KRTM 20

Dimensioned drawing

A Light spot orientation vertical
B Optical axis
C $5 / 5.5 \mathrm{~mm}$ deep
Scanning range
Front
F Head

Electrical connection

NPN + analog

PNP

$12-30 \mathrm{~V}$ DC $+-1 \rightarrow) \mathrm{br} / \mathrm{BN}$
Synchr. $-2 \rightarrow \mathrm{ws} / \mathrm{WH}$
GND $-3 \rightarrow) \mathrm{bl/BU}$
$\mathrm{Q} \bar{\nabla}-4 \rightarrow \mathrm{sw} / \mathrm{BK}$
Teach $-5 \rightarrow \mathrm{gr} / \mathrm{GY}$

Specifications

Optical data

Scanning range with objective $1^{11)}$ Scanning range with objective $2{ }^{2)}$
Scanning range with objective 3 1)
Light spot dimension with objective 1 ${ }^{1)}$
Light spot dimension with objective $2{ }^{2}$)
Light spot dimension with objective $3{ }^{11}$
Light spot orientation
Light source

Timing

Switching frequency digital output
Response time digital output
Response jitter digital output
Response time of analogue output
Delay before start-up

Electrical data

Operating voltage $U_{B}{ }^{3}$)
Residual ripple
Switching output
Function characteristics
Analog output
Signal voltage high/low
Output current
Open-circuit current

Indicators

After power-on:
ON LED on
ON LED flashing slowly
After teach-in:
ON LED on
ON LED flashing slowly
Q/T LED flashing quickly
In run mode:
ON LED on
Delay LED
L/D LED
Q/T LED on
Q/T LED flashing quickly
In configuration mode:
ON LED flashing quickly
Delay LED off
Delay LED on
L/D LED off
L/D LED on

Mechanical data

Housing
Optics cover
Weight
Connection type

Environmental data

Ambient temp. (operation/storage)
Protection class
Light source
VDE safety class
Protective circuit ${ }^{4}$
Standards applied
Certifications

Options

Synchronous input
PNP: Stop/Start measurement
NPN: Stop/Start measurement
Synchronization delay
Teach input
PNP: active / not active
NPN: active/not active
Teach delay
Pulse stretching
Device configuration
Changeover switching threshold
Changeover response time
$12 \mathrm{~mm} \pm 1 \mathrm{~mm}$
$20 \mathrm{~mm} \pm 2 \mathrm{~mm}$
$50 \mathrm{~mm} \pm 5 \mathrm{~mm}$
$3.0 \mathrm{~mm} \times 1.0 \mathrm{~mm}$ or round light spot $\mathrm{D}=0.5 \mathrm{~mm}$
$4.0 \mathrm{~mm} \times 1.2 \mathrm{~mm}$ or round light spot $\mathrm{D}=0.6 \mathrm{~mm}$
$10.0 \mathrm{~mm} \times 2.0 \mathrm{~mm}$ or round light spot $\mathrm{D}=1.0 \mathrm{~mm}$ vertical or horizontal
LEDs (red, green, blue)
$25 \mathrm{kHz} / 50 \mathrm{kHz}$ reversible (see remarks)
$20 \mu \mathrm{~s} / 10 \mu \mathrm{~s}$ reversible (see remarks)
$10 \mu \mathrm{~s}$
$10 \mu \mathrm{~s}$
$\leq 250 \mathrm{~ms}$
$12 \ldots 30 \mathrm{VDC}$ (incl. residual ripple)
$\leq 15 \%$ of U_{B}
PNP, NPN
light or dark switching, reversible via button
$1 . . .10 \mathrm{~mA}$
$\geq\left(U_{B}-2 \mathrm{~V}\right) / \leq 2 \mathrm{~V}$
max. 100 mA
$\leq 60 \mathrm{~mA}$
device set to factory settings
device not set to factory settings
(display only for approx. 10s after power-on)
switching threshold set to factory settings -> switching threshold in center
switching threshold was reconfigured
$->$ switching threshold close to the mark
teaching error

ready

pulse stretching on/off
light/dark switching
mark detected
device error
device is in configuration mode
$2 x$ analysis depth (response time 20μ s)
1 x analysis depth (response time $10 \mu \mathrm{~s}$)
switching threshold in center
switching threshold close to the mark
diecast zinc
glass
300 g
M12 connector, stainless steel, 5-pin
$-25^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C} /-40^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
IP 67
free group (in accordance with EN 62471)
II
2, 3
IEC 60947-5-2
UL 508, C22.2 No.14-13 3) 5)
$\mathrm{U}_{\mathrm{B}} / 0 \mathrm{~V}$ or not connected
$0 \mathrm{~V} / \mathrm{U}_{\mathrm{B}}$ or not connected $\leq 0.5 \mathrm{~ms}$
$\mathrm{U}_{\mathrm{B}} / 0 \mathrm{~V}$ or not connected
$0 \mathrm{~V} / \mathrm{U}_{\mathrm{B}}$ or not connected
$\leq 10 \mathrm{~ms}$
20 ms , can be activated via button
continue to press the teach button during power-on
see remarks
see remarks

1) Interchangeable objective, available as accessory
2) Standard objective, state on delivery
3) For UL applications: for use in class 2 circuits according to NEC only
4) $2=$ polarity reversal protection, $3=$ short-circuit protection for all outputs
5) These proximity switches shall be used with UL Listed Cable assemblies rated $30 \mathrm{~V}, 0.5 \mathrm{~A}$ min, in the field installation, or equivalent (categories: CYJV/CYJV7 or PVVA/PVVA7)

Remarks

- Approved purpose:

This product may only be used by qualified personnel and must only be used for the approved purpose. This sensor is not a safety sensor and is not to be used for the protection of persons.

- With shiny objects, the sensor is to be mounted at an angle to the object surface.

- Device configuration:

1. Configuration mode is activated by holding down the teach button during power-on (ON LED flashes).
2. The analysis depth is changed over using the Delay button:
Delay LED off =
2x analysis depth
(response time $20 \mu \mathrm{~s}$)
Delay LED on =
1x analysis depth
(response time $10 \mu \mathrm{~s}$)
3. The switching threshold is changed over using the $\mathrm{L} /$ D button:
L/D LED off=
Switching threshold in center
L/D LED on=
Switching threshold close to the mark
4. Press the teach button to end device configuration.
5. Back to factory settings: Simultaneously hold down the Delay button and the L/D button during poweron to reset the sensor to factory settings.

KRTM 20
High Resolution Multicolor Contrast Scanner

Order guide

The sensors listed here are preferred types; current information at www.leuze.com.

Selection table		Order code \rightarrow								
Scanning range	12 mm									
	20 mm		\bullet	\bullet	\bullet	\bullet	-	\bullet		
	50 mm								\bullet	
Light spot orientation	vertical		\bullet	\bullet	\bullet	\bullet			\bullet	
	horizontal									
	round						-	-		
Optical outlet	front									
	head		\bullet							
Output wiring	PNP		\bullet		\bullet		\bullet		\bullet	
	NPN			\bullet		\bullet		\bullet		
	analogue current				\bullet	\bullet				
Other features	static teach-in		\bullet							
	dynamic teach-in									
	synchronous input		\bullet	-			\bullet	-	-	

Function principle of the contrast scanner

These contrast scanners are devices that can, with the aid of multiple transmitter colors (red, green, blue), distinguish between minimal gray levels (contrasts). By means of the automatic transmitter selection after a teach-in, the optimum functional safety for the respective contrast is determined and set by the device itself. As a result, any combination of marks or backgrounds can be detected with optimum functional safety. Through constant measurement and regulation of the emitted light, the devices operate with very good temperature stability. Re-teaching of the mark is, thus, no longer necessary.
Each transmitter color consists of 4 LEDs. A longish light spot with four points is formed in the focal point. This very small, extremely bright light spot guarantees a high repeatability and positioning accuracy. For the case that the mark or background is not optimally printed, the light spot can be focused by slightly changing the scanning distance in such a way that a homogeneous, rectangular light spot is formed.
With this teaching type, background and mark must be placed statically below the light spot. Using the synchronization input, the switching output can be activated or deactivated.

Controls and indicators

ON LED on
ON LED flashing slowly
ON LED flashing quickly

Run mode:
Delay LED
Configuration mode:
Delay LED off
Delay LED on
ready / run mode device is not set to factory settings (Display only for approx. 10s after power-on) device is in configuration mode
pulse stretching on/off
$2 x$ analysis depth (response time 20 $\mu \mathrm{s}$) 1 x analysis depth (response time $10 \mu \mathrm{~s}$)

Q/T LED on Q/T LED flashing quickly

Run mode:

L/D LED
Configuration mode:
L/D LED off
LD LED on

mark detected

teach error or device error

light/dark switching

switching threshold in center
switching threshold close to the mark

Signal response during teach-in

Static 2-point teach

Teach process

The teach process is performed with the aid of the teach button or external teach lines. The two processes work in the same way.

Operation	Transmitter	Indicator LED
Position the light spot on the background	Red, green or blue light spot visible	Q/T, Delay and L/D LEDs flash
Press the teach button approx. 0.5 s or set the teach line to high level	All colors are on White light spot visible	Q/T, Delay and L/D LEDs flash White light spot visible
Position the light spot on the mark	Changeover to red, green or blue Red, green or blue light spot visible	ON LED on or flashes 3x Q/T LED on Q/T LED flashing -> error
Briefly press teach button or teach line to low level	All colors off	ON LED on Q/T LED flashing -> error
Teaching error start new teaching process		

Calibration - analog output 1 ... 10mA

This is an uncalibrated measurement value. The current value that is output is proportional to the last contrast ascertained by means of teach-in.
For rough calibration of the analog output, a teach-in with the following sequence is recommended.

1. Teach point on background
-> on white paper.
2. Teach point on mark $\quad>$ without object (into open space).
