips for their elimination.

13.1 General causes of errors

Error	Possible error causes	Measures
No data to the PLC	Device setting incorrect.	Adjust device settings (data protocol, baud rate, etc.).
No data sporadically and/or the device "stalls"	Problems with the voltage supply.	Check voltage range, supply separately if needed.
Data loss (DL bit)	Data telegram longer than the bus telegram in bus cycle/memory size.	Increase in bus telegram length. Toggle out data earlier.
Data in the RS 232 instead of in the buffer	Incorrect order.	Correct order: Provide data, toggle CTB.
PWR status LED on the circuit board		
Off	No supply voltage connected to the device.	Check supply voltage.
	Hardware error.	Send the device to customer service.
Green/orange, flashing	Device in boot mode.	No valid firmware, send device to customer service.
Continuous orange	Device error.	Send the device to customer service.
light	Firmware update failed.	
PWR LED on the housing (see figure 5.1 on page 22)		
Off	No supply voltage connected to the device.	Check supply voltage.
Green, flashing	SERVICE active.	Service switch on RUN.
Red, flashing	Incorrect baud rate / address.	Check switch settings. Check baud rate or address.
Red continuous light	Device error.	Send the device to customer service.
CAN LED on the housing (see figure 5.1 on page 22)		
Off	No connection.	Check wiring/IP address.

Table 13.1: General causes of errors

13.2 Interface errors

Error	Possible error causes	Measures
No communication via CANopen interface CAN continuous red light LED	Incorrect wiring. Incorrect baud rate / address different baud rate setting in con- trol and MA: no communication. Address >99: no communication.	Check wiring. Check switch settings. Baud rate selector switch S3.
Sporadic errors at the CANopen interface	Efdress switch S1, S2.	

Figure 13.1: Interface error

Notice!

Please use chapter 13 as a master copy should servicing be required.
Cross the items in the "Measures" column which you have already examined, fill out the following address field and fax the pages together with your service contract to the fax number listed below.

Customer data (please complete)

Device type:	
Company:	
Contact partner / department:	
Phone (direct):	
Fax:	
Street / No:	
ZIP code/City:	
Country:	

Leuze Service fax number:
 +497021 573-199

14 Type overview and accessories

14.1 Part number code

MA $\mathbf{2 x x}$ i

	$\mathrm{i}=$	Integrated fieldbus technology
Interface	04	PROFIBUS DP
08	Ethernet TCP/P	
35	CANopen	
38	EtherCAT	
48	PROFINET RT	
55	DeviceNet	
58	EtherNet/IP	
MA	Modular interfacing unit	

14.2 Type overview

Type designation	Description	Description
MA 204i	PROFIBUS gateway	50112893
MA 208i	Ethernet TCP/IP gateway	50112892
MA 235i	CANopen gateway	50114154
MA 238i	EtherCAT gateway	50114155
MA 248i	PROFINET-IO RT gateway	50112891
MA 255i	DeviceNet gateway	50114156
MA 258i	EtherNet/IP gateway	50114157

Table 14.1: Type overview MA 2xxi

14.3 Accessory terminating resistor

Type designation	Description	Part no.
TS 01-4-SA	120 ohm M12 terminating resistor for CANopen	50040099

Table 14.2: Accessory terminating resistor

14.4 Accessory connectors

Type designation	Description	Description
KD 095-5A	M12 socket for voltage supply	50020501
KS 095-4A	M12 connector for SW IN/OUT	50040155

Table 14.3: Connectors for the MA $235 i$

14.5 Accessory ready-made cables for voltage supply

14.5.1 Contact assignment of PWR connection cable

PWR IN (5-pin socket, A-coded)			
PWR IN SWIO 2	Pin	Name	Core color
	1	VIN	brown
2	2	SWIO_2	white
	3	GND	blue
0^{5}	4	SWIO_1	black
4 FE	5	FE	gray
M12 socket (A-coded)	Thread	FE	bare

PWR OUT (5-pin connector, A-coded)			
PWR OUT M12 connector (A-coded)	Pin	Name	Core color
	1	VOUT	brown
	2	SWIO_2	white
	3	GND	blue
	4	SWIO_1	black
	5	FE	gray
	Thread	FE	bare

14.5.2 Specifications of the cables for voltage supply

Operating temperature range	in rest state:	$-30^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
	in motion:	$5^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
Material	sheathing: PVC	
Bending radius	$>50 \mathrm{~mm}$	

14.5.3 Order codes of the cables for voltage supply

Type designation	Description	Part no.
K-D M12A-5P-5m-PVC	M12 socket for PWR, axial plug outlet, open cable end, cable length 5m	50104557
K-D M12A-5P-10m-PVC	M12 socket for PWR, axial plug outlet, open cable end, cable length 10m	50104559

Table 14.4: \quad PWR cables for the MA $235 i$

14.6 Accessory ready-made cables for bus connection

14.6.1 General information

- Cable KB DN... for connecting to CANopen via M12 connector
- Standard cable available in lengths from $2 \ldots 30 \mathrm{~m}$
- Special cables on request

14.6.2 Contact assignment of M12-CANopen connection cable KB DN...

14.6.3 Specifications of M12-CANopen connection cable KB DN...

Operating temperature range

Material

Bending radius
in rest state: $\quad-40^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$ in motion: $\quad-5^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$
the cables comply with the CANopen requirements, free of halogens, silicone and PVC
$>80 \mathrm{~mm}$, suitable for drag chains

14.6.4 Order codes of M12-CANopen connection cable KB DN...

Type designation	Remark	Part no.
KB DN/CAN-2000-BA	M12 socket for BUS IN, axial connector, open cable end, cable length 2 m	50114692
KB DN/CAN-5000-BA	M12 socket for BUS IN, axial connector, open cable end, cable length 5 m	50114696
KB DN/CAN-10000-BA	M12 socket for BUS IN, axial connector, open cable end, cable length 10 m	50114699
KB DN/CAN-30000-BA	M12 socket for BUS IN, axial connector, open cable end, cable length 30 m	50114701
KB DN/CAN-2000-SA	M12 plug for BUS OUT, axial connector, open cable end, cable length 2 m	50114693
KB DN/CAN-5000-SA	M12 plug for BUS OUT, axial connector, open cable end, cable length 5 m	50114697
KB DN/CAN-10000-SA	M12 plug for BUS OUT, axial connector, open cable end, cable length 10 m	50114700
KB DN/CAN-30000-SA	M12 plug for BUS OUT, axial connector, open cable end, cable length 30 m	50114702
KB DN/CAN-1000-SBA	M12 plug + M12 socket for CANopen, axial connectors, cable length 1 m	50114691
KB DN/CAN-2000-SBA	M12 plug + M12 socket for CANopen, axial connectors, cable length 2 m	50114694
KB DN/CAN-5000-SBA	M12 plug + M12 socket for CANopen, axial connectors, cable length 5 m	50114698

Table 14.5: Bus connection cable for the MA 235i

14.7 Accessory ready-made cables for connecting Leuze Ident devices

14.7.1 Order codes for the device connection cables

Type designation	Description	Part no.
KB JST-3000	MA 31, BCL 90, IMRFU-1(RFU), cable length 3m	50115044
KB JST-HS-300	Hand-held scanner, cable length 0.3m	50113397
KB JST-M12A-5P-3000	BPS 8, BCL 8, cable length 3m	50113467
KB JST-M12A-8P-Y-3000	LSIS 4x2i, cable length 3m	50113468
KB JST-M12A-8P-3000	LSIS 122, cable length 3m	50111225
K-D M12A-5P-5m-PVC	Voltage supply, cable length 5m	50104557
K-D M12A-5P-10m-PVC	Voltage supply, cable length 10m	50104559
K-DS M12A-MA-5P-3m-S-PUR	ODS 96B with RS 232	50115049
K-DS M12A-MA-8P-3m-S-PUR	ODSL 30/D 232-M12	50115050
K-DS M12A-MA-5P-3m-1S-PUR	Konturflex Quattro RSX	50116791
KB AMS 1000 SA	AMS 200, cable length 1m	50106978
KB 500-3000-Y	BCL 500i, cable length 3m	50110240
KB 031 1000	BCL 32, cable length 1m	50103621
KB 031 3000	BCL 32, cable length 3m	50035355
KB 301-3000-MA200	BCL 300i, cable length 3m	50120463

Table 14.6: Device connection cables for the MA 235i

Notice!

The BCL 22 devices with JST connector, RFM xx and RFI xx can be connected directly with the injection molded device cable.

14.7.2 Contact assignment for the device connection cables

K-D M12A-5P-5000/10000 connection cable (5-pin with molded connector), open cable end		
3 2	Pin	Core color
	1	brown
	2	white
	3	blue
	4	black
	5	gray
KB JST 3000 (RS 232 connection cable, JST pin strip 10-pin, open cable end)		
Signal	Core color	JST 10-pin
TxD 232	red	5
RxD 232	brown	4
GND	orange	9
FE	shield	10

15 Maintenance

15.1 General maintenance information

The MA $235 i$ does not require any maintenance by the operator.

15.2 Repairs, servicing

Repairs to the device must only be carried out by the manufacturer.
${ }^{4}$ Contact your Leuze distributor or service organization should repairs be required.
The addresses can be found on the inside of the cover and on the back.

Notice!

When sending devices to Leuze electronic for repair, please provide an accurate description of the error.

15.3 Disassembling, packing, disposing

Repacking

For later reuse, the device is to be packed so that it is protected.

Notice!

Electrical scrap is a special waste product! Observe the locally applicable regulations regarding disposal of the product.

16 Specifications for Leuze end devices

Serial interface and Command mode

The corresponding Leuze end device can be selected while configuring the fieldbus gateway (see chapter 9 "Configuration").
The exact specifications for the individual Leuze end devices can be found in the following sections and in the device description.
The corresponding serial command is sent to the Leuze end device in Command mode. To send the corresponding command to the RS 232 device after activating the Command mode in byte 0 (control bit 0.0), set the corresponding bit in byte 2 .
The Leuze end device also responds to most commands by sending data, such as the bar code contents, NoRead, device version, etc., back to the gateway. The answer is not evaluated by the gateway, but is instead passed on to the PLC.
For the BPS 8, AMS and hand-held scanners, a number of specific features are to be noted.

Notice!

Please note that Leuze only assumes liability for the function of Leuze products. When using third-party devices, Leuze does not assume liability for the function of third-party devices!

16.1 Standard setting, KONTURflex (S4 switch position 0)

This switch position can be used with almost all devices, since a data frame is transmitted along with it if necessary. A 00 h in the data range of the control is interpreted as the end of a telegram/invalid, however.
The distance between two successive telegrams (without frame) must be more than 20 ms in this switch position, since there is otherwise no clear separation between them. If necessary, the settings have to be adjusted on the device.
Leuze measuring sensors with RS 232 interface (such as a KONTURflex Quattro RS) do not necessarily use a telegram frame, which is why these are also operated in switch position 0.

Specifications for the serial interface

Default parameter	Standard
Baud rate	9600
Data mode	8 N 1
Handshake	no
Protocol	framing protocol without acknowledgment
Frame	<Data $>$
Data Mode	transparent

Notice!

The data frame is specified via the switch position. Only the data mode and the baud rate can also be set via the EDS file.
The factory setting corresponds to S4 switch position 0 .

KONTURflex specifications

Settings on the MA 235i

- CANopen address is freely selectable
- Device selection switch at position "0"

Settings on the CANopen

- Produced/Consumed data settings:

Dependent on number of beams used, but at least " 8 bytes in"

- User Parameters:
"Transparent Mode", "Use EDS Settings", Baudrate 38400, "8 Data Bits", "No parity", "2 Stop Bits"

KONTURflex settings
First, the following settings are to be performed on the device using KONTURFlex-Soft:

- Either "Autosend (fast)" or "Autosend with data in Modbus format"
- Repeat time "31.5ms"
- Autosend baud rate " 38.4 KB "
- 2 stop bits, no parity

16.2 Bar code reader BCL 8 (S4 switch position 1)

Specifications for the serial interface

Default parameter	BCL 8
Baud rate	9600
Data mode	$8 N 1$
Handshake	no
Protocol	framing protocol without acknowledgment
Frame	$<$ STX $><$ Data $><$ CR $><$ LF $>$

Specifications for Command mode

To activate the Command mode, bit 0 must be set to 1 in control byte 0 .
For further information, see chapter 11.1.3 "Command mode", figure 11.2.

Control bit	Meaning	Corresponds to serial command (ASCII)
0	Version query	V
1	Activation / deactivation reading gate	+ / -
2	Reference-code 1 teach-in	RT1
3	Reference-code 2 teach-in	RT2
4	Automatic configuration of reading task activation / deactivation	CA+ / CA-
5	Switching output 1 activation	OA1
6		
7	Switching output 1 deactivation	OD1
8	System standby	SOS
9	System active	SON
10	Query reflector polling	AR?
11	Output version of the boot kernel with check sum	VB
12	Output version of the decoder program with check sum	VK
13	Reset parameters to default values	PC20
14	Device restart	H

Recommended settings

- Input data: 8 bytes

Use of the Collective mode for codes with a number of digits >4.

- Output data: 8 bytes

16.3 Bar code reader BCL 22 (S4 switch position 2)

Specifications for the serial interface

Default parameter	BCL 22
Baud rate	9600
Data mode	8 N 1
Handshake	no
Protocol	framing protocol without acknowledgment
Frame	$<$ STX $><$ Data $><$ CR $><$ LF $>$

Specifications for Command mode

To activate the Command mode, bit 0 must be set to 1 in control byte 0 .
For further information, see chapter 11.1.3 "Command mode", figure 11.2.

Control bit	Meaning	Corresponds to serial command (ASCII)
0	Version query	V
1	Activation / deactivation reading gate	+ /-
2	Reference-code 1 teach-in	RT1
3	Reference-code 2 teach-in	RT2
4	Automatic configuration of reading task activation / deactivation	CA+ / CA-
5	Switching output 1 activation	OA1
6	Switching output 2 activation	OA2
7	Switching output 1 deactivation	OD1
8	Switching output 2 deactivation	OD2
9		
10		VB
11	Output version of the boot kernel with check sum	VK
12	Output version of the decoder program with check sum	PC20
13	Reset parameters to default values	H
14	Device restart	
15		

Recommended settings

- Input data: 8 bytes

Use of the Collective mode for codes with a number of digits >4.

- Output data: 8 bytes

16.4 Bar code reader BCL 32 (S4 switch position 3)

Specifications for the serial interface

Default parameter	BCL 32
Baud rate	9600
Data mode	8 N 1
Handshake	no
Protocol	framing protocol without acknowledgment
Frame	$<$ STX $><$ Data $><$ CR $><$ LF $>$

Specifications for Command mode

To activate the Command mode, bit 0 must be set to 1 in control byte 0 .
For further information, see chapter 11.1.3 "Command mode", figure 11.2.

Control bit	Meaning	Corresponds to serialcommand (ASCII)
0	Version query	V
1	Activation / deactivation reading gate	$+/-$
2	Reference code teach-in activation / deactivation	$/$ I
3	Automatic configuration of reading task activation / deactivation	CA+ / CA-
4	Switching output 1 activation	OA1
5	Switching output 2 activation	OA2
6	Switching output 1 deactivation	OD1
7	Switching output 2 deactivation	OD2
8		
9		
10		PC20
11		H
12		
13	Reset parameters to default values	
14	Device restart	
15		

Recommended settings

- Input data: 8 bytes

Use of the Collective mode for codes with a number of digits >4.

- Output data: 8 bytes

16.5 Bar code reader BCL 300i, BCL 500i (S4 switch position 4)

Specifications for the serial interface

Default parameter	BCL 300i, BCL 500i
Baud rate	9600
Data mode	8 N 1
Handshake	no
Protocol	framing protocol without acknowledgment
Frame	$<$ STX $><$ Data $><$ CR $><$ LF $>$

Specifications for Command mode

To activate the Command mode, bit 0 must be set to 1 in control byte 0 .
For further information, see chapter 11.1.3 "Command mode", figure 11.2.

Control bit	Meaning	Corresponds to serial command (ASCII)
0	Version query	V
1	Activation / deactivation reading gate	$+/-$
2	Reference code teach-in activation / deactivation	RT + / RT-
3		
4	Autom. configuration of reading task activation / deact.	CA+ / CA-
5	Switching output 1 activation	OA1
6	Switching output 2 activation	OA2
7	Switching output 1 deactivation	OD1
8	Switching output 2 deactivation	OD2
9		
10		
11		PD20
12		Parameter - difference to default parameter set
13	Reset parameters to default values	H
14	Device restart	
15		

Recommended settings

- Input data: 8 bytes

Use of the Collective mode for codes with a number of digits >4.

- Output data: 8 bytes

16.6 Bar code reader BCL 90 (S4 switch position 5)

Specifications for the serial interface

Default parameter	BCL 90
Baud rate	9600
Data mode	8 N 1
Handshake	no
Protocol	framing protocol without acknowledgment
Frame	$<$ STX $><$ Data $><$ CR $><$ LF $>$

Specifications for Command mode

To activate the Command mode, bit 0 must be set to 1 in control byte 0 .
For further information, see chapter 11.1.3 "Command mode", figure 11.2.

Control bit	Meaning	Corresponds to serial command (ASCII)
0	Version query	V
1	Activation / deactivation reading gate	$+/-$
2	Configuration mode	11
3	Alignment mode	12
4	Read operation	13
5		
6		
7		
8		
9		H
10		
11		
12	Reset parameters to default values	
13	Device restart	
14		

Recommended settings

- Input data: 8 bytes Use of the Collective mode for codes with a number of digits >4.
- Output data: 8 bytes

Notice!

When using the command mode, make sure that 00 H is shown in the data range; otherwise the device only performs one alignment cycle.

16.7 LSIS 122 (S4 switch position 6)

Specifications for the serial interface

Default parameter	LSIS 122
Baud rate	9600
Data mode	8 N 1
Handshake	no
Protocol	framing protocol without acknowledgment
Frame	$<$ STX $><$ Data $><$ CR $><$ LF $>$

Specifications for Command mode

To activate the Command mode, bit 0 must be set to 1 in control byte 0 .
For further information, see chapter 11.1.3 "Command mode", figure 11.2.

Control bit	Meaning	Corresponds to serialcommand (ASCII)
0	Version query	i
1	Activation/Deactivation of reading gate: $12 \mathrm{~h} / 14 \mathrm{~h}$	<DC2>/<DC4>
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
13		
14		

Recommended settings

- Input data: 8 bytes

Use of the Collective mode for codes with a number of digits >4.

- Output data: 8 bytes

16.8 LSIS 4x2i (S4 switch position 7)

Specifications for the serial interface

Default parameter	LSIS 4x2i
Baud rate	9600
Data mode	8 N 1
Handshake	no
Protocol	framing protocol without acknowledgment
Frame	$<$ STX $><$ Data $><$ CR $><$ LF $>$

Specifications for Command mode

To activate the Command mode, bit 0 must be set to 1 in control byte 0 .
For further information, see chapter 11.1.3 "Command mode", figure 11.2.

Control bit	Meaning	Corresponds to serial command (ASCII)
0	Version query	V
1	Image acquisition trigger	+
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
13		
14		
15		

Recommended settings

- Input data: 8 bytes

Use of the Collective mode for codes with a number of digits >4.

- Output data: 8 bytes

16.9 Hand-held scanner (S4 switch position 8)

Specifications for the serial interface

Default parameter	Hand-held scanner
Baud rate	9600
Data mode	8 N 1
Handshake	no
Protocol	framing protocol without acknowledgment
Frame	<Data $><$ CR $><$ LF $>$

Notice!

Command mode cannot be used with hand-held scanners.

Recommended settings

- Input data: 8 bytes

Use of the Collective mode for codes with a number of digits >4.

- Output data: none

16.10 RFI, RFM, RFU RFID readers (S4 switch position 9)

Specifications for the serial interface

Default parameter	RFM 12,RFM 32 and RFM 62 RFI 32 RFU (via IMRFU)
Baud rate	9600
Data mode	$8 N 1$
Handshake	no
Protocol	framing protocol without acknowledgment
Frame	$<$ STX $><$ Data $><$ CR $><$ LF $>$

Specifications for Command mode

To activate the Command mode, bit 0 must be set to 1 in control byte 0 .
For further information, see chapter 11.1.3 "Command mode", figure 11.2.

Control bit	Meaning	Corresponds to serial command (ASCII)
0	Version query	$\mathrm{V}^{\text {1) }}$
1	Activation / deactivation reading gate	$+/-$
2		
3		
4		
5		
6		
7		R^{11}
8		H
9		
10		
11		
12	Reset parameters to default values	
13	Device restart	
14		
15		

1) Not for IMRFU/RFU

Recommended settings

- Input data: 8 bytes

Use of the Collective mode for codes with a number of digits >4.

- Output data: 8 bytes

The RFID devices expect the telegrams / data in HEX format.

16.11 BPS 8 bar code positioning system (S4 switch position A)

Specifications for the serial interface

Default parameter	BPS 8
Baud rate	57600
Data mode	8 N 1
Handshake	no
Protocol	binary protocol without acknowledgment
Frame	<Data>

Specifications for Command mode

To activate the Command mode, bit 0 must be set to 1 in control byte 0 .
For further information, see chapter 11.1.3 "Command mode", figure 11.2.

Control bit	Meaning	Corresponds to serial command (HEX)	
		byte 1	byte 2
0	Request diagnostic info	01	01
1	Request marker info	02	02
2	Request SLEEP mode	04	04
3	Request position info	08	08
4	Request individual measurement	10	10
5			
6			
7			
8			
9			
10			
11			
12			
14			
15			

Recommended settings

- Input data: 8 bytes
- Output data: 8 bytes

In this switch position, the MA automatically sends a position request to the BPS 8 every 10 ms until another command comes via the control. Automatic request only restarts when a new position request is sent by the PLC or when the MA is restarted.

16.12 AMS distance measurement device, ODSL xx optical distance sensors with RS 232 interface ($\mathbf{S 4}$ switch position B)

Notice!
In this switch position, 6-byte data (fixed) is always expected by the device. This is why a quick telegram sequence can be transmitted reliably even without a data frame.

AMS
Specifications for the serial interface

Default parameter	AMS
Baud rate	38400
Data mode	8 N 1
Handshake	no
Protocol	binary protocol without acknowledgment
Frame	<Data>

Specifications for Command mode

To activate the Command mode, bit 0 must be set to 1 in control byte 0 .
For further information, see chapter 11.1.3 "Command mode", figure 11.2.

Control bit	Meaning	Corresponds to serialcommand HEX)
0	Transmit individual position value $=$ single shot	COF131
1	Cyclically transmit position values	COF232
2	Stop cyclical transmission	COF333
3	Laser diode on	COF434
4	Laser diode off	COF535
5	Transmit single speed value	COF636
6	Cyclically transmit speed values	COF737
7		
8		
9		
10		
11		
12		
13		
15		

Recommended settings

- Input data: 8 bytes
- Output data: 8 bytes

ODSL 9, ODSL 30 and ODSL 96B

Notice!

The default settings of the ODS serial interface have to be adjusted! Further information on configuration of the interface can be found in the technical description of the corresponding device.

Specifications for the serial interface

Default parameter	AMS
Baud rate	38400
Data mode	8 N 1
Handshake	no
Protocol	ASCII transmission, 5-digit measurement value
Frame	<Data>

Specifications for Command mode

Command mode cannot be used with the ODSL 9, ODSL 30 and ODSL 96B.

The ODSL 9/96B is to be operated in the "Precision" measure mode. The mode is set through the display menu via AFFlication -> Measure mode -> Frecision. You can find more details on this in the technical description.

16.13 Modular interfacing unit MA 3x (S4 switch position C)

Specifications for the serial interface

Default parameter	MA 3x
Baud rate	9600
Data mode	8 N 1
Handshake	no
Protocol	framing protocol without acknowledgment
Frame	$<$ STX $><$ Data $><$ CR $><$ LF $>$

Specifications for Command mode

To activate the Command mode, bit 0 must be set to 1 in control byte 0 .
For further information, see chapter 11.1.3 "Command mode", figure 11.2.

Control bit	Meaning	Corresponds to serial command (ASCII)
0	Version query	V
1		
2		
3		
4		
5		
6		
7		H
8		H
9		
10		
11		
12	Reset parameters to default values	
13	Device restart	
14		

Recommended settings

- Input data: 8 bytes Use of the Collective mode for codes with a number of digits >4.
- Output data: 8 bytes

Notice!
In this switch position, the address of the multiNet slave is also transmitted in the first two bytes of the data range!

16.14 Resetting the parameters (S4 switch position F)

To reset all parameters of the MA that can be configured with software (such as baud rate, IP address, dependent on type) to the factory settings, do the following:
4) Set device switch S4 to F in a voltage free state.
4) Switch the voltage on and wait until it is ready for operation.
4) If necessary, switch the voltage off to prepare for commissioning.
4) Set service switch S10 to the "RUN" position.

17 Appendix

17.1 ASCII Table

HEX	DEC	CTRL	ABB	DESIGNATION	MEANING
00	0	^@	NUL	NULL	Zero
01	1	\wedge A	SOH	START OF HEADING	Start of heading
02	2	\wedge B	STX	START OF TEXT	Start of text characters
03	3	\wedge	ETX	END OF TEXT	Last character of text
04	4	\wedge D	EOT	END OF TRANSMISSION	End of transmission
05	5	$\wedge \mathrm{E}$	ENQ	ENQUIRY	Request to transmit data
06	6	\wedge F	ACK	ACKNOWLEDGE	Positive acknowledgment
07	7	\wedge G	BEL	BELL	Bell signal
08	8	$\wedge \mathrm{H}$	BS	BACKSPACE	Backspace
09	9	\wedge	HT	HORIZONTAL TABULATOR	Horizontal tabulator
0A	10	\wedge	LF	LINE FEED	Line feed
OB	11	$\wedge K$	VT	VERTICAL TABULATOR	Vertical tabulator
OC	12	\wedge L	FF	FORM FEED	Form feed
OD	13	$\wedge \mathrm{M}$	CR	CARRIAGE RETURN	Carriage return
OE	14	$\wedge N$	S0	SHIFT OUT	Shift out
OF	15	$\wedge 0$	SI	SHIFT IN	Shift in
10	16	$\wedge P$	DLE	DATA LINK ESCAPE	Data link escape
11	17	$\wedge Q$	DC1	DEVICE CONTROL 1 (X-ON)	Device control character 1
12	18	$\wedge R$	DC2	DEVICE CONTROL 2 (TAPE)	Device control character 2
13	19	\wedge	DC3	DEVICE CONTROL 3 (X-OFF)	Device control character 3
14	20	\wedge T	DC4	DEVICE CONTROL 4	Device control character 4
15	21	$\wedge \cup$	NAK	NEGATIVE (/Tape) ACKNOWLEDGE	Negative acknowledge
16	22	\wedge	SYN	SYNCHRONOUS IDLE	Synchronization
17	23	\wedge W	ETB	END OF TRANSMISSION BLOCK	End of data transmission block
18	24	$\wedge X$	CAN	CANCEL	Invalid
19	25	\wedge	EM	END OF MEDIUM	End of medium
1A	26	\wedge,	SUB	SUBSTITUTE	Substitution
1B	27	$\wedge[$	ESC	ESCAPE	Escape
1C	28	\wedge	FS	FILE SEPARATOR	File separator
1D	29	$\wedge]$	GS	GROUP SEPARATOR	Group separator
1 E	30	$\wedge \wedge$	RS	RECORD SEPARATOR	Record separator
1 F	31	\wedge^{\wedge}	US	UNIT SEPARATOR	Unit separator
20	32		SP	SPACE	Space
21	33		!	EXCLAMATION POINT	Exclamation point
22	34		"	QUOTATION MARK	Quotation mark
23	35		\#	NUMBER SIGN	Number sign
24	36		\$	DOLLAR SIGN	Dollar sign
25	37		\%	PERCENT SIGN	Percent sign
26	38		\&	AMPERSAND	Ampersand
27	39		'	APOSTROPHE	Apostrophe
28	40		(OPENING PARENTHESIS	Opening parenthesis

HEX	DEC	CTRL	ABB	DESIGNATION	MEANING
29	41)	CLOSING PARENTHESIS	Closing parenthesis
2A	42		*	ASTERISK	Asterisk
2B	43		+	PLUS	Plus sign
2 C	44		,	COMMA	Comma
2D	45		-	HYPHEN (MINUS)	Hyphen (minus)
2 E	46		.	PERIOD (DECIMAL)	Period (decimal)
2 F	47		1	SLANT	Slant
30	48		0		
31	49		1		
32	50		2		
33	51		3		
34	52		4		
35	53		5		
36	54		6		
37	55		7		
38	56		8		
39	57		9		
3A	58		:	COLON	Colon
3B	59		;	SEMICOLON	Semicolon
3C	60		<	LESS THAN	Less than
3D	61		$=$	EQUALS	Equals
3E	62		>	GREATER THAN	Greater than
3F	63		?	QUESTION MARK	Question mark
40	64		@	COMMERCIAL AT	Commercial AT
41	65		A		
42	66		B		
43	67		C		
44	68		D		
45	69		E		
46	70		F		
47	71		G		
48	72		H		
49	73		I		
4A	74		J		
4B	75		K		
4C	76		L		
4D	77		M		
4E	78		N		
4F	79		0		
50	80		P		
51	81		Q		
52	82		R		
53	83		S		
54	84		T		
55	85		U		
56	86		V		
57	87		W		
58	88		X		

HEX	DEC	CTRL	ABB	DESIGNATION	MEANING
59	89		Y		
5A	90		Z		
5B	91		[OPENING BRACKET	Opening bracket
5 C	92		1	REVERSE SLANT	Reverse slant
5D	93]	CLOSING BRACKET	Closing bracket
5E	94		\wedge	CIRCUMFLEX	Circumflex
5 F	95		-	UNDERSCORE	Underscore
60	96			GRAVE ACCENT	Grave accent
61	97		a		
62	98		b		
63	99		c		
64	100		d		
65	101		e		
66	102		f		
67	103		g		
68	104		h		
69	105		i		
6 A	106		j		
6B	107		k		
6C	108		I		
6D	109		m		
6 E	110		n		
6F	111		0		
70	112		p		
71	113		q		
72	114		r		
73	115		s		
74	116		t		
75	117		u		
76	118		v		
77	119		w		
78	120		x		
79	121		y		
7 A	122		z		
7B	123		\{	OPENING BRACE	Opening brace
7 C	124		I	VERTICAL LINE	Vertical line
7D	125		\}	CLOSING BRACE	Closing brace
7 E	126		~	TILDE	Tilde
7 F	127		DEL	DELETE (RUBOUT)	Delete

A
Accessories 74
Bus connection cables 76
Cables for Leuze ident devices 78
Connector 74
Voltage supply cables 75
Areas of application for the fieldbus gateway 8
ASCII Table 96
CCANopen
General information 18
Interface 32
Causes of errors
General 72
Interface 73
Collective mode 14
Command mode 14, 56
Commissioning 58
Configuration 41, 58
Connecting the Leuze device 11
PCB connectors X30 ... X32 38
Connections
PWR IN 28
PWR OUT switching input/output 30
Control bytes 48
D
Declaration of Conformity 5
Definition of terms 7
Description of functions 6
Device description 14
Device interface RS 232 32
Diagnosis 72
Dimensioned drawings 22
Disassembling 79
Disposing 79
E
Electrical connection 10
Connecting the Leuze device 11
Power supply and bus cable 13, 60
Safety notices 27
F
Fast commissioning 10
Fieldbus systems 17
IInput byte 0
Buffer overflow 47
Data exist 46
Data loss 47
New data 48
Next block ready to transmit 47
Service mode active 46
Write-Acknowledge 45
Input byte 1
Data length code 48
Intended use 8
Interface
CANopen 32
L
LED status indicators 34
Leuze device
2D code reader LSIS 122 87
LSIS 4x2i 88
Bar code positioning system (BPS) BPS 8 91
Bar code reader (BCL) BCL 22 83
BCL 300i 85
BCL 32 84
BCL 500i 85
BCL 8 82
BCL 90 86
Distance measurement device AMS 92
Hand-held scanner 89
RFID read-write devices (RFM/RFI ...) RFM 12, 32 and 62 90
Setting the read parameters 69
Specific feature for hand-held scanners 70
Specifications for Command mode 80
Specifications for the serial interface 80
M
Maintenance 79
Mounting
Device arrangement, selecting a mountinglocation10, 26
Mounting the device 10, 25
0
Operating modes
Operation 16
Service fieldbus gateway 16
Service Leuze device 16
Output byte 0
Address bits 0 .. 4 49
Broadcast 49
Command mode 49
New data 49
Output byte 1
Copy to transmit buffer 51
Read-Acknowledge 50
Send data from buffer 50
P
Packing 79
Q
Quality assurance 5
R
Reading slave data 53
Repair 79
S
Safety notices 8
Service interface 33, 38
Service mode
Commands 42
Information 43
Service switch 38
Servicing 79
Specifications 21
Electrical data 21
Environmental data 21
Indicators 21
Mechanical data 21
Starting the device 13, 60
Status bytes 45
Structure of the fieldbus telegram 44
Symbols 5
TTelegram structureInput bytes45
Output bytes 48
Transparent mode 14
Troubleshooting 72
Type overview 23, 74
w
Writing slave data 53

[^0]: Table 9.1:
 Available commands

