Operating manual

EZE20X005

Digital amplifier

1	INTRODUCTION & SPECIFICATIONS	3
2	COMMUNICATIONS & GETTING STARTED	4
2.1 2.2 2.3 2.4 2.5	Serial Interface Command Language Setup baud rate / device address Display mode Getting Started	4 4 5 5 5
3	HARDWARE & WIRING	6
3.1 3.2 3.3 3.4	Load Cell Connections Power Connections Logic Inputs and Logic Outputs Communication Connections	7 7 7 7
4	COMMANDS OVERVIEW	8
5	COMMANDS	10
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11	System diagnostic Commands - ID, IV, IS, SR Calibration Commands - CE, CM, DS, DP, CZ, CG, ZT, FD, CS, UR Motion detection Commands - NR, NT Filter setting Commands - FL, FF Set Zero/Tare and Reset Zero/Tare Commands - SZ, RZ, ST, RT Output Commands - GG, GN, GT, GS, GF, GW Auto-transmit Commands - SG, SN, SF, SW Commands for external I/O control - IN, IO, IM (EZE20X005 ONLY) Setpoint Commands - Sn, Hn, An (EZE20X005 ONLY) Communication setup Commands - AD, CL, BR, DX, OP Save calibration, setup and setpoint parameters Commands - CS, WP, SS	11 13 16 17 18 20 21 22 24 26 28
6	CALIBRATION PROCEDURE	29
7	USE IN "APPROVED" APPLICATIONS	30
8 8.1 8.2	UNIT ADAPTOR CONNECTION DETAIL EZE20X100003 Unit Adaptor with built-in RS422 to RS232 converter EZE10X006007 Standard Unit Adaptor	32 33

1 INTRODUCTION & SPECIFICATIONS

The EZE20X005 amplifier series are precise, mid-speed digital amplifiers for weighing and force measurements applications which use strain gauge (SG) based sensors. The EZE20X005 can be used in both legal fo trade and industrial applications. The device features full multi-drop communication capability and can be programmed using the straight forward ASCII command set. The EZE20 series and the EZE30 amplifier with on-board digital display, use the same command set. So you can connect up to 32 SG amplifiers of either the EZE20X005 series or the EZE30 types onto a single RS 485 bus.

The EZE20X005 series with its high precision 17 bit A to D converter and a mid-speed sample rate of 90 samples per second, is particularly suitable for static measurements and control.

Accuracy Class	III (EZE20X005 ONLY)
EU Type approved	R76 5000 Divisions (EZE20X005 ONLY)
Linearity	<0.002% Full Scale
Excitation	5 V DC, load cell(s) input impedance 250-2000 Ohms, 6-wire technique
Analogue Input Range	±2.2 mV/V (bipolar, for push/pull weighting or tension/compression forces)
Minimum input per vsi	0.1µV per interval non-approved, 0.7µV per interval approved
Resolution	Internal ±130,000 counts, ± 17 bit A/D converter; external max ± 99,999 counts
Conversion rate	Up to 90 measurements per second
Digital filter	0.02Hz - 5Hz second order (i.e.12 dB/octave)
Calibration	Software calibration and set up
Computer Interface	RS485 or RS422 full duplex, 9600 115200 Baud; up to 32 devices on a bus.
	(RS485)
Weighing functions	Zero, gross, tare, net, filter etc.
Inputs	2 opto-isolated inputs, 10-30 VDC max. 3 mA
Outputs	2 open collector outputs, <30 V DC
Temperature effects	On zero:<20 ppm/°K
	On span:<16 ppm/°K
Temperature range	-10°C to +50°C (compensated); -20°C to +60°C (storage)
Enclosure	Tin plated steel enclosure sealed to IP 40
Dimensions	82 x 31 6 mm, weight approx, 30 g; with adaptor board 91 x 41 x 12 mm
	approx. 50 g
Power supply	12 24 V DC ±10%, <60mA, not galvanically isolated.
Options	Adaptor board EZE10X006 or 007 (passive) or EZE20X100003
EMC/Approvals	(Rs485 to RS232)
	CE 73/23/EEC; 93/98/EEC and 89/336/EEC
	•

Technical Specifications of the EZE20X005 Series:

All dimensions in mm. Dimensions and specifications are subject to change without notice.

2 COMMUNICATIONS & GETTING STARTED

2.1 Serial Interface

Communication with the EZE20X005 series is via the RS422/RS485 port. The data format is the familiar 8/N/1 structure (8 data bits, no parity, 1 stop bit). The EZE20X005 can communicate at the following baud rates: 9600, 19200, 38400, 57600, 115200 baud.

RS422

- Connection using a 4 wire technique.
- Point to Point connection i.e. no bus communication possible.

RS485

- Connection using 2 or 4 wire techniques
- Multi-drop connection possible with up to 32 EZE20X005 on a bus.
- Half duplex only (DX=0).

(RS232)

• An optional adaptor board model UA77.1 is available, which has a built-in RS422 to RS232 converter

2.2 Command Language

The command set for the EZE20X005 series is based on a simple ASCII format. This consists of a 2 capital letter code which enables the user to setup the device, get results or check parameters.

Example:

An EZE20X005 with the address or channel number 1 is connected via the RS485 port to a bus system. You want to get the net weight from this device.

In this manual	l a space is	represented by "	_" and Enter (C	CR/LF) by "⊣"
----------------	--------------	------------------	-----------------	---------------

Master (PC / PLC) sends	Slave (EZE20X005) responds	Status
OP_1,J		Open Device number 1
	OK	Device number 1 ready
GN₊J		Get Net weight value
	N+123.45	Net weight value with sign & decimal point

The command OP_2 opens the communication channel to device #2. Now device #2 acknowledges that it is active (OK) and responds to any commands on the bus. Communication with device #2 will be closed by another OP command (for another device on the bus e.g. OP_5) or by the close command e.g. CL_2.

Each OP_X command implies a CL command to all other devices on the bus except #X. This makes the address structure easier and improves system performance.

2.3 Setup Baud rate / Device Address

The factory default baud rate is 9600 baud. The factory default device address is 0. Under normal circumstances the baud rate can be changed or viewed using the BR command (Page 30). Similarly, the device address can be changed or viewed using the AD command (Page 30). If however you do not know the device baud rate or address, the EZE20X005 can be put into a special configuration mode which allows the baud rate and device address to be reset. On the under side of the EZE20X005 PCB are a set of special solder pads (SW3) - See diagram on page 6. If these solder pads are bridged (shorted together) then the EZE20X005 will enter the special configuration mode on

Baud Rate (In Configuration Mode)

With SW3 pads bridged, the ZE20.005 will enter a special baud rate search mode on power up. This involves the EZE20X005 waiting for a space character (0x20) to be received. The time duration of this character is measured by the EZE20X005 and its baud rate will be set accordingly - i.e. the baud rate of the terminal sending the space character will be used by the EZE20X005. The factory default baud rate is 9600 baud.

Address Settings (In Configuration Mode)

With SW3 pads bridged, the EZE20X005 will enter a special configuration mode on power up. It is possible to set the network address of the device using the AD command. (Address range between 0 and 255). Setting the address to 0 will set it into continuously active mode, where the device will listen and respond to any command on the bus without the need for an OP xxx command. Factory default: Address 0

2.4 Display Mode

In addition to the standard filters, a filter factor (FF) has been added specifically for when the EZE20X005 series is used with an external display. The Filter Factor allows a rolling average to be set up which gives a more stable result on an external display The Get Filtered value (GF) and Send Filtered value (SF) commands can be used to get or auto-transmit the filtered values for an external display.

2.5 Getting Started

You will require a:

- PC or PLC with either a RS422 or RS485 communication port
- If you are using a PC or PLC with an RS232 port, you will require a RS422 to RS232 converter (optional unit adaptor EZE20X100003)
- Interconnecting cabling See the wiring diagram on Page 6
- A load cell / scale with test weights or a load cell simulator

 \bullet A 12-24 V DC power supply capable of delivering approximately 100mA for each EZE20X005 and load cell

- One or more EZE20X005
- A suitable ASCII communication software*

Refer to the wiring diagram on Page 6

* You can easily communicate between a PC and the EZE20X005 using programs such as Hyperterminal (included in Windows)

Also the DOP software with graphical user interface and oscilloscope function is now available (Windows 98/2000/XP).

3 HARDWARE & WIRING DIAGRAMS

Standard Unit with RS422/485 Point to Point Connections

Standard Unit with RS485 Multi-drop Connections (2-wire Example)

3.1 Load Cell Connections

The load cell(s) are connected to pins 0 to 6 of the EZE20X005.

Pins 1 & 6 provide excitation (5 V DC) to the load cell circuit, pin 1 being positive excitation (+Exc) and pin 6 negative excitation (-Exc).

Pins 3 & 4 are the signal inputs to the EZE20X005 from the load cell circuit, pin 3 being the positive signal (+Sig) and pin 4 being the negative signal (-Sig).

Pins 2 & 5 are the Sense connections for the EZE20X005, pin 2 being the positive sense (+Sen) and pin 5 the negative sense (-Sen). If your load cell has 6 wires (2 for Excitation, 2 for Signal and 2 for Sense) the sense connections provide the EZE20X005 with the voltage that reached the load cell(s) as opposed to the voltage that was sent. This enables the EZE20X005 to correct for voltage drops on long cables.

If your load cell only has 4 wires you will need to link the positive excitation (+Exc) pin (Pin 1) and the positive sense (+Sen) pin (Pin 2) and similarly the negative excitation (-Exc) pin (Pin 6) and the negative sense (-Sen) pin (Pin 5). This can be achieved simply by solder bridging pads SW1 and SW2 on the underside of the ZE20.005.x pcb. (See diagram on Page 6)

Pin 0 provides a ground connection for the load cell cable screen or drain wire.

3.2 Power Connections

Power is provided to the EZE20X005 via pins 18 & 19, pin 18 being the positive supply (Pwr) 12 - 24 VDC and pin 19 being the power supply ground (Gnd) 0 V.

3.3 Logic Inputs and Logic Outputs

The EZE20X005 has 2 logic inputs on pins 14 & 16 and 2 logic outputs (Open Collector) on pins 15 & 17. The common for both the logic inputs and outputs is internally connected to the ground of the power supply so no separate common supply is required. Control signals (10 - 30 V DC) applied to the logic inputs can be used to trigger a variety of weighing processes such as check-weighing, filling etc. The status of the logic inputs can be read via the EZE20X005 communication port. The logic outputs are effectively weight dependant switches. These can be used to control alarms or filling valves etc. The load to be controlled is wired between the positive supply and the appropriate logic output terminal on the EZE20X005.

3.4 Communication Connections

3.4.1 RS422 Point to Point 4 wire connection half or full duplex.

The standard interface on the EZE20X005 is RS422. The Tx+ connection from the host system is connected to +Rx (Pin 10) of the EZE20X005. Similarly the Tx- from the host is connected to -Rx (Pin 11), the Rx- is connected to the -Tx (Pin 12) and the Rx+ is connected to the +Tx (Pin 13). The shield connection for the RS422 cable should be connected to the power supply ground Gnd (Pin 19)

3.4.2 RS485 Multi-Drop 2 wire connection half duplex.

The EZE20X005 series can be wired in a multi-drop mode where up to 32 devices can be connected to one bus. The +Rx (Pin 10) and +Tx (pin 13) should be commoned together and should be connected to the B terminal of the host RS485 interface. The -Rx (Pin 11) and the -Tx (Pin 12) should similarly be commoned and connected to the A terminal of the host RS485 interface. The ground connection (GND) from the host RS485 should be connected to the power supply ground of the EZE20X005. Termination resistors of 120 Ohm each should be placed across the A/B lines at host end of the bus and across the A/B lines of the last device on the bus. In addition it may be necessary to add pull up and pull down resistors (R1 & R2) to the A/B lines to prevent these lines 'floating' during periods of no transmission. Where the supply voltage to the RS485 line driver IC is typically 5V DC for example, the value of R1 & R2 can be 470 Ohms each. Where for example you are using a RS232 to RS485 converter with a supply voltage of 12 V DC, the value of R1 & R2 should be increased to 1K2 Ohms (1200 Ohms).

Command	Short Description	Usage	Parameter Values	Full Description on
AD	Network address	Read or Set the Network Address	0 to 255	Page 26
An	Get/Set Setpoint n action	Read or Change Setpoint Action	0 to 1	Page 25
BR	Baud Rate	Read or Change the Baud Rate	9,600 to 115,200	Page 26
CE	Calibrate Enable - TAC Code	Allows access to important Cal/Set up parameters	0 to 65,535	Page 13
CG	Calibrate Gain (TAC protected)	Calibrate the weighing system span or gain	0 to 99,999	Page 14
CL	Close 'Open' devices (RS485 Multi-drop)	Closes all open communication pathes (Multi-drop)	None	Page 26
СМ	Calibrate Maximum (TAC protected)	Read or modify the maximum output value	0 to 99,999	Page 13
CS	Calibrate Save (TAC protected)	Save Calibration Parameters to EEPROM	None	Page 15 & 28
CZ	Calibrate Zero (TAC protected)	Calibrate the weighing system zero	None	Page 14
DP	Decimal Point (TAC protected)	Read or modify the decimal point position	0 to 5	Page 14
DS	Display Step Size (TAC protected)	Read or modify the display step size or increment	1 to 200	Page 13
DX	Duplex	Select half (0) or full (1) duplex	0 to 1	Page 26
FD	Factory Default	Reset to factory default settings	None	Page 15
FF	Filter Factor	Define time over which a rolling average is calculated	0 to 15	Page 17
FM	Filter Mode	Read or modify the filter mode	0 = IIR Filter / 1= FIR Filter	Page 20
FL	Filter Level	Read or modify the filter level (strength)	0 to 8	Page 17
GA	Get Average Weight	Get the current 'average' weight value	None	Page 14
GF	Get Filtered Weight Value	Get the filtered net weight value	None	Page 20
GG	Get Gross Weight Value	Get the gross weight value.	None	Page 20
GN	Get Net Weight Value	Get the net weight value	None	Page 20
GS	Get Sample (ADC value)	Get the ADC sample value.	None	Page 20
GT	Get Tare Value	Get the tare value	None	Page 20
GW	Get 'Long' Weight	Get the 'Long' weight value	None	Page 20
Hn	Get/Set Hysteresis on Setpoint n	Read or modify the hysteresis value on Setpoint n	-99,999 to 99,999	Page 24
ID	Get Device Identity	Read the device identity	None	Page 11
IM	Read/Modify Control of Outputs	Read or modify the control of the logic outputs	0000 to 0011	Page 23
IN	Read Status of Inputs	Read the status of the logic inputs	None	Page 22
10	Read/Modify Output Status	Read or modify the status of the logic outputs	0000 to 0011	Page 22
IS	Get Device Status	Get the device status.	None	Page 11
IV	Get Firmware Version Number	Get the firmware version number	None	Page 11
MT	Measuring Time	The time over which the average value is derived	0 to 500 ms	Page 13
NR	No-motion Range	Read or modify the no-motion range	0 to 65,535	Page 16
NT	No-motion Time	Read or modify the no-motion time in msecs	0 to 65,535	Page 16
OP	Open connection	Open a connection to device number x	0 to 255	Page 27

Command	Short Description	Usage	Parameter Values	Full Description on
RT	Reset Tare	Cancels tare value - unit reverts to Gross weighing	None	Page 19
RZ	Reset system zero	Restores the calibration zero point	None	Page 18
SD	Start Delay	Read or set the delay between trigger & measurement	0 to 500 ms	Page 13
SF	Start auto transmitting filtered value	Start auto transmitting the filtered weight value	None	Page 22
SG	Start auto transmitting gross weight	Start auto transmitting the gross weight value	None	Page 21
SN	Start auto transmitting net weight	Start auto transmitting the net weight value	None	Page 21
Sn	Get/Set the setpoint values	Read or modify the setpoint values	-99,999 to +99,999	Page 24
SR	Software reset	Causes the ZE20.005 to perform a software reset	None	Page 12
SS	Save Setpoint Parameters	Save Setpoint Parameters to EEPROM	None	Page 28
ST	Set Tare	Sets the tare value and puts the ZE20.005 in net mode	None	Page 19
SW	Start auto transmitting 'Long' weight value	Start auto transmitting the 'Long' weight value	None	Page 22
SZ	Set Zero	Set a new system zero	None	Page 18
	Trigger Edge	Selects trigger on a falling (0) or rising edge(1)		Page 13
	Trigger Level	Set the trigger level at which measurement cycle starts		Page 14
TR	Trigger	Software trigger to start measurement cycle	None	Page 14
UR	Read or modify the update rate	Read or modify the update rate	0 to 7	Page 15
WP	Save setup parameters	Save setup parameters to EEPROM	None	Page 28
WT	Read or modify the warm up delay time	Read or modify the warm up time delay	0 to 255	Page ?
ZT	Zero track (TAC protected)	Zero track off (0) or zero track on (1)	0 or 1	Page 14

4

5 COMMANDS

For better clarity, all commands are divided into groups as described on the following pages.

5.1	System diagnostic Commands - ID, IV, IS, SR	11
5.2	Calibration Commands - CE, CM, DS, DP, CZ, CG, ZT, FD, CS, UR	13
5.3	Motion detection Commands - NR, NT	16
5.4	Filter setting Commands - FL, FF	17
5.5	Set Zero/Tare and Reset Zero/Tare Commands - SZ, RZ, ST, RT	18
5.6	Output Commands - GG, GN, GT, GS, GF, GW	20
5.7	Auto-transmit Commands - SG, SN, SF, SW	21
5.8	Commands for external I/O control - IN, IO, IM	22
5.9	Setpoint Commands - Sn, Hn, An	24
5.10	Communication setup Commands - AD, CL, BR, DX, OP	26
5.11	Save calibration, setup and setpoint parameters Commands - CS, WP, SS	28

5.1 System diagnosis Commands – ID, IV, IS, SR

Use these commands to get the EZE20X005 type, firmware version or device status. These commands are sent without parameters.

ID Request of device identity

Master (PC / PLC) sends	EZE20X005 responds
ID	D:6810

The response to this request gives the actual identity of the active device. This is particularly useful when trying to identify different device types on a bus.

IV Request of firmware version

Master (PC / PLC) sends	EZE20X005 responds
IV	V:0300

The response to this request gives the firmware version of the active device.

IS Request device status

Master (PC / PLC) sends	EZE20X005 responds
IS	S:067000 (example)

The response to this request comprises of two 3-digit decimal values, which can be decoded according to the table below:

	Leftmost 3-digit value:		Rightmost 3-digit value:
1	Signal stable	1	(not used)
2	Zero action performed	2	(not used)
4	Tare active	4	(not used)
8	(not used)	8	(not used)
16	(not used)	16	(not used)
32	(not used)	32	(not used)
64	Output 0 active	64	(not used)
128	Output 1 active	128	(not used)

For example the result S:067000 decodes as follows:

Signal Stable (no-motion)	1
Zero action	2
Output 0 active	64
Total	67

Please note that the bits that are not used are set to zero.

SR Software Reset

Master (PC / PLC) sends	EZE20X005 responds
SR	ОК

This command will respond with 'OK' and after a maximum of 400 ms perform a complete reset of the EZE20X005. This has the same functionality as powering off and on again (hardware reset).

5.2 Calibration Commands CE, CM, DS, DP, CZ, CG, ZT, FD, CS, UR

Note: TAC represents the Traceable Access Code (calibration counter) which increments every time new calibration data is stored. Calibration values are only stored in EEPROM when the CS command is issued (see CS command)

CE TAC counter reading

With this command you can either read the current TAC value or enable a calibration command. To check the current TAC value issue the command without any additional parameters. To enable a calibration commands, issue the CE command with the current TAC value. See table below.

Master (PC / PLC) sends	EZE20X005 responds	Result
CE	E+00017 (example)	Current TAC value is 17
CE_17	OK	Calibration commands enabled

This command MUST be issued PRIOR to any attempt to change calibration parameters such as CZ, CG etc. In legal for trade applications the TAC value can be used to check if any critical parameters have been changed without re-verification. After each calibration the TAC counter increases by 1.

CM Set maximum output value

This command sets the maximum output value. Permitted values are between 1 and 99999. Factory default value CM = 99999. To check the current value issue the CM command without any additional parameters. To change the value of CM, issue the CE command with the current TAC value and then CM and the new setting. See table below.

Master (PC / PLC) sends	EZE20X005 responds	Result
СМ	M+30000	Current output maximum is set to 30,000
CE	E+00017 (example)	Current TAC value is 17
CE_17	OK	Calibration commands enabled
CM_50000	OK	Output maximum changed to 50,000

The value of CM will determine the point at which the output will change to "oooooo" signifying over-range.

Please note that the Set Zero (SZ) and the automatic Zero Track functions are limited to \pm 2 % of the CM value.

DS Set output reading step size

This command allows you to set different output reading step sizes. Permitted values are 1, 2, 5, 10, 20, 50, 100, and 200. Factory default value DS = 1. For example, if the step size is set to 2, then the output value will go up or down in 2s. To check the current step size, issue the DS command without any additional parameters. To change the value of DS, issue the CE command with the current TAC value and then DS and the new setting. See table below.

Master (PC / PLC) sends	EZE20X005 responds	Result
DS	S+00002	Display step size is set to 2
CE	E+00017 (example)	Current TAC value is 17
CE_17	ОК	Calibration commands enabled
DS_50	OK	Display step size changed to 50

DP Set decimal point position

This command allows the decimal point to be positioned anywhere between the most and least significant digits. To check the current position, issue the DP command without any additional parameters. To change the decimal point position, issue the CE command with the current TAC value and then DP and the new setting. See table below.

Master (PC / PLC) sends	EZE20X005 responds	Result
DP	P+00002	Decimal point is set to 2 places (xxx.xx)
CE	E+00017 (example)	Current TAC value is 17
CE_17	ОК	Calibration commands enabled
DP_0	OK	Decimal point set to no places (xxxxx)

CZ Set the calibration zero point

This command sets the calibration zero point which is a reference point for all weight calculations (TAC protected). To set a new calibration zero, issue the CE command with the current TAC value and then CZ (when there is no load applied). See table below. Factory default ~ 0mV/V input signal

Master (PC / PLC) sends	EZE20X005 responds	Result
CE	E+00017 (example)	Current TAC value is 17
CE_17	ОК	Calibration commands enabled
CZ	ОК	New zero point saved

CG Set calibration gain (Span)

This command sets the calibration span or gain which is a reference point for all weight calculations (TAC protected). To check the current gain calibration value, issue the CG command without any additional parameters. To change the calibration gain value, issue the CE command with the current TAC value and then CG (with the equivalent load applied). See table below.

Master (PC / PLC) sends	EZE20X005 responds	Result
CG	G+10000	Calibration gain set at 10000 counts
CE	E+00017 (example)	Current TAC value is 17
CE_17	ОК	Calibration commands enabled
CG_15000	OK	Calibration gain set to15000 counts

For the best system performance, calibrate the gain (span) as near to the display maximum (CM) as possible. A minimum calibration load of at least 20% is recommended. Factory default calibration gain setting 20000 counts = 2.0000 mV/V input signal. Permitted values 0 - 99999

ZT Zero tracking

This command enables or disables the zero tracking (TAC protected). To check the current zero tracking status, issue the ZT command without any additional parameters. To change the zero tracking status, issue the CE command with the current TAC value and then ZT followed by the new setting. See table below. Permitted values 0 (ZT disabled) and 1 (ZT enabled)

Master (PC / PLC) sends	EZE20X005 responds	Result
ZT	Z:001	Zero tracking status set to on
CE	E+00017 (example)	Current TAC value is 17
CE_17	OK	Calibration commands enabled
ZT 0	OK	Zero tracking status changed to off

ZT continues over

ZT Zero tracking (continued)

Zero tracking will only be performed on values within ± 0.5 d of zero at a rate of 0.4 d per second where d = display set size (see DS command). The zero will only be tracked to a maximum of $\pm 2\%$ of the display maximum (see CM command). factory default: ZT = 0.

FD Factory default settings

This command restores the EZE20X005 back to the original factory settings. The data will be written back into EEPROM and the TAC will be incremented by 1

Please note: All calibration and set up data will be lost if the FD command is issued !

Master (PC / PLC) sends	EZE20X005 responds	Result
CE	E+00017 (example)	Current TAC value is 17
CE_17	ОК	Calibration commands enabled
FD	ОК	Factory default settings restored

CS Save the calibration values

This command stores the calibration values in EEPROM and causes the TAC code to be incremented by 1. If the CS command is not issued and the power to the EZE20X005 fails or is turned off, all changes to the calibration values will be lost.

Master (PC / PLC) sends	EZE20X005 responds	Result
CE	E+00017 (example)	Current TAC value is 17
CE_17	OK	Calibration commands enabled
CS	OK	Calibration values stored

The CS command saves all calibration group values as set by CZ, CG, CM, DS, DP and ZT. To save any or all of the calibration group commands issue the CE command with the current TAC code followed by CS.

UR Set the update rate

This command defines the number of available updates per second. Factory default UR = 2.

UR=0	1	2			
90 M/s	45 M/s	30 M/s			

To check the current setting issue the command without any additional parameters. To change the setting issue the command with the additional parameter. Save changes using the WP command. See table below.

Master (PC / PLC) sends	EZE20X005 responds	Result
UR	U+00002	Update Rate set to 30 measurements/sec
UR_0	OK	Update Rate changed to 90 meas./sec.

PLEASE NOTE: Version 3.xx firmware can only run on hardware versions 68.101.v.2.20, 68.201.v.1.10 and 68.301.v.1.10 or higher. If a new firmware is downloaded, please remember to issue the FD command as the internal calibration constants are organized differently from this version on

5.3 Motion detection commands - NR, NT

The motion detection facility prevents certain functions from being performed if the weight value is unstable or 'in-motion'. This ensures that a new value cannot be set when the weight value is varying greatly over a short period of time. For a 'no-motion' or 'stable' condition to be achieved, the weight signal must not vary by more than NR divisions over the time period NT. If the weight signal is stable, the relevant bit of the 'Info status' (IS) response will be set.

The following functions are disabled if motion is detected: Calibrate Zero (CZ), Calibrate Gain (CG), Set Zero (SZ) and Set Tare (ST)

NR No motion range

This command sets the range within which the weight signal can vary and still be considered 'stable'. Permitted values are between 0 and 65535. To check the current value, issue the NR command without any additional parameters. To change the value of NR, issue the NR command with the new setting. See table below. To save this change to EEPROM use the WP command.

Master (PC / PLC) sends	EZE20X005 responds	Result
NR	R+00010	No motion range set to 10 d
NR_2	OK	No motion range changed to 2 d
WP	ОК	Write parameter to EEPROM

With NR = 2, the weight signal can vary no more than $\pm 2 d$, in the time period NT in order to be considered stable. Factory default : NR =1

NT No motion time

This command sets the time (in milliseconds) over which the weight signal is checked to see if it is 'stable' or has 'no-motion'. The weight signal has to vary by less than NR divisions over the time period NT, to be considered 'stable'. Permitted values are between 0 and 65535. To check the current value, issue the NT command without any additional parameters. To change the value of NT, issue the NT command with the new setting. See table below. To save this change to EEPROM use the WP command.

Master (PC / PLC) sends	EZE20X005 responds	Result
NT	T+01000	No motion time set to 1000 ms
NT_500	OK	No motion time changed to 500 ms
WP	OK	Write parameter to EEPROM

With NT = 500, the weight signal can vary no more than \pm NR divisions, in the 500 ms in order to be considered stable. Factory default : NT = 1000 milliseconds.

5.4 Filter setting commands - FL, FF

Using the command FL, a digital filter strength can be set which will eliminate most unwanted disturbances. Please note that these filters are positioned immediately after the A/D converter and therefore affect all aspects of the weighing operation.

FL Filter Level (Cut off frequency)

This command allows you to select the filter level or cut off frequency. Permitted values are between 0 to 7. To check the current setting, issue the FL command without any additional parameters. To change the FL setting , issue the FL command with the new setting. See table below. To save this change to EEPROM use the WP command. Factory default FL = 3

Master (PC / PLC) sends	EZE20X005 responds	Result
FL	F+00003	Filter level set to 3
FL_1	OK	Filter level changed to 1
WP	OK	Write parameter to EEPROM

Filter Level (FL)	0	1	2	3	4	5	6	7
Cut off frequency (Hz) 3dB	0.02	0.05	0.1	0.2	0.5	1	2	5

FF Filter Factor [DISPLAY MODE ONLY]

This command defines the time over which a rolling average is calculated. Permitted values are between 0 and 15. To check the current setting, issue the FF command without any additional parameters. To change the FF setting , issue the FF command with the new setting. See table below. To save this change to EEPROM use the WP command. Factory default FF = 0

Master (PC / PLC) sends	EZE20X005 responds	Result
FF	F+00001	Filter factor set to 1
FF_4	OK	Filter factor changed to 4
WP	ОК	Write parameter to EEPROM

Filter Factor (FF)	0	1	2	3	4	5	6	7
Averaging time (Seconds)	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6

Filter Factor (FF)	8	9	10	11	12	13	14	15
Averaging time (Seconds)	1.8	2.0	2.2	2.4	2.6	2.8	3.0	3.2

5.5 Set Zero/Tare and reset Zero/Tare commands - SZ, RZ, ST, RT

The following commands allow you to set and reset zero and tare values. The zero set during calibration remains the 'true zero' but a new 'current zero' can be set using the SZ command. If the SZ command is issued and accepted then all weight values will be based in the new 'current zero'. Please remember that the zero value will be subject to the Zero Tracking function if enabled.

If the weight signal is not stable (as defined by the No motion range NR and the No motion time NT) then both the set zero (SZ) and the set tare (ST) commands will be disabled.

Also the set zero (SZ) command is not allowed if the new zero value required and the 'calibration zero' differ by more than 2% of the CM value (maximum displayed value)

See chapter 8 "Legal for trade" applications

SZ Set Zero

This command sets a new "current zero" which is then the basis of all weight values until further updated by the zero tracking function, another SZ command or the "reset zero" command (RZ). The SZ command will fail EZE20X005 responds with ERR) if the new "current zero" is more than 2% (of the CM value) higher or lower than the "true zero" set during calibration. The SZ command will also fail if the weight signal is not stable, as defined by the no motion range (NR) and no motion time (NT). If the weight signal is "stable", the response to the IS (device status) command will show the "signal stable" bit active and the SZ command will be accepted (OK). If the signal stable bit is not active, the SZ command will be rejected and the EZE20X005 will respond will ERR

Master (PC / PLC) sends	EZE20X005 responds	Result
SZ	OK	New zero set

The SZ command is issued without any parameters and will return either the OK or ERR response. If the SZ command is accepted, the EZE20X005 responds with OK and the"zero action performed" bit of the device status (IS) response will be active (1).

RZ Reset Zero point

This command cancels the SZ command and the zero reading reverts to that set by the CZ command during calibration.

Master (PC / PLC) sends	EZE20X005 responds	Result
CZ	OK	Zero reverts to calibration zero (CZ)

The RZ command is issued without any parameters and will return either the OK or ERR response. If the RZ command is accepted, the EZE20X005 responds with OK and the "zero action performed" bit of the device status (IS) response will not be active (0).

ST Set Tare

This command will activate the net weighing functionby storing the current weight value as a tare.

The weight signal must be "stable" within the limits set by the no motion range (NR) and the no motion time (NT) for the set tare command to be accepted and the "signal stable" bit of the device status response (IS) to be active. (1)

Master (PC / PLC) sends	EZE20X005 responds	Result
ST	OK	New tare set

The ST command is issued without any parameters and will return either the OK or ERR response. If the ST command is accepted, the EZE20X005 responds with OK and the "zero action performed" bit of the device status (IS) response will be active (1).

RT Reset tare

This command cancels the tare and returns the weighing into gross mode.

Master (PC / PLC) sends	EZE20X005 responds	Result
RT	OK	Tare deactivated

The RT command is issued without any parameters and will return either the OK or ERR response. If the RT command is accepted, the EZE20X005 will respond with OK and the "tare active" bit of the Device Status (IS) response will be set to 0

5.6 Output commands GG, GN, GT, GS, GF, GW

The following commands "Get" the Gross, Net, Tare, ADC sample, filtered and 'Long' weight values from the EZE20X005 .

GG Get Gross weight value

This command gets the gross weight value.

Master (PC / PLC) sends	EZE20X005 responds	Result
GG	G+01.100	Gross weight value = 1.100 divisions

GN Get Net weight value

This command gets the net weight value.

Master (PC / PLC) sends	EZE20X005 responds	Result
GN	N+01.000	Net weight value = 1.000 divisions

GT Get Tare value

This command gets the tare weight value.

Master (PC / PLC) sends	EZE20X005 responds	Result
GT	T+0.100	Tare value = 0.100 divisions

GS Get ADC sample value

This command gets the actual Analogue to Digital Converter (ADC) value. This can be useful during development or when calibrating to see how much of the ADC range is being used.

Master (PC / PLC) sends	EZE20X005 responds	Result
GS	S+125785	ADC value = 125785 counts

For service applications it may be helpful to note the value of ADC at no load and full load.

GF Get the Filtered value (Display Mode ONLY)

This command gets the filtered weight value. The filtered weight value is a rolling averaged of the weight readings over a time set by the FF command. This command is normally used when the EZE20X005 is connected to an external display where a more stable result is required.

Master (PC / PLC) sends	EZE20X005 responds	Result
GF	F+01.000	Filtered weight value = 1.000 divisions

GW Get the 'Long' weight value

This command gets the 'long' weight value. The GW command is issued without any parameters and the response is a single string in the format **W+00100+011005109** which contains the current net weight, the current gross weight, the status values and a checksum. The first two sections of the returned string contains the net weight and the gross weight values followed by two hexadecimal characters which represent two bitmapped status indicators. The last two hexadecimal characters represent the checksum, which is the inverse of the sum of all the ASCII values of the string, no including the checksum characters.

GW Get the 'Long' weight value (Continued)

	W -	+00100 +01	100 5	1	09	
Leading character signifies response to GW command	Net Weight Excluding Decimal point	Gross Weight Excluding Decimal point	First bitma binary val	apped ue	Second bitmapped binary value	Checksum

	First bitmapped binary value:	:	Second bitmapped binary value:
1	not used	1	Signal stable
2	not used	2	Zero action performed
4	Output 0 active	4	Tare active
8	Output 1 active	8	not used

The checksum is derived as follows:-

- a) Add together the ASCII values of all 15 characters in the string
- b) Convert the decimal result to hexadecimal.
- c) Remove the most significant digit from the hexadecimal result
- d) Invert the remaining hexadecimal value
- e) Convert the hexadecimal value to characters.

5.7 Auto-transmit commands SG, SN, SF, SW

The following commands allow the Gross, Net, Filtered and 'Long' weight values to be transmitted continuously. Transmission will start as soon as the relevant command has been received and will continue until another valid command is accepted by the EZE20X005. The data output rate will depend on the baud rate being used e.g. with a baud rate of 9600 approximately 100 readings per second can be transmitted.

Note : The SG, SN, SF and SW commands will only work if the EZE20X005 has been set to full

SG Send the Gross weight value continuously

This command sends the gross weight value continuously.

Master (PC / PLC) sends	EZE20X005 responds	Result
SG	G+01.100	Gross weight value = 1.100 divisions

SN Send the Net weight value continuously

This command sends the net weight value continuously.

Master (PC / PLC) sends	EZE20X005 responds	Result
SN	N+01.000	Net weight value = 1.000 divisions

SF Send the Filtered value continuously (Display Mode ONLY)

This command sends the filtered weight value continuously. The filtered weight value is a rolling averaged of the weight readings over a time set by the FF command. This command is normally used when the EZE20X005 is connected to an external display where a more stable result is required.

Master (PC / PLC) sends	EZE20X005 responds	Result
SF	F+01.000	Filtered weight value = 1.000 divisions

SW Send the 'Long' weight value continuously

This command sends the 'long' weight value continuously. The SW command is issued without any parameters and the unit continually returns a string in the format **W+00100+011005109** which contains the current net weight, the current gross weight, the status values and a checksum. The first two sections of the returned string contains the net weight and the gross weight values followed by two hexadecimal characters which represent two bitmapped status indicators. The last two hexadecimal characters represent the checksum, which is the inverse of the sum of all the ASCII values of the string, no including the checksum characters. See the GW command under section 5.6 for further details. Please note that the decimal point information is not transmitted.

5.8 Commands for external I/O control - IN, IO, IM (ZE20.005.1 ONLY)

The EZE20X005 has 2 independent logic inputs and 2 independent logic outputs. The inputs and outputs can be configured and controlled completely via the EZE20X005. The logic inputs can be read directly by the host application and the 2 logic outputs have additional control features which allow the user total control over the configuration and action of each output channel. The logic outputs are usually controlled internally via the setpoint commands but can be configured to be controlled externally by using the IM command.

The following group of commands allows the status of the 2 logic inputs to be read, the status of the 2 logic outputs to be read or modified and the logic outputs to be configured for internal or external control.

The use of the setpoint commands (Sn, Hn, An) are explained in the following chapter 5.10

IN Read the status of the two logic inputs

This command is sent without any parameters and reads the status of the two logic inputs. The response is in the form of a 4 digit code where 0= false and1 = true (inputs are active 'high'), the least significant bit corresponding to logic input 0 etc.

Master (PC / PLC) sends	EZE20X005 responds	Result
IN	IN:0001	Input 0 active
IN	IN:0010	Input 1 active
IN	IN:0011	Input 0 & Input 1 active

IO Read/Modify the status of the output channels

With this command you can read the status of the two logic outputs. The outputs are normally internally controlled by the setpoint values (See section 5.10). The outputs can however be controlled by the host system **if they have been enabled by the IM command**. If the IO command is issued without any parameters the response shows the status of the logic outputs in the form of a four digit code where 0 = false and 1 = true (outputs are normally open, open drain MOSFETs), the least significant bit corresponding to Output 0 etc.

Request

Master (PC / PLC) sends	EZE20X005 responds	Result
IO	IO:0001	Output 0 active
IO	IO:0010	Output 1 active
IO	IO:0011	Output 0 & Output 1 active

Please note that the status of the logic outputs is normally determined by the internal setpoint (see section 5.10) and therefore setting the logic output status using the IO command is not allowed **unless enabled by the IM command**. The status of the outputs can then be changed by issuing the IO command followed by the appropriate 4 digit code. For example if IO 0001 was sent to the ZE20.005, the output 0 will be activated (FET conducting).

Setting

Master (PC / PLC) sends	EZE20X005 responds	Result
IO_0001	ОК	Output 0 active
IO_0010	OK	Output 1 active
IO_0011	ОК	Output 0+1 active

IM Control of the logic outputs by the host application

The logic outputs can be controlled by the host application (as opposed to the normal internal setpoints) if they are enabled by the IM command and the appropriate 4 digit code. If this command is issued without any parameters, the response shows which of the logic output are enabled. The response is in the form of a 4 digit code where 0= false and1 = true (inputs are active 'high'), the least significant bit corresponding to logic input 0 etc.

Request

Master (PC / PLC) sends	EZE20X005 responds	Result
IM	IM:0001	Output 0 Enabled
IM	IM:0010	Output 1 Enabled
IM	IM:0011	Output 0 & Output 1 Enabled

To enable the logic outputs to be controlled by the host application the IM command must be issued together with a 4 digit code. A "1" bit in the code enables the corresponding logic output to be controlled by the host application using the IO command. A "0" in the code leaves the corresponding logic output controlled by the internal setpoint. Logic output 0 is again the least significant bit.

Setting

Master (PC / PLC) sends	EZE20X005 responds	Result
IM_0001	OK	Enable Output 0
IM_0010	ОК	Enable Output 1
IM_0011	OK	Enable Output 0 & Output 1

Note: When reading the status of the logic outputs using the IO command, the setpoint status will be returned regardless of the IM setting. Sending IM 0000 disables the external logic output control. Factory default:- IM= 0000

5.9 Setpoint Commands - Sn, Hn, An

The EZE20X005 has 2 logic outputs where the status is dependent on the weight value (setpoint). Each logic output can be assigned an independent setpoint value (Sn) with corresponding hysteresis/switch action (Hn) and base (An - switch on the gross or the next weight)

S0 Setpoint value for logic output 0

Request / Setting

Master (PC / PLC) sends	EZE20X005 responds	Result
SO	0+01500	Setpoint S0 set to 1500 d
S0_03000	ОК	Setpoint S0 changed to 3000 d

Similarly, to read or change the setpoint value for logic 1, issue the commands as above but substitute S1 instead of S0.

H0 Hysteresis and switch action for logic output 0

Using the H0 command you can set the hysteresis on the setpoint value and define whether the logic output switches on or off when the setpoint value is reached. The numeric value of H0 sets the hysteresis and the polarity sets the action when the setpoint is reached.

Example

Setpoint	Hysteresis	Load	Output open	Output closed
S0 = 2000 kg	H0 = -100kg	increasing	2101 kg	0 2100 kg
S0 = 2000 kg	H0 = -100kg	decreasing	2000 kg	0 1999 kg
S0 = 2000 kg	H0 = 100kg	increasing	0 1999 kg	2000 kg
S0 = 2000 kg	H0 = 100kg	decreasing	1900 0 kg	1901 kg

An example of a negative hysteresis of 100 kg (H0= -100) on a setpoint (S0) of 2000 kg (see lines 1 & 2 of the table above):

When the weight is increasing between 0 kg and 2100 kg the logic output is "ON". Once the weight increases above 2100 kg, the logic output is "OFF". The logic output will come "ON" again when the weight drops below 2000 kg.

An example of a positive hysteresis of 100 kg (H0= +100) on a setpoint (S0) of 2000 kg (see lines 3 & 4 of the table above):

When the weight is increasing between 0 kg and 1999 kg the logic output is "OFF". Once the weight increases above 1999 kg, the logic output is "ON". The logic output will switch "OFF" again when the weight value drops below 1900 kg.

Request / Set Hysteresis value on logic output 0

Master (PC / PLC) sends	EZE20X005 responds	Result
H0	0-00100	Hysteresis on S0 set to -100 kg
H0_100	OK	Hysteresis on S0 changed to +100 kg

Setpoint range between \pm 1 (minimum) and \pm 99999 (maximum) Similarly, to read or change the hysteresis value for logic 1, issue the commands as above but substitute H1 instead of H0.

A0 Request / Set the base for logic output 0

The A0 command defines the base on which the setpoint acts. If A0 is set to "0" then the setpoint acts on the unfiltered gross weight. So when the unfiltered gross weight reaches the setpoint, the logic output turns on/off. Similarly, if A0 is set to "1" then the setpoint acts on the unfiltered net weight.

Request / Set base for logic output 0

Master (PC / PLC) sends	EZE20X005 responds	Result
A0	0+00000	Setpoint acts on the unfiltered gross weight
A0_1	OK	Setpoint acts on the unfiltered net weight

Similarly, to read or change the base for the setpoint of logic 1, issue the commands as above but substitute A1 instead of A0.

NOTE: All changes to the setpoint settings have to be stored in EEPROM using the SS command. See section 5.11

5.10 Communication setup Commands – AD, CL, BR, DX, OP

NOTE: These settings will only take effect after a power on reset (remember to store the settings using the WP command before turning the power off)

AD Device address setup / request

Setting the device address to 0 will cause the device to be permanently active, listening and responding to every command on the bus without the need for an OP command.

Request / Set device address

Master (PC / PLC) sends	EZE20X005 responds	Result
AD	A:000	Address set to 0
AD_49	OK	Address changed to 49

Factory default: Address 0

Refer to section 2 (page 4) for details of how to carry out a manual setting of the address by soldering SW3.

CL Close Device address n

Master (PC / PLC) sends	EZE20X005 responds	Result
CL_3	OK	Device 3 closed

BR Request / Setup Baud Rate

With this command, the following Baud rates can be set up: 9600, 19200, 38400, 5760 and 115200 baud.

Master (PC / PLC) sends	EZE20X005 responds	Result
BR	B:9600	Baud rate set to 9600
BR_115200	OK	Baud rate changed to 115K2 baud

Factory default: 9600 Baud

Refer to section 2 (page 4) for details of how to carry out an automatic adjustment of the baud rate

DX Half or full duplex communication

With this command the communication can be set to half (DX=0) or full (DX=1) duplex.

Master (PC / PLC) sends	EZE20X005 responds	Result
DX	X:000	Half duplex set
DX_1	OK	Communication changed to full duplex

Half duplex communication can be used for 2 wire RS485 communication. The auto transmit commands SG and SF will only work if full duplex (DX=1) is selected. Factory default DX=0

OP Device communication enable / request

This command, if sent without parameters, requests the address or device number of the device active on the bus. If sent with parameters, this enables the device defined by the parameters.

Request / Enable device communication

Master (PC / PLC) sends	EZE20X005 responds	Result
OP	O:0003	Device 3 open
OP_14	OK	Device 14 opened

The requested device acknowledges its readiness and responds to all bus commands until a further OP command arrives with a different device address or a CL command is received.

5.11 Save calibration, setup and setpoint parameters commands - CS, WP, SS

The setup and calibration parameters can be divided into 3 groups:

Calibration parameters: CZ, CG, DS, DP & ZT are saved by the CS command.

Setup parameters (other than setpoint): FL, FM, NR, NT, BR, AD, DX etc. are saved by the WP command.

Setpoint parameters: S0, S1, H0, H1, A0, A1 are saved by the SS command (ZE20.005.1 ONLY).

Please note that the calibration parameters can only be saved if the TAC code is known and precedes the CS command. See the CE and CS commands on pages 13 & 15 respectively.

Both the setup parameters and the setpoint parameters are stored in EEPROM using the WP and SS commands respectively.

WP Save the setup parameters

With this command the settings of the Filter (FL, FM), the No-motion (NR, NT) and communication (AD, BR, DX) will be saved in the EEPROM.

Master (PC / PLC) sends	EZE20X005 responds	Result
WP	OK	Parameter saved

SS Save the Setpoint setup parameters (EZE20X005 ONLY)

With this command the value of the setpoints (S0 & S1), the setpoint hysteresis (H0 & H1) and the setpoint action (A0 & A1) will be saved in the EEPROM.

Master (PC / PLC) sends	EZE20X005 responds	Result
SS	OK	Parameter saved

6 CALIBRATION PROCEDURE.

The calibration interface features a "TRACEABLE ACCESS CODE" (TAC), which is required for use in "Approved" applications (see section 7, "USE IN APPROVED APPLICATIONS" for more details). This feature also ensures that there is no inadvertent or unauthorized access to the calibration parameters. The following parameters are considered as CALIBRATION commands:

CE	Calibration Enable - returns the current TAC value.
CZ	Calibrate zero - sets the system zero point
CG	Calibrate gain - sets the system gain
СМ	Calibrate maximum - sets the maximum allowable display value.
DS	Display step size - sets the output incremental step size.
DP	Display decimal point - sets the position of the output decimal point
ZT	Zero track enable.
FD	Factory default settings (return to)
CS	Calibration save

Example: setup of zero point, gain and decimal point.

The chosen test weight has the value equivalent to 5000 increments. This could be 500 g, 5kg or 5000 kg. We will calibrate with a 500 g weight. The decimal point is set to 1 place using the DP command. So although the CG value (5000) does not contain a decimal place the final result does (500.0).

Master (PC / PLC) sends	EZE20X005 responds	Result		
CE	E+00017	Request: TAC-counter CE = 17		
CE_17	OK	Calibration sequence active		
Scale no load !				
CZ	ОК	System zero point saved		
CE_17	OK	Calibration sequence active		
Put calibration weight on (500 g) !				
CG_5000	OK	Setting span		
CG	G+05000	Request: span 5000 d		
CE_17	ОК	Calibration sequence active		
DP_1	OK	Setting: decimal point 0000.0		
CE_17	ОК	Calibration sequence active		
CS	ОК	Save calibration data in EEPROM		

Zero point, gain and decimal point position were saved in the EEPROM; the calibration counter (TAC) is increased automatically by 1.

7 USE IN "APPROVED" APPLICATIONS

The Traceable Access Code (TAC)

The user software must then provide a guard against improper access of the calibration commands (see the "Calibration Commands" section). The EZE20X005 digitiser features the "Traceable Access Code" or TAC method of controlling the access to the calibration commands group. This means that a code is maintained within the device, and is incremented whenever any change to any of the calibration commands is saved.

When performing the "stamping" test, the Trading Standards Officer will make a note of the TAC, and advise the user that any change to this code which occurs prior to the regular reinspection by the Trading Standards Office, will result in legal prosecution of the user.

The user software is required as a condition of approval, to make the TAC available to the weight display indicator or console, on demand.

8 UNIT ADAPTOR CONNECTION DETAIL

8.1 EZE20X100003 Unit Adaptor with built-in RS422 to RS232 converter

External Connections

Pin No. EZE20X005	UA 77.1 Terminal	Function
0	Gnd (Shield)	Common Ground (Load cell cable shield)
1	+ Exc (to load cell)	Positive Load cell excitation voltage
2	+ Sen	Positive Load cell sense voltage
3	+ Inp (to ZE20.005)	Positive Load cell signal voltage
4	- Inp (to ZE20.005)	Negative Load cell signal voltage
5	- Sen	Negative Load cell sense voltage
6	- Exc (to load cell)	Negative Load cell excitation voltage
7	Gnd	Common Ground (Load cell cable shield)
8	Not Connected	
9	Not Connected	
10	RxD (RS232)	Receive Data RS232
11	Gnd (RS232)	RS232 Common Ground
12	Gnd (RS232)	RS232 Common Ground
13	TxD (RS232)	Transmit Data RS232
14	0 In	Logic Input 0 (relative to common ground)
15	0 Out	Logic Output 0 (relative to common ground)
16	1 In	Logic Input 1 (relative to common ground)
17	1 Out	Logic Output 1 (relative to common ground)
18	+ PWR	Power Supply 12-24 V DC
19	Gnd	Common Ground

With EZE20X100003 (Unit Adaptor with built-in RS422 to RS232 Converter)

8.2 EZE10X006007 Standard Unit Adaptor

External Connections

Pin No. EZE20X005	UA 73.2 Terminal	Function
0	Gnd (Shield)	Common Ground (Load cell cable shield)
1	+ Exc (to load cell)	Positive Load cell excitation voltage
2	+ Sen	Positive Load cell sense voltage
3	+ Inp (to ZE20.005)	Positive Load cell signal voltage
4	- Inp (to ZE20.005))	Negative Load cell signal voltage
5	- Sen	Negative Load cell sense voltage
6	- Exc (to load cell)	Negative Load cell excitation voltage
7	Gnd	Common Ground (Load cell cable shield)
8	Not Connected	
9	Not Connected	
10	+Rx (RS422)	Receive Data +
11	-Rx (RS422)	Receive Data -
12	+Tx (RS422)	Transmit Data +
13	-Tx (RS422)	Transmit Data -
14	0 In	Logic Input 0 (relative to common ground)
15	0 Out	Logic Output 0 (relative to common ground)
16	1 In	Logic Input 1 (relative to common ground)
17	1 Out	Logic Output 1 (relative to common ground)
18	+ PWR	Power Supply 12-24 V DC
19	Gnd	Common Ground

With EZE10X006007 (Standard Unit Adaptor)

tecsis GmbH

Carl-Legien-Straße 40-44 D-63073 Offenbach am Main Telefon: +49 69 5806-0 Telefax: +49 69 5806-7788 E-Mail: kraft@tecsis.de Internet: www.tecsis.de

