

setting the standard

Spring-applied brake BFK461

Degree of protection up to IP65 equivalent 4 - 46 Nm

www.intorq.de

We set the standards

The INTORQ brand stands for reliable brake solutions of the highest standard. Whether in cranes, wind turbines or lift systems – INTORQ products are used in the most diverse of applications. Rely on us to create the right solution for your drive – individually and reliably. With its broad scope of different versions, the modular range of INTORQ products is used in many motors and geared motors and has set standards worldwide. With the establishment of facilities in Shanghai and Atlanta, we have also consistently expanded our international presence. So wherever you are in the world, our network of sales and service staff is always close at hand to support you.

INTORQ at a glance

- Electromagnetic brakes and clutches
- Configurable standard solutions and custom-made solutions
- Development and production centred in Aerzen
- Fast delivery times worldwide thanks to
- production sites in Shanghai and Atlanta 45 million euros a year sales volume
- 800,000 units a year
- 10,000 square metres production area
- 220 employees
- Market leader with 63 sales partners in 49 countries

INTORQ

For high degree of protection – BFK461 in sealed design

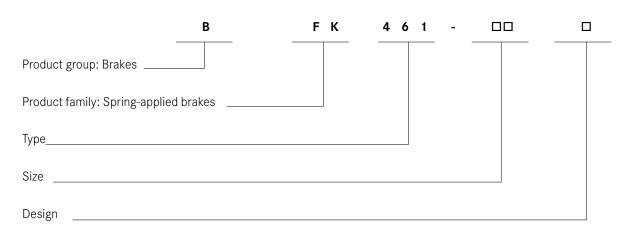
The INTORQ range of spring-applied brakes is being expanded with the addition of the new BFK461 series of sealed designs. This brake has been specifically developed for application areas with high enclosure requirements. It is a self-contained system available in four sizes and with braking torquesof 4 - 46 Nm is ideal for use in wind turbines, cranes and textile machines.

Features

- Spring-applied brake, sealed design, IP65 enclosure
- Designs with and without flange
- Long maintenance intervals

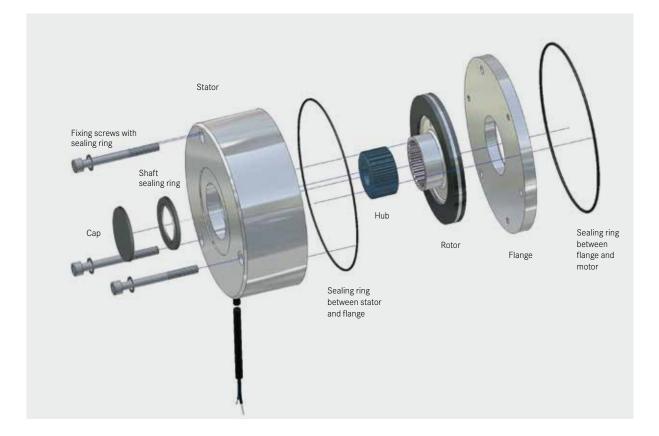
Example applications

- Brake motors
- Wind power plants
- Car wash systems
- Cranes
- Hoists
- I Textile machines



Car wash systems

Product key INTORQ BFK461-


Sizes

06,08,10,12

Stator design

N – Non-adjustable in the sealed design

Not coded: Supply voltage, hub bore, options

Product information

A powerful and complete range

- 4 sizes
- Standard voltages 20 V, 24 V, 42 V, 103 V, 180 V, 205 V
- Torque range 4 46 Nm

Versatile

Modular structure for virtually all applicationsDimensions identical to the BFK458 range

Torque transmission

Designed for dry running

Ready for operation immediately

- Preset air gap, quick and easy mounting
- Special machining of the friction surfaces ensures that the characteristic torques are achieved after very few switching operations.
- No fixed bearing is required on the brake

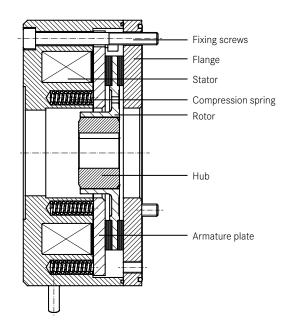
Durable

- The insulation system to temperature class F (155°C) ensures that the winding has a long service life
- These brakes are designed for 100% operating time (current applied to the brake)

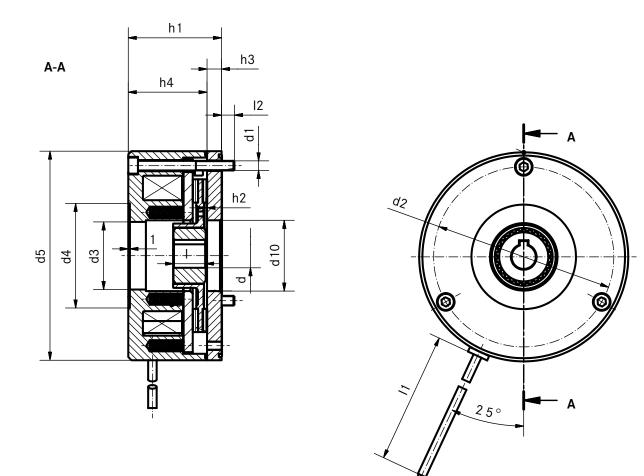
Low maintenance

- Long rotor/hub connection with low rate of wear and a tried-and-tested involute gear
- Asbestos-free fiction linings with low rate of wear

Reliable


- The certified ISO-9001 and ISO 14001 quality system provides the basis for consistently highquality products
- Manufacture and testing to VDE 0580

Principle of operation


Brake module + Rotor + Hub + Flange

INTORQ BFK461 spring-applied brakes are single-disc brakes with two friction surfaces. When de-energised, several compression springs are used to generate the braking torque through friction locking. The brake is released electromagnetically. During braking, the compression springs use the armature plate to press the rotor (which can be shifted axially on the hub) against the counter friction face. When the brakes are applied, an air gap sair is present between the armature plate and the stator. The stator's coil is energised with DC voltage in order to release the brake.

The resulting magnetic force works against the spring force to pull the armature plate towards the stator. This relieves the spring force on the rotor which can then rotate freely.

BFK461, sealed design with rotor and flange

Size	M _k default	M _k max.	P ₂₀	dH7 max.	d ₁	d ₂	d3 H7	d4	d5	d 10	h ₁	h ₂	h ₃	h ₄	I	I ₁	l ₂	s _{LN}
06	4	6	20	15	3-x-M4	72	24	45	87	31	42	1	6	36	18	400	7	0,2
08	8	12	25	20	3-x-M5	90	32	55	103	41,5	50	1,5	7	43	20	400	9	0,2
10	16	23	30	20	3-x-M6	112	42	65	130	44	58	2	9	49	20	400	12	0,2
12	32	46	40	25	3-x-M6	132	52	75	148	52,5	63,5	2	9	54,5	25	400	11,5	0,2

 I_{K} : Rated torque of the brake in Nm at n = 100 rpm

P₂₀: Coil power at 20 °C in W

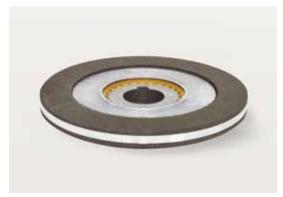
¹⁾ Standard keyway to DIN 6885/1-P9

All dimensions in mm

Rated data

Size	p ¹⁾ [20°C]	^s L max service brake	^s L max holding brake	JAlu rotor	Mass of stator
	[W]	[mm]	[mm]	[kgcm ²]	Assembly [kg]
06	20	0,5	0,3	0,15	0,75
08	25	0,5	0,3	0,61	1,2
10	30	0,5	0,3	2,0	2,1
12	40	0,5	0,3	4,5	3,5

¹ Coil power at 20°C in W, possible deviation up to +10%, depending on supply voltage selected


Braking torques, depending on speed and permissible limit speeds

Size	Average braking torque when decelerating	Braking torqu	Max. speed		
	from Δn_0 to a standstill	1.500	3.000	max.	Δn _{0max}
	[%]	[%]	[%]	[%]	[rpm]
06	100	87	80	74	6000
08	100	85	78	73	5000
10	100	83	76	73	4000
12	100	81	74	73	3600

As speed increases, so does wear

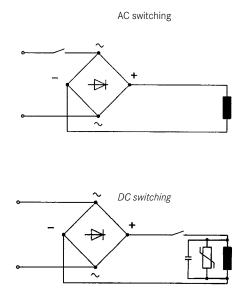
Rotor with plastic sleeve

The rotor with the plastic sleeve reduces the necessary backlash to a minimum and thus increases the service life.

Features and benefits

- Low rate of wear between rotor and hub
- Recommended for operation with frequency inverter
- Also suitable for CCV

Operating times


The listed operating times are guide values which apply to DC switching with rated air gap sL_{N} , warm coil and standard characteristic torque. The times

Torque time characteristic, dependent on excitation voltage Μ Мκ 0,1 MK Time Rated torque t₁₁ t₁₂ t2 t t₁ t3 U Excitation Time t

Explanations

t ₁	[s]	engagement time, the total of the	t ₁₂	[5
		reaction delay and torque rise time		
		t1=t11+t12		
t ₂	[s]	disengagement time, time from	QE	[J
		switching the stator until		
		the torque has reduced to 0,1 M_K		
t3	[S]	slipping time to standstill	Sh	[
		(after t ₁₁)		
t11	[s]	delay time when connecting, time from	S _{LN}	
		disconnecting the voltage until the		
		torque begins to rise		

shown are mean values. The engagement time t_1 is approximately 8 to 10 times longer for AC switching.

 [s] rise time of braking torque, time from beginning of rise of torque until braking torque is reached
 [J] max. permissible friction work per

switching cycle, thermal rating of the brake /clutch

[1/h] operating frequency, the number of repeated operations per unit time rated air gap

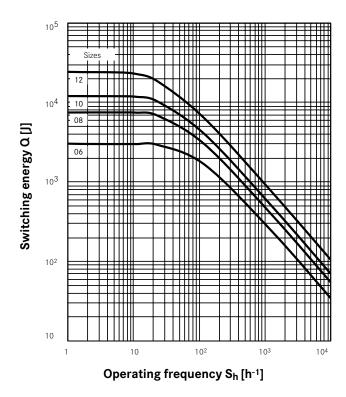
Size	rated value at switching energy with Δn=100 rpm single operating		Transition operating frequency frequency	Operating times [m at S _{LN} Engagement on DC	Disengagement		
	Мк- [Nm]	Ω _E [J]	S_{hue} [1/h]	[t ₁₁]	[t ₁₂]	[t1]	[t ₂]
06	4	3000	79	14	30	44	62
08	8	7500	50	39	27	66	61
10	16	12000	40	29	41	70	100
12	32	24000	30	40	38	78	150

¹⁾ Operating times valid for 205 V DC coils

Service life and wear

The friction energy to be withstood until s_{Lmax} is reached is dependent on a number of factors: in particular, the inertias to be braked, the braking speed, the operating frequency and the resulting temperature on the friction surfaces. For this reason, no universal value for all operating conditions can be given in respect of the amount of friction energy that can be handled.

In addition, increased wear should be expected with vertical mounting.


When the maximum permissible working air gap (s_{Lmax}) is reached, the rotor must be replaced. Where the amount of friction energy per switching operation is low, the brake's mechanical components can impose limitations

in terms of service life. In particular, the rotor/ hub connection, springs, armature plate and sleeves are subject to operational wear. The expected service life of the standard design is around 1 million load alternations. Solutions that are optimised in terms of service life are available in cases where a longer service life is required (consult the manufacturer).

Maintenance

Brakes are components which are subject to a great deal of wear. When installing the brake, it must be ensured that it can be easily accessed for inspection and maintenance purposes. Intervals between inspections should be set in accordance with the expected service life and load. For more information, please see the Operating Instructions.

Permissible friction energy Ω_{perm} depending on operating frequency S_h

General information

INTORQ brakes are designed so that the stated rated torques are reliably attained after a short run-in operation. Given the fluctuating properties of the organic friction linings used and changing environmental conditions, there may however be deviations from the stated braking torques. Appropriate safety factors in the design must take this into account.

An increased breakaway torque may in particular be experienced in damp conditions and with changing temperatures after long downtimes.

The braking torque should be checked when using the brake on the customer's friction surfaces. If the brake is being used solely as a holding brake without any dynamic load, the friction lining must be reactivated regularly.

Model overview

INTORQ BFK461-

Size	06	08	□ 10	□ 12						
Design	 With flange Without flange 									
Brake voltage	🗖 24 V	🗖 96 V	🗖 103 V	🗖 170 V	🗖 180 V	🗖 190 V	🗖 205 V			
Braking torque	4 – 46 Nm (see torque ratings)									
Cable length	□ Standard (from 100 mm to 1000 mm in 100 mm steps, from 1000 mm to 2500 mm in 250 mm steps)									
Rotor	🗆 Standa	ard		□ Noise-	reduced (re	otor with sl	eeve)			
Hub	(for bore diameter, see Dimensions)									
Fixing	□ For mounting onto the flange									
screw set	□ For mounting on the motor									
Sealing of the	□ Shaft sealing ring (shaft diameter on request)									
back wall of the housing	🗖 Сар									
Bridge rectifier		without sr								
		with snap-			2000r					
			ntegrated sp , integrated							
	·		-	opant oap						
Half-wave rectifier		without sr								
 4-pole with snap-in stud 6-pole vertical, integrated spark suppressor 6-pole horizontal, integrated spark suppressor 										
	u o-pole	norizontal	, integrated	spark sup	pressor					
Spark suppressor										

Setting standards in the market, worldwide

We are available to our customers at all times and in all locations. Major customers and projects are supported directly by our Key Account Sales Team at our HQ in Aerzen (Germany) or by our locations in Shanghai (China) and Atlanta (USA).

In addition to this, we work with a global network of local trading partners and cooperate with Lenze's global sales organisation. Please send service requests directly to your local sales partner or to our HQ in Aerzen, Germany: E-mail service@intorq.de Tel: +49 5154 70534-444 Fax: +49 5154 70534-200

You can find more information on our products, as well as catalogues and operating instructions available for download, on our website at www.intorq.de

INTORQ GmbH & Co. KG

Postfach 1103 D-31849 Aerzen, Germany

Wülmser Weg 5 D-31855 Aerzen, Germany

Tel:+49 (0)5154 705 34-0Fax:+49 (0)5154 705 34-200E-mailinfo@intorq.de

INTORQ (Shanghai) CO., LTD China

No. 600, Xin Yuan Road Building No. 6 / Zone B Nan Hui District, Lingang Shanghai, China 201306

Tel: +86 (0)21 20363-810 Fax +86 (0)21 20363-805 E-mail info@cn.intorq.com

INTORQ US INC.

JSA

300 Lake Ridge Drive SE Smyrna, GA 30082, USA

Tel: +1 (0)678 309 1155 Fax: +1 (0)678 309 1157 E-mail info@us.intorq.com