HTU418B

- NEW - Stable all-metal design

Accessories:

(available separately)

- Mounting systems
- Mounting adapter M18-M30: BTX-D18M-D30 (Part no. 50125860)
- Cables with M12 connector (K-D ...)
- Teach adapter PA1/XTSX-M12 (Part no. 50124709)

Dimensioned drawing

A Indicator diodes
B Active sensor surface

Electrical connection

Specifications

Ultrasonic specifications
Scanning range ${ }^{1)}$
Adjustment range
Ultrasonic frequency
Typ. opening angle
Resolution
Direction of beam
Reproducibility
Switching hysteresis
Temperature drift

Timing

Switching frequency
Response time
Delay before start-up

Electrical data

Operating voltage $U_{B}{ }^{4}$)
Residual ripple
Open-circuit current
Switching output
Function
Output current
Switching range adjustment
Changeover NO/NC

Indicators

Yellow LED
Yellow LED, flashing
Green LED

Mechanical data

Housing Weight

Ultrasonic transducer
Connection type
Fitting position

Environmental data

Ambient temp. (operation/storage)
Protective circuit ${ }^{6}$)
VDE safety class
Degree of protection
Standards applied
Certifications

1) at $20^{\circ} \mathrm{C}$
2) Target: plate $20 \mathrm{~mm} \times 20 \mathrm{~mm}$
3) Target: plate $100 \mathrm{~mm} \times 100 \mathrm{~mm}$
4) For UL applications: for use in class 2 circuits according to NEC only
5) The ceramic material of the ultrasonic transducer contains lead zirconium titanate (PZT)
6) $1=$ short-circuit and overload protection, $2=$ polarity reversal protection, $3=$ wire break and inductive protection
7) These proximity switches shall be used with UL Listed Cable assemblies rated 30V, 0.5 A min, in the field installation, or equivalent (categories: CYJV/CYJV7 or PVVA/PVVA7)
8) Ambient temperature $85^{\circ} \mathrm{C}$. Use same supply source for all circuits.

Remarks

Operate in accordance with intended use!

$\stackrel{y}{\wedge}$ This product is not a safety sensor and is not intended as personnel protection.
$\stackrel{\leftrightarrow}{\diamond}$ The product may only be put into operation by competent persons.
$\stackrel{\text { r }}{ }$ Only use the product in accordance with the intended use.

Diagrams

HTU418B-400/...-M12

HTU418B-1300/...-M12

HTU418B
STANDARD ultrasonic sensors with 2 switching outputs

Part number code

$$
\begin{array}{|l|}
\hline \mathbf{H} & \mathbf{T} & \mathbf{4} & \mathbf{1} & \mathbf{8} & \mathbf{B} & - & \mathbf{1} & \mathbf{3} & \mathbf{0} & \mathbf{0} & . & \mathbf{X} & \mathbf{3} & \text { I } & \mathbf{4} & \mathbf{T} & \mathbf{4} & - & \mathbf{M} \\
\mathbf{1} & \mathbf{2} \\
\hline
\end{array}
$$

Operating principle	
HTU	Ultrasonic sen
DMU	Ultrasonic sen
Series	
418B	418B Series,
Scanning range in mm	
400	$25 . . .400$
1300	$150 . . .1300$

Equipment (optional)
X "Advanced" design
3 Teach button on the sensor

Pin assignment of connector pin 4 / black cable wire (OUT1)
$4 \quad$ PNP output, NO contact preset
P PNP output, NC contact preset
L IO-Link communication or push-pull (SIO)

Pin assignment of connector pin 2 / white cable wire (Teach-IN)
$\mathbf{T} \quad$ Teach input

Pin assignment of connector pin 5 / gray cable wire (OUT2)

$\mathbf{4}$	PNP output, NO contact preset
P	PNP output, NC contact preset
V	Analog voltage output $1 \ldots 10 \mathrm{~V}$
C	Analog current output $4 \ldots 20 \mathrm{~mA}$
X	Connection not assigned (n. c.- not connected)

Connection technology
M12 M12 connector, 5-pin

Order guide

The sensors listed here are preferred types; current information at www.leuze.com.

	Designation	Part no.
Scanning range		
$25 \ldots 400 \mathrm{~mm}$	HTU418B-400/4T4-M12	50124268
$150 \ldots 1300 \mathrm{~mm}$	HTU418B-1300/4T4-M12	50124272

Device functions and indicators

All sensor settings are taught via the Teach-IN input. Device status and switching states are indicated by a green and a yellow LED as follows:

Notice!

In measurement operation, the yellow and green LED only indicate the behavior of output OUT1.
The behavior of output OUT2 is not indicated.

Adjusting the switching points via the teach input

The switching points of the sensor outputs OUT1/OUT2 are set to 400 mm or 1000 mm on delivery.
By means of a simple teach event, the two switching points can be individually taught to an arbitrary distance within the scanning range. The Leuze PA1/XTSX-M12 teach adapter can be used for this purpose. The adapter can also be used to easily switch the output function from NO contact to NC contact.

1-point teach of output OUT1	1-point teach of output OUT2
1. Place object at desired switching distance.	1. Place object at desired switching distance.
2. For the adjustment of output OUT1, connect input Teach-IN to GND for 2... 7s (Leuze teach adapter: position "Teach-GND"). The current state of output OUT1 is frozen during the teach event.	2. For the adjustment of output OUT2, connect input Teach-IN to GND for 7 ... 12s (Leuze teach adapter: position "Teach-GND"). The current state of output OUT2 is frozen during the teach event.
3. The yellow LED flashes at 3 Hz and then remains on. The current object distance has been taught as the new switching point.	3. The yellow LED flashes at 3 Hz . The current object distance has been taught as the new switching point.
4. Error-free teach: switching behavior according to the diagram shown above. Faulty teach (object may be too close or too far away - please note scanning range): yellow LED flashes at 5 Hz until an error-free teach event is performed. The output OUT1 is inactive as long as there is a teach error.	4. Error-free teach: switching behavior according to the diagram shown above. Faulty teach (object may be too close or too far away - please note scanning range): yellow LED flashes at 5 Hz until an error-free teach event is performed. The output OUT2 is inactive as long as there is a teach error.

Adjusting the switching function (NC/NO) via the teach input

The switching function of both sensor outputs is set to normally open (NO) on delivery.
If the switching function is changed, the switching output is changed to the opposite state (toggled).

C	
1. To change the switching function, connect input Teach-IN to \mathbf{U}_{B} for $2 \ldots \mathbf{7 s}$ (Leuze teach adapter: position "Teach- U_{B} "). The current state of output OUT1 remains frozen while the adjustment is performed.	1. To change the switching function, connect input Teach-IN to U_{B} for 7 ... 12s (Leuze teach adapter: position "Teach- U_{B} "). The current state of output OUT2 remains frozen while the adjustment is performed.
2. The green and yellow LED flash alternately at 2 Hz . The switching function has been reversed. The switching behavior corresponds to the diagram shown above.	2. The green and yellow LED flash alternately at $\mathbf{5 H z}$. The switching function has been reversed. The switching behavior corresponds to the diagram shown above.

Notice!

Please note that the switching point is taught when GND is connected and the output function is reversed when U_{B} is connected. If no sensor action is desired, pin 2 must remain unconnected!

