

Centrifugal Fans, Non-Overloading, Backward Inclined

MVA, MVZ, MVX & MVW Series with laminar blades MAVA, MAVZ & MAVX Series with aerofoil blades

Features

The combination of scientifically designed aerofoil or laminar (single thickness) blades with the highly desirable non-overloading power characteristic of backward inclined blades produce fans that offers the ultimate in high efficiency and quiet operation.

The laminar bladed fan is used for general purpose applications and can tolerate very light dust load while the higher efficiency aerofoil bladed fan is used to achieve substancial power saving in large sized fans. The aerofoil bladed series are only suitable for clean air applications.

Both single width single inlet (SWSI) and double width double inlet (DWDI) fans are available. For DWDI fans delivering twice the volume at the same static pressure, multiply fan RPM by 1.01, and multiply fan absorbed power by 2.04.

The above fans are custom built to optimise the mechanical design to achieve excellent performance that will assist our customers to find competitive solutions to their air movement problems. All the fan components are liberally sized to ensure long trouble free life.

Laminar A

The mechanical design can be tailored to meet different operating conditions ie. temperature, corrosion, noise, dust load, humidity, abrasion, space limitation etc. The fan handing can be adapted to meet your specific requirement without restrictions.

Construction

Casing - Heavy welded construction from plate steel. Side plates stiffened to prevent drumming. Scroll designed to optimise fan pressure developed by impeller. Impeller - ruggedly built, welded mild steel construction, dynamically balanced to International Standard ISO 1940, to ensure smooth running without vibration. Pedestal - top & sides fabricated from heavy mild steel plate.

Optional Extras

Silencers, lagged casing, filters, guards, dampers, inlet boxes, variable inlet vanes, anti-vibration mounts, matching flanges, flexible connections, wear plates on impeller and housing, split housing, corrosive resistant coatings, stainless steel housing & impeller, anti-sparking construction.

Applications

General air handling, pneumatic conveying, pollution control, ventilation, drying, cooling, exhausting, extraction of fumes, chemical processing, combustion, food processing etc.

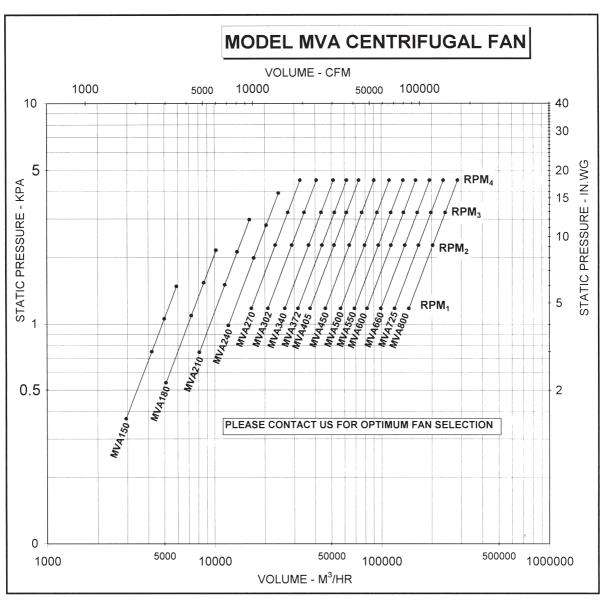
MAVA 320 fan, Arr.1, 45kw c/w discharge damper, silencer and elbow. Grain dust collection system.

MVZ 630 Fan, Arr.8, Coupling Driven, 300kw

MVZ 191 Fan, Arr. 9 with cooling fin for high temperature

MVW 360 Fans, Arr. 1, 75kw

MVX 240 Fan, Arr. 9, 7.5kw



MAVA 540 Fan, Arr.3, DWDI, 90kw c/w discharge damper

MVZ 340 (75kw), MVX 340 (55kw) and MVX 240 (30kw) Fans, Arr. 1 c/w discharge silencers

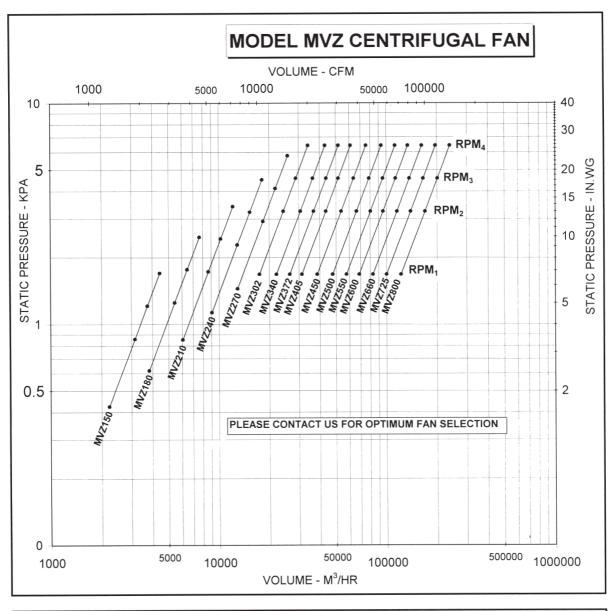
MODEL	IMP.	EFF.	RPI	√l = Far	Speed	j ; M	/S = Ou	tlet Vel	ocity ;	KW =	Absorb	ed Pov	ver ;	dBA = Ir	nlet or C	Outlet N	loise @) 1 m
NO.	DIAM.	%	RPM ₁	M/S ₁	KW ₁	dBA ₁	RPM ₂	M/S ₂	KW ₂	dBA2	RPM ₃	M/S ₃	KW ₃	dBA ₃	RPM₄	M/S ₄	KW ₄	dBA ₄
MVA150	380	67.1%	1450	6.6	0.5	68.1	2062	9.4	1.3	75.7	2449	11.2	2.2	79.5	2900	13.2	3.6	83.1
MVA180	458	68.7%	1450	7.9	1.1	73.6	2062	11.3	3.2	81.2	2449	13.4	5.4	85.0	2900	15.9	8.9	88.6
MVA210	534	70.2%	1450	9.3	2.4	78.1	2062	21.0	6.9	85.7	2449	15.6	11.5	89.5	2900	18.5	19.1	93.1
MVA240	610	71.8%	1450	10.6	4.6	81.9	2062	15.1	13.3	89.6	2449	17.9	22.2	93.3	2900	21.2	36.9	97.0
MVA270	686	73.4%	1401	11.5	7.4	84.6	1949	16.0	20.0	91.7	2314	19.0	33.5	95.5	2741	22.5	55.6	99.2
MVA302	768	73.5%	1250	11.5	9.3	85.5	1740	16.0	25.1	92.7	2066	19.0	42.0	96.4	2446	22.5	69.7	100.1
MVA340	864	73.5%	1112	11.5	11.8	86.5	1548	16.0	31.7	93.7	1838	19.0	53.0	97.4	2176	22.5	88.0	101.1
MVA372	946	73.6%	1015	11.5	14.1	87.3	1413	16.0	38.0	94.5	1678	19.0	63.6	98.2	1987	22.5	105.6	101.9
MVA405	1030	73.6%	934	11.5	16.7	88.0	1299	16.0	44.9	95.2	1543	19.0	75.1	99.0	1827	22.5	124.8	102.6
MVA450	1144	73.7%	840	11.5	20.5	88.9	1169	16.0	55.3	96.1	1389	19.0	92.7	99.8	1644	22.5	153.9	103.5
MVA500	1270	73.7%	756	11.5	25.3	89.8	1052	16.0	68.3	97.0	1250	19.0	114.3	100.7	1480	22.5	189.8	104.4
MVA550	1398	73.8%	688	11.5	30.6	90.6	957	16.0	82.5	97.8	1136	19.0	138.2	101.5	1345	22.5	229.4	105.2
MVA600	1524	73.9%	630	11.5	36.4	91.3	877	16.0	98.1	98.5	1041	19.0	164.3	102.2	1233	22.5	272.8	105.9
MVA660	1676	74.0%	573	11.5	44.0	92.1	797	16.0	118.6	99.3	947	19.0	198.5	103.0	1121	22.5	329.7	106.7
MVA725	1842	74.1%	522	11.5	53.1	92.9	726	16.0	142.9	100.1	862	19.0	239.3	103.8	1021	22.5	397.3	107.5
MVA800	2032	74.2%	473	11.5	64.5	93.8	658	16.0	173.7	100.9	781	19.0	290.9	104.7	925	22.5	483.1	108.3

Impeller Type : Laminar, Backward Inclined, Non Overloading, Single Width Single Inlet

Operating Conditions :Temperature 20⁰ C ; Atm.Pressure 101.325 kPa ; Inlet Air Density 1.2 kg/m³

Fan Peak Absorbed Power(kW) = Fan Absorbed Power(kW) x 1.068

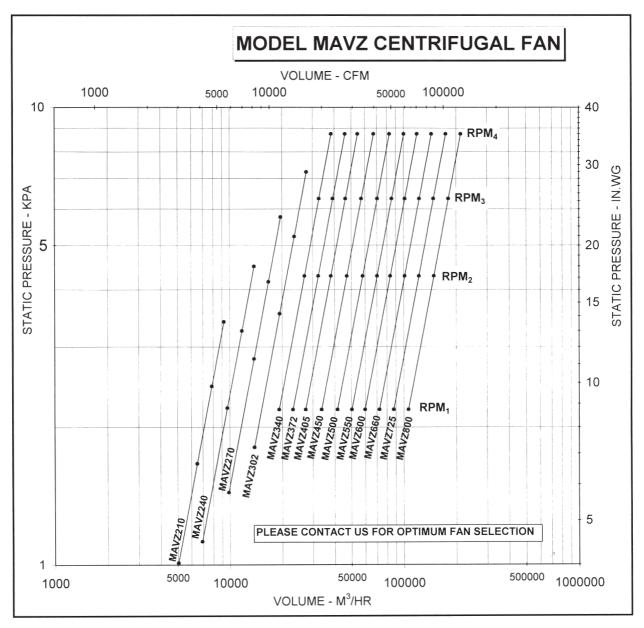
Impeller Tip Speed(m/s) = $5.24 \times 10^{-5} \times \text{Impeller Diameter(mm)} \times \text{Fan Speed(rpm)}$



MODEL	IMP.	EFF.	RPI	И = Far	Speed	d ; M	/S = Ou	itlet Vel	ocity ;	KW =	Absorb	ed Pov	ver ; (dBA = Ir	nlet or C	Outlet N	loise @	1 m
NO.	DIAM.	%	RPM₁	M/S ₁	KW ₁	dBA ₁	RPM ₂	M/S ₂	KW ₂	dBA2	RPM ₃	M/S ₃	KW ₃	dBA ₃	RPM₄	M/S ₄	KW ₄	dBA₄
MAVA210	534	78.2%	1620	7.4	2.3	77.5	2030	21.0	4.6	82.4	2465	11.2	8.2	86.6	2900	13.2	13.3	90.1
MAVA240	610	80.0%	1450	7.6	3.2	78.9	2030	10.6	8.8	86.2	2465	12 ^	15.8	90.4	2900	15.1	25.7	94.0
MAVA270	686	81.8%	1450	8.5	5.7	82.3	2030	11.9	15.7	89.6	2465	14.5	28.2	93.8	2900	17.0	45.9	97.3
MAVA302	768	81.9%	1450	9.5	10.1	85.7	2030	13.3	27.8	93.0	2465	16.2	49.7	97.2	2900	19.1	81.0	100.8
MAVA340	864	81.9%	1355	10.0	14.8	87.8	1897	14.0	40.7	95.1	2304	17.0	72.8	99.3	2711	20.0	118.6	102.8
MAVA372	946	82.0%	1237	10.0	17.8	88.5	1732	14.0	48.8	95.9	2103	17.0	87.3	100.1	2474	20.0	142.2	103.6
MAVA405	1030	82.0%	1138	10.0	21.0	89.3	1593	14.0	57.6	96.6	1934	17.0	103.2	100.8	2276	20.0	168.0	104.4
MAVA450	1144	82.1%	1024	10.0	25.9	90.2	1434	14.0	71.1	97.5	1741	17.0	127.3	101.7	2048	20.0	207.2	105.2
MAVA500	1270	82.2%	922	10.0	32.0	91.0	1290	14.0	87.7	98.3	1567	17.0	157.0	102.6	1843	20.0	255.6	106.1
MAVA550	1398	82.2%	838	10.0	38.6	91.9	1173	14.0	106.0	99.2	1424	17.0	189.8	103.4	1676	20.0	309.0	106.9
MAVA600	1524	82.3%	768	10.0	45.9	92.6	1075	14.0	126.0	99.9	1306	17.0	225.6	104.1	1536	20.0	367.4	107.6
MAVA660	1676	82.4%	698	10.0	55.5	93.4	977	14.0	152.3	100.7	1187	17.0	272.7	104.9	1396	20.0	444.0	108.4
MAVA725	1842	82.5%	636	10.0	66.9	94.2	890	14.0	183.6	101.5	1080	17.0	328.6	105.7	1271	20.0	535.1	109.2
MAVA800	2032	82.6%	576	10.0	81.3	95.0	806	14.0	223.2	102.3	979	17.0	399.6	106.5	1152	20.0	650.7	110.1

Impeller Type: Aerofoil Bladed, Backward Curved, Non Overloading, Single Width Single Inlet
Operating Conditions: Temperature 20° C; Atm.Pressure 101.325 kPa; Inlet Air Density 1.2 kg/m³
Fan Peak Absorbed Power(kW) = Fan Absorbed Power(kW) x 1.04
Impeller Tip Speed(m/s) = 5.24 x 10⁻⁵ x Impeller Diameter(mm) x Fan Speed(rpm)

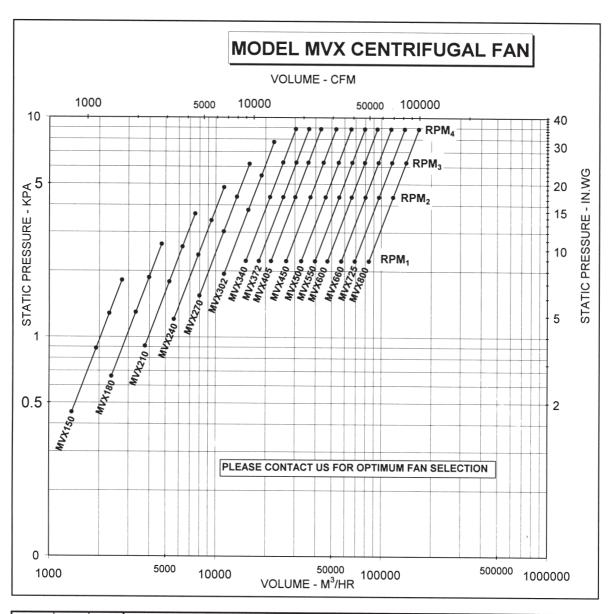
MODEL	IMP.	EFF.	RPN	∕I = Far	Speed	i ; M.	/S = Ou	tlet Vel	ocity ;	KW =	Absorb	ed Pow	/er ; (dBA = Ir	nlet or C	Outlet N	loise @	1 m
NO.	DIAM.	%	RPM₁	M/S ₁	KW ₁	dBA ₁	RPM ₂	M/S ₂	KW ₂	dBA2	RPM ₃	M/S ₃	KW ₃	dBA ₃	RPM₄	M/S ₄	KW ₄	dBA₄
MVZ150	380	71.5%	1450	5.9	0.4	67.6	2062	8.4	1.1	75.3	2449	10.0	1.8	79.0	2900	11.9	2.9	82.7
MVZ180	458	73.1%	1450	7.1	0.9	73.1	2062	10.1	2.6	80.8	2449	12.0	4.3	84.5	2900	14.2	7.2	88.2
MVZ210	534	74.8%	1450	8.3	1.9	77.6	2062	21.0	5.5	85.3	2449	14.0	9.3	89.0	2900	16.6	15.4	92.7
MVZ240	610	76.5%	1450	9.5	3.7	81.5	2062	13.5	10.7	89.1	2449	16.0	17.9	92.9	2900	19.0	29.8	96.5
MVZ270	686	78.2%	1450	10.7	6.6	84.8	2062	15.2	19.1	92.5	2449	18.0	32.0	96.2	2900	21.3	53.1	99.9
MVZ302	768	78.2%	1395	11.5	10.4	87.4	1941	16.0	28.1	94.6	2305	19.0	47.1	98.3	2729	22.5	78.1	102.0
MVZ340	864	78.3%	1241	11.5	13.2	88.4	1727	16.0	35.5	95.6	2050	19.0	59.4	99.3	2428	22.5	98.6	103.0
MVZ372	946	78.3%	1133	11.5	15.8	89.2	1576	16.0	42.6	96.4	1872	19.0	71.3	100.1	2216	22.5	118.3	103.8
MVZ405	1030	78.4%	1042	11.5	18.7	89.9	1450	16.0	50.3	97.1	1721	19.0	84.2	100.9	2039	22.5	139.8	104.5
MVZ450	1144	78.5%	938	11.5	23.0	90.8	1305	16.0	62.0	98.0	1549	19.0	103.8	101.7	1835	22.5	172.4	105.4
MVZ500	1270	78.5%	844	11.5	28.4	91.7	1174	16.0	76.5	98.9	1394	19.0	128.1	102.6	1651	22.5	212.7	106.3
MVZ550	1398	78.6%	767	11.5	34.3	92.5	1067	16.0	92.5	99.7	1268	19.0	154.8	103.4	1501	22.5	257.1	107.1
MVZ600	1524	78.7%	703	11.5	40.8	93.2	978	16.0	109.9	100.4	1162	19.0	184.1	104.1	1376	22.5	305.7	107.8
MVZ660	1676	78.8%	639	11.5	49.3	94.0	890	16.0	132.9	101.2	1056	19.0	222.5	104.9	1251	22.5	369.5	108.6
MVZ725	1842	78.9%	582	11.5	59.5	94.8	810	16.0	160.1	102.0	962	19.0	268.1	105.7	1139	22.5	445.3	109.4
MVZ800	2032	79.0%	527	11.5	72.3	95.7	734	16.0	194.7	102.8	871	19.0	326.0	106.6	1032	22.5	541.4	110.2


Impeller Type: Laminar, Backward Inclined, Non Overloading, Single Width Single Inlet

Operating Conditions: Temperature 20° C; Atm.Pressure 101.325 kPa; Inlet Air Density 1.2 kg/m³

Fan Peak Absorbed Power(kW) = Fan Absorbed Power(kW) x 1.0843

Impeller Tip Speed(m/s) = 5.24 x 10⁻⁵ x Impeller Diameter(mm) x Fan Speed(rpm)

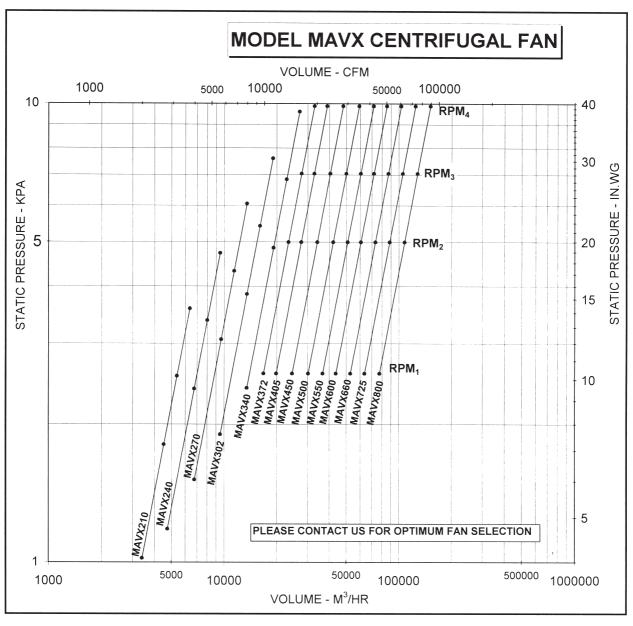


MODEL	IMP.	EFF.	RPN	∕I = Far	Speed	; M	/S = Ou	itlet Vel	ocity ;	KW =	Absorb	ed Pov	ver ; (dBA = Ir	nlet or 0	Outlet N	loise @) 1 m
NO.	DIAM.	%	RPM₁	M/S ₁	KW ₁	dBA ₁	RPM ₂	M/S ₂	KW ₂	dBA2	RPM ₃	M/S ₃	KW ₃	dBA ₃	RPM₄	M/S ₄	KW ₄	dBA₄
MAVZ210	534	81.3%	1580	6.9	1.7	76.6	2030	21.0	3.7	82.1	2465	10.7	6.6	86.3	2900	12.6	10.8	89.8
MAVZ240	610	83.1%	1450	7.2	2.6	78.6	2030	10.1	7.1	85.9	2465	12.3	12.8	90.1	2900	14.4	20.8	93.7
MAVZ270	686	85.0%	1450	8.1	4.6	82.0	2030	11.4	12.7	89.3	2465	13.8	22.8	93.5	2900	16.3	37.1	97.0
MAVZ302	768	85.0%	1450	9.1	8.2	85.4	2030	12.7	22.5	92.7	2465	15.5	40.2	96.9	2900	18.2	65.5	100.4
MAVZ340	864	85.1%	1419	10.0	13.7	88.5	1986	14.0	37.7	95.8	2412	17.0	67.5	100.0	2838	20.0	110.0	103.5
MAVZ372	946	85.2%	1295	10.0	16.5	89.2	1813	14.0	45.2	96.5	2202	17.0	81.0	100.7	2590	20.0	131.9	104.3
MAVZ405	1030	85.2%	1191	10.0	19.5	90.0	1668	14.0	53.4	97.3	2025	17.0	95.7	101.5	2382	20.0	155.8	105.0
MAVZ450	1144	85.3%	1072	10.0	24.0	90.8	1501	14.0	65.9	98.2	1822	17.0	118.0	102.4	2144	20.0	192.2	105.9
MAVZ500	1270	85.4%	965	10.0	29.6	91.7	1351	14.0	81.3	99.0	1640	17.0	145.6	103.2	1930	20.0	237.1	106.8
MAVZ550	1398	85.4%	877	10.0	35.8	92.5	1228	14.0	98.3	99.9	1491	17.0	176.0	104.1	1754	20.0	286.6	107.6
MAVZ600	1524	85.5%	804	10.0	42.6	93.3	1126	14.0	116.9	100.6	1367	17.0	209.3	104.8	1608	20.0	340.7	108.3
MAVZ660	1676	85.6%	731	10.0	51.5	94.1	1023	14.0	141.3	101.4	1243	17.0	252.9	105.6	1462	20.0	411.8	109.1
MAVZ725	1842	85.7%	665	10.0	62.0	94.8	932	14.0	170.2	102.2	1131	17.0	304.8	106.4	1331	20.0	496.3	109.9
MAVZ800	2032	85.8%	603	10.0	75.4	95.7	844	14.0	207.0	103.0	1025	17.0	370.6	107.2	1206	20.0	603.5	110.7

Impeller Type: Aerofoil Bladed, Backward Curved, Non Overloading, Single Width Single Inlet
Operating Conditions: Temperature 20° C; Atm.Pressure 101.325 kPa; Inlet Air Density 1.2 kg/m³
Fan Peak Absorbed Power(kW) = Fan Absorbed Power(kW) x 1.0473

Impeller Tip Speed(m/s) = 5.24 x 10⁻⁵ x Impeller Diameter(mm) x Fan Speed(rpm)

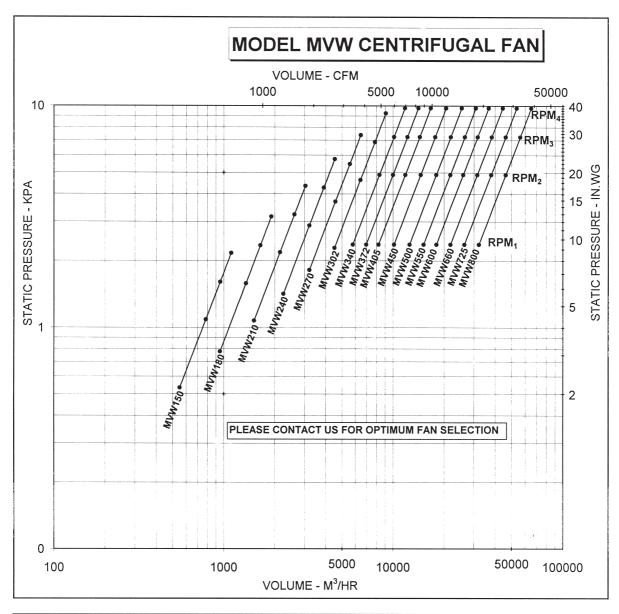
MODEL	IMP.	EFF.	RPI	M = Far	n Speed	d ; M	/S = Ou	ıtlet Ve	ocity;	KW =	Absorb	ed Pov	ver ;	dBA = I	nlet or C	Outlet N	loise @	1 m
NO.	DIAM.	%	RPM₁	M/S ₁	KW ₁	dBA ₁	RPM ₂	M/S ₂	KW ₂	dBA2	RPM ₃	M/S ₃	KW ₃	dBA ₃	RPM₄	M/S ₄	KW ₄	dBA₄
MVX150	380	70.4%	1450	5.8	0.2	67.7	2030	8.1	0.7	75.1	2436	9.7	1.2	79.0	2900	11.6	2.0	82.8
MVX180	458	72.0%	1450	6.9	0.6	73.2	2030	9.7	1.7	80.5	2436	11.7	2.9	84.5	2900	13.9	4.8	88.3
MVX210	534	73.6%	1450	8.1	1.3	77.7	2030	21.0	3.5	85.0	2436	13.6	6.1	89.0	2900	16.2	10.3	92.8
MVX240	610	75.3%	1450	9.3	2.5	81.6	2030	13.0	6.9	88.9	2436	15.6	11.8	92.9	2900	18.5	20.0	96.6
MVX270	686	77.0%	1450	10.4	4.5	85.0	2030	14.6	12.2	92.3	2436	17.5	21.1	96.2	2900	20.8	35.6	100.0
MVX302	768	77.1%	1450	11.7	7.9	88.4	2030	16.3	21.6	95.7	2436	19.6	37.3	99.6	2900	23.4	62.9	103.4
MVX340	864	77.1%	1381	12.5	12.2	90.9	1934	17.5	33.4	98.2	2320	21.0	57.7	102.2	2762	25.0	97.4	105.9
MVX372	946	77.2%	1261	12.5	14.6	91.6	1765	17.5	40.1	98.9	2118	21.0	69.3	102.9	2521	25.0	116.9	106.7
MVX405	1030	77.2%	1160	12.5	17.3	92.4	1623	17.5	47.4	99.7	1948	21.0	81.8	103.7	2319	25.0	138.1	107.4
MVX450	1144	77.3%	1044	12.5	21.3	93.3	1461	17.5	58.4	100.6	1753	21.0	100.9	104.5	2087	25.0	170.3	108.3
MVX500	1270	77.3%	939	12.5	26.3	94.1	1315	17.5	72.1	101.4	1578	21.0	124.5	105.4	1878	25.0	210.1	109.2
MVX550	1398	77.4%	854	12.5	31.7	95.0	1195	17.5	87.1	102.3	1434	21.0	150.5	106.2	1708	25.0	253.9	110.0
MVX600	1524	77.5%	783	12.5	37.7	95.7	1096	17.5	103.6	103.0	1315	21.0	179.0	106.9	1565	25.0	301.9	110.7
MVX660	1676	77.6%	712	12.5	45.6	96.5	996	17.5	125.2	103.8	1195	21.0	216.3	107.7	1423	25.0	364.9	111.5
MVX725	1842	77.7%	648	12.5	55.0	97.3	907	17.5	150.8	104.6	1088	21.0	260.7	108.5	1295	25.0	439.8	112.3
MVX800	2032	77.8%	587	12.5	66.8	98.1	822	17.5	183.4	105.4	986	21.0	316.9	109.4	1174	25.0	534.7	113.2


Impeller Type : Laminar, Backward Inclined, Non Overloading, Single Width Single Inlet

Operating Conditions :Temperature 20⁰ C ; Atm.Pressure 101.325 kPa ; Inlet Air Density 1.2 kg/m³

Fan Peak Absorbed Power(kW) = Fan Absorbed Power(kW) x 1.215

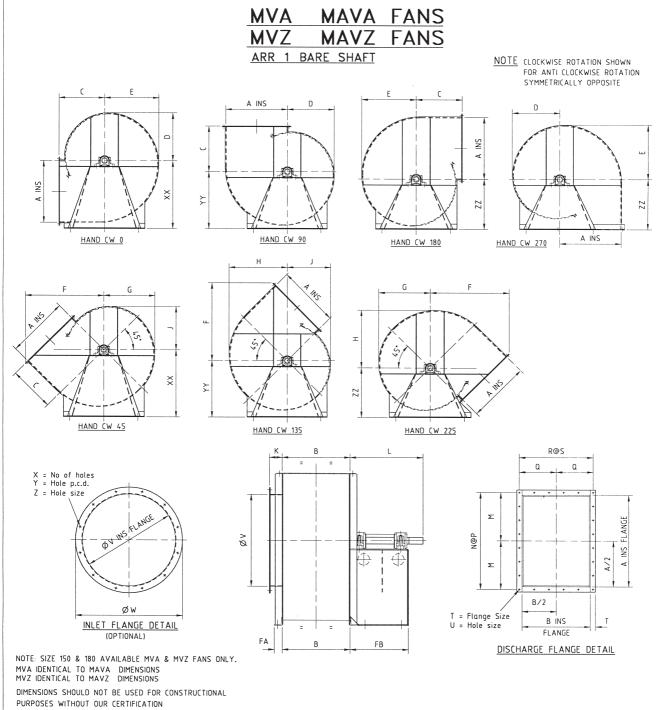
Impeller Tip Speed(m/s) = 5.24 x 10⁻⁵ x Impeller Diameter(mm) x Fan Speed(rpm)



MODEL	IMP.	EFF.	RPI	M = Far	Speed	d ; M	/S = Ou	tlet Ve	locity ;	KW =	Absorb	ed Pov	ver ;	dBA = Ir	nlet or C	Outlet N	loise @	1 m
NO.	DIAM.	%	RPM ₁	M/S ₁	KW ₁	dBA ₁	RPM ₂	M/S ₂	KW ₂	dBA2	RPM ₃	M/S ₃	KW ₃	dBA ₃	RPM₄	M/S ₄	KW ₄	dBA₄
MAVX210	534	78.4%	1550	7.3	1.2	76.5	2062	21.0	2.9	82.7	2449	11.6	4.9	86.4	2900	13.7	8.1	90.1
MAVX240	610	80.2%	1450	7.8	1.9	78.9	2062	11.1	5.6	86.5	2449	13.2	9.4	90.3	2900	15.7	15.6	94.0
MAVX270	686	82.0%	1450	8.8	3.5	82.3	2062	12.5	10.0	89.9	2449	14.9	16.7	93.7	2900	17.6	27.8	97.3
MAVX302	768	82.0%	1450	9.9	6.1	85.7	2062	14.1	17.6	93.3	2449	16.7	29.5	97.1	2900	19.8	49.1	100.7
MAVX340	864	82.1%	1450	11.1	11.0	89.2	2062	15.8	31.6	96.9	2449	18.8	52.9	100.6	2900	22.2	87.9	104.3
MAVX372	946	82.1%	1372	11.5	14.7	90.8	1909	16.0	39.6	98.0	2267	19.0	66.3	101.7	2685	22.5	110.0	105.4
MAVX405	1030	82.2%	1262	11.5	17.4	91.5	1756	16.0	46.7	98.7	2085	19.0	78.3	102.4	2469	22.5	130.0	106.1
MAVX450	1144	82.3%	1136	11.5	21.4	92.4	1580	16.0	57.7	99.6	1877	19.0	96.5	103.3	2222	22.5	160.3	107.0
MAVX500	1270	82.3%	1022	11.5	26.4	93.3	1422	16.0	71.1	100.4	1689	19.0	119.1	104.2	2000	22.5	197.8	107.9
MAVX550	1398	82.4%	929	11.5	31.9	94.1	1293	16.0	86.0	101.3	1535	19.0	144.0	105.0	1818	22.5	239.1	108.7
MAVX600	1524	82.5%	852	11.5	38.0	94.8	1185	16.0	102.2	102.0	1407	19.0	171.2	105.7	1667	22.5	284.2	109.4
MAVX660	1676	82.6%	774	11.5	45.9	95.6	1077	16.0	123.5	102.8	1279	19.0	206.9	106.5	1515	22.5	343.5	110.2
MAVX725	1842	82.7%	705	11.5	55.3	96.4	981	16.0	148.9	103.6	1165	19.0	249.3	107.3	1379	22.5	414.0	111.0
MAVX800	2032	82.8%	639	11.5	67.2	97.2	889	16.0	181.0	104.4	1056	19.0	303.1	108.1	1250	22.5	503.4	111.8

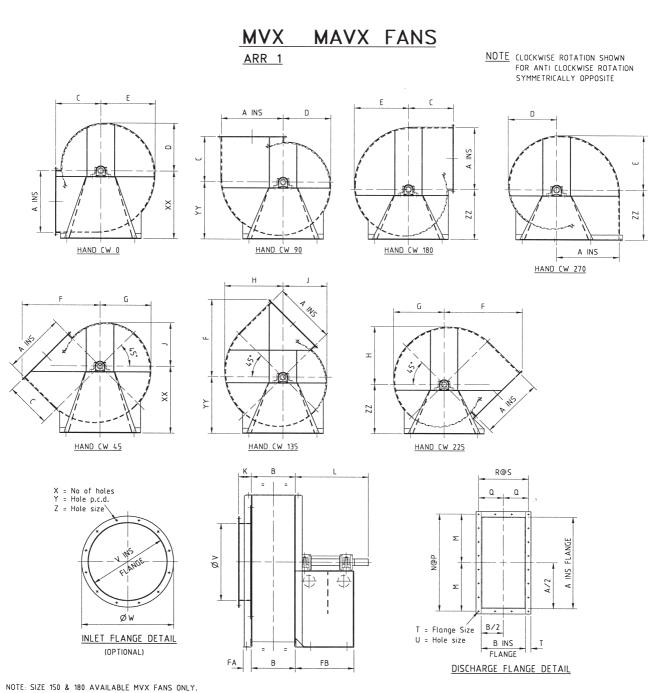
Impeller Type: Aerofoil Bladed, Backward Curved, Non Overloading, Single Width Single Inlet
Operating Conditions: Temperature 20°C; Atm.Pressure 101.325 kPa; Inlet Air Density 1.2 kg/m³
Fan Peak Absorbed Power(kW) = Fan Absorbed Power(kW) x 1.1888
Impeller Tip Speed(m/s) = 5.24 x 10⁻⁵ x Impeller Diameter(mm) x Fan Speed(rpm)

MODEL	IMP.	EFF.	RPN	∕I = Far	Speed	j ; M.	/S = Ou	tlet Vel	ocity ;	KW =	Absorb	ed Pow	er ;	dBA = Ir	nlet or C	Outlet N	loise @	1 m
NO.	DIAM.	%	RPM₁	M/S ₁	KW ₁	dBA ₁	RPM ₂	M/S ₂	KW ₂	dBA2	RPM ₃	M/S ₃	KW ₃	dBA ₃	RPM₄	M/S ₄	KW ₄	dBA₄
MVW150	380	69.4%	1440	7.8	0.1	67.7	2052	11.1	0.3	75.4	2498	13.5	0.6	79.7	2900	15.7	1.0	82.9
MVW180	458	70.9%	1440	9.3	0.3	73.2	2052	13.3	0.8	80.9	2498	16.2	1.5	85.2	2900	18.8	2.4	88.4
MVW210	534	72.5%	1440	10.9	0.6	77.7	2052	21.0	1.8	85.4	2498	18.9	3.2	89.7	2900	22.0	5.1	92.9
MVW240	610	74.2%	1440	12.5	1.2	81.5	2052	17.8	3.5	89.2	2498	21.6	6.3	93.5	2900	25.1	9.8	96.8
MVW270	686	75.8%	1440	14.0	2.1	84.9	2052	20.0	6.2	92.6	2498	24.3	11.2	96.9	2900	28.2	17.5	100.1
MVW302	768	75.9%	1440	15.7	3.8	88.3	2052	22.4	10.9	96.0	2498	27.2	19.7	100.3	2900	31.6	30.8	103.6
MVW340	864	75.9%	1304	16.0	5.0	89.8	1875	23.0	14.9	97.6	2283	28.0	26.9	101.9	2649	32.5	42.1	105.1
MVW372	946	76.0%	1191	16.0	6.0	90.5	1711	23.0	17.9	98.4	2083	28.0	32.3	102.7	2418	32.5	50.5	105.9
MVW405	1030	76.0%	1095	16.0	7.1	91.3	1574	23.0	21.2	99.1	1916	28.0	38.2	103.4	2224	32.5	59.7	106.7
MVW450	1144	76.1%	985	16.0	8.8	92.1	1417	23.0	26.1	100.0	1725	28.0	47.1	104.3	2002	32.5	73.6	107.5
MVW500	1270	76.2%	887	16.0	10.8	93.0	1275	23.0	32.2	100.9	1552	28.0	58.1	105.2	1802	32.5	90.8	108.4
MVW550	1398	76.2%	806	16.0	13.1	93.8	1159	23.0	38.9	101.7	1411	28.0	70.2	106.0	1638	32.5	109.8	109.2
MVW600	1524	76.3%	739	16.0	15.6	94.5	1062	23.0	46.3	102.4	1293	28.0	83.5	106.7	1501	32.5	130.5	109.9
MVW660	1676	76.4%	672	16.0	18.8	95.3	966	23.0	55.9	103.2	1176	28.0	100.9	107.5	1365	32.5	157.8	110.7
MVW725	1842	76.5%	612	16.0	22.7	96.1	879	23.0	67.4	104.0	1070	28.0	121.6	108.3	1242	32.5	190.1	111.5
MVW800	2032	76.6%	554	16.0	27.6	97.0	797	23.0	81.9	104.9	970	28.0	147.8	109.1	1126	32.5	231.2	112.4

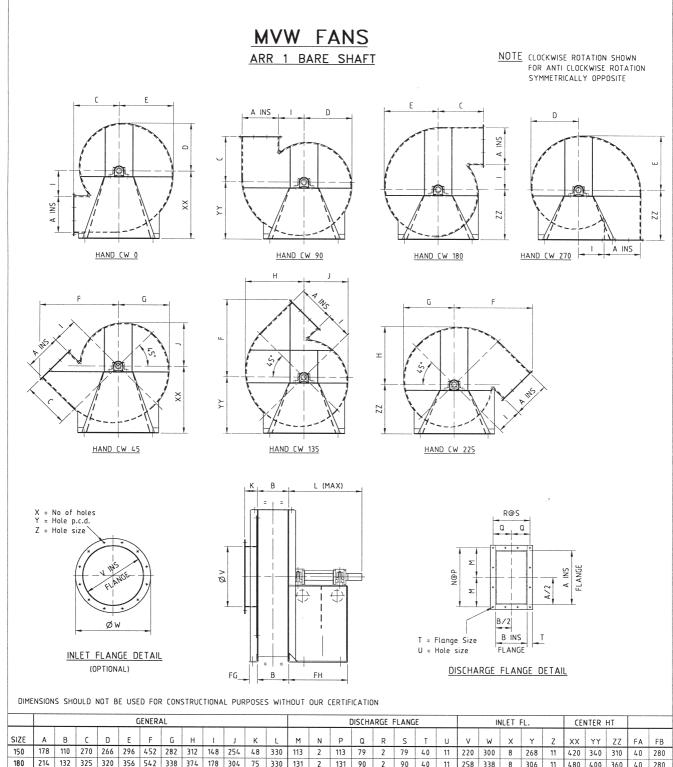

Impeller Type : Laminar, Backward Inclined, Non Overloading, Single Width Single Inlet

Operating Conditions :Temperature 20⁰ C ; Atm.Pressure 101.325 kPa ; Inlet Air Density 1.2 kg/m³

Fan Peak Absorbed Power(kW) = Fan Absorbed Power(kW) x 1.4974


Impeller Tip Speed(m/s) = 5.24 x 10⁻⁵ x Impeller Diameter(mm) x Fan Speed(rpm)

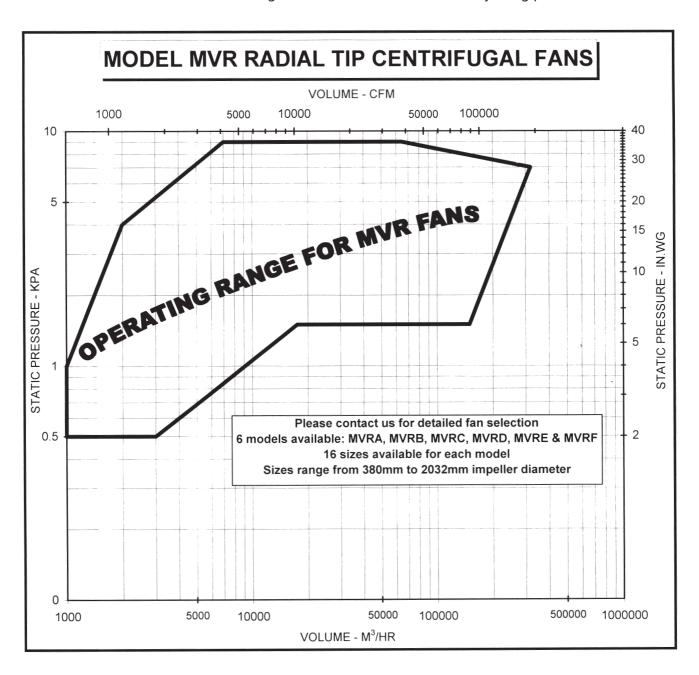
10	1030	23 111	11100	1 001	CER	III ICA	HUN																									
						GEN	IERAL									DISC	HARG	E FLA	NGE					IN	LET F	L.		CEN	ITER	HT		
SIZE	Α	MAVA B	MAVZ B	С	D	Ε	F	G	н	J	к	L	м	N	Р	MAVA Q	MAVZ Q	R	MAVA S	MAVZ S	Т	U	v	W	×	Υ	Z	xx	YY	ZZ	FA	FB
150	410	304	254	300	312	356	530	335	385	288	48	330	228	4	114	177	150	3	118	100	40	11	408	488	8	456	11	480	410	370	40	280
180	490	364	306	360	376	428	630	404	460	346	78	490	268	4	134	207	177	3	138	118	40	11	490	570	8	538	11	580	480	430	50	410
210	574	426	356	420	438	500	760	470	537	400	78	500	310	5	124	236	201	4	118	100	40	12	570	650	8	618	12	650	550	490	50	430
240	656	486	486 406 475 500 570 835 536 620 468										350	5	140	266	226	4	133	113	40	12	650	750	12	706	13	740	620	550	50	430
270	738	546	546 458 535 562 640 940 610 700 525									650	396	6	132	300	254	4	150	127	50	13	730	830	12	786	13	840	690	610	65	540
302	826	612	512	620	640	730	1058	686	776	590	102	650	444	6	148	336	284	4	168	142	50	14	816	916	12	872	14	900	770	670	65	540
340	928	688	576	675	716	816	1186	766	876	660	102	690	492	6	164	375	315	5	150	126	50	14	918	1048	12	990	14	1010	860	760	75	560
372	1016	754	632	740	784	894	1280	836	958	718	120	730	537	6	179	405	345	5	162	138	50	14	1006	1136	16	1078	14	1120	940	830	75	600
405	1106	820	686	840	852	970	1430	914	1046	788	120	730	588	8	147	447	378	6	149	126	65	18	1092	1222	16	1162	14	1200	1020	900	75	600
450	1228	910	762	890	946	1078	1544	1012	1157	870	120	880	648	8	162	489	417	6	163	139	65	18	1214	1344	16	1286	14	1340	1140	1000	75	720
500	1364	1012	848	990	1050	1198	1720	1130	1290	970	120	980	728	8	182	552	468	6	184	156	75	18	1350	1480	24	1422	14	1500	1250	1100	75	810
550	1500	1112	932	1090	1156	1316	1896	1250	1426	1070	120	980	796	8	199	600	510	6	200	170	75	18	1486	1616	24	1558	14	1640	1380	1220	75	810
600	1638	1214	1016	1190	1260	1436	2070	1370	1560	1170	153	1120	865	10	173	652	552	8	163	138	75	18	1620	1770	24	1710	14	1760	1500	1300	75	950
660	1800	1336	1118	1310	1384	1578	2245	1480	1690	1275	153	1120	945	10	189	712	604	8	178	151	75	18	1780	1930	24	1870	18	1960	1640	1450	100	950
725	1978	1466	1228	1450	1520	1732	2460	1630	1866	1400	153	1160	1032	12	172	776	660	8	178	165	75	18	1954	2104	24	2044	18	2130	1800	1580	100	990
800	2184	1618	1356	1580	1676	1910	2720	1800	2060	1550	153	1220	1134	12	189	855	725	10	171	145	75	18	2156	2306	24	2246	18	2350	2000	1760	100	1110



DIMENSIONS SHOULD NOT BE USED FOR CONSTRUCTIONAL PURPOSES WITHOUT OUR CERTIFICATION

					C	ENERA	AL.							(DISCHA	RGE	FLANG	Ε			IN	NLET	FL.		CEI	NTER H	IT		
SIZE	A	В	С	D	Е	F	G	Н	J	К	L	М	N	Р	a	R	S	Т	U	v	W	x	Y	Z	xx	YY	ZZ	FA	FB
150	380	174	265	268	318	486	294	350	250	48	330	216	3	144	110	2	110	40	11	302	382	8	350	11	450	370	330	40	280
180	458	208	320	322	380	578	352	420	300	75	490	252	3	168	128	2	128	40	11	362	442	8	410	11	550	430	370	50	410
210	534	242	370	376	446	670	412	490	350	75	490	290	4	145	144	3	96	40	12	422	502	8	470	12	630	500	430	50	410
240	610	280	425	430	508	770	472	562	404	75	500	335	5	134	168	3	112	50	12	482	582	12	540	12	720	560	480	50	420
270	686	312	500	484	572	874	528	630	452	75	650	370	5	148	183	3	122	50	13	560	640	12	596	13	800	630	540	65	540
302	768	350	540	540	640	960	594	708	598	75	650	408	6	136	204	3	136	50	14	604	704	12	660	13	870	700	600	65	540
340	864	392	600	608	720	1070	670	800	572	100	690	462	6	154	225	3	150	50	14	678	778	12	734	13	960	780	670	75	560
372	946	430	660	666	788	1170	734	874	626	100	690	501	6	167	244	4	122	50	14	742	842	12	800	14	1050	850	710	75	560
405	1030	468	720	724	858	1284	776	950	682	100	730	552	8	138	274	4	137	65	18	806	936	12	878	18	1150	920	770	75	600
450	1144	520	800	804	954	1420	882	1054	756	120	850	608	8	152	296	4	148	65	18	900	1030	16	970	18	1260	1020	850	75	690
500	1270	576	890	894	1058	1580	980	1170	838	120	880	680	8	170	332	4	166	75	18	998	1128	16	1070	18	1400	1120	950	75	720
550	1398	634	970	984	1164	1730	1080	1288	922	120	980	745	10	149	362	4	181	75	18	1098	1228	16	1170	18	1530	1220	1040	75	810
600	1524	690	1060	1072	1270	1880	1178	1406	1006	120	980	805	10	161	390	5	156	75	18	1196	1326	16	1268	18	1660	1330	1120	75	810
660	1676	762	1170	1180	1400	2066	1296	1546	1106	120	1060	885	10	177	425	5	170	75	18	1314	1444	24	1386	18	1810	1450	1230	100	890
725	1842	836	1280	1296	1536	2260	1422	1700	1216	120	1120	966	12	161	465	6	155	75	18	1442	1572	24	1514	18	1980	1600	1350	100	950
800	2032	922	1420	1430	1694	2496	1570	1875	1342	120	1160	1062	12	177	507	6	169	75	18	1590	1740	24	1680	18	2180	1760	1480	100	990

						ENERA	AL.						l			DISCHA	RGE	FLANG	E		l	11	NLET	 FL.		CFI	NTER	нТ		
SIZE	А	В	С	D	E	F	G	Н	1	J	К	L	М	N	Р	Q	R	s	т	U	v	W	×	Y	Z	xx	YY	ZZ	FA	FB
150	178	110	270	266	296	452	282	312	148	254	48	330	113	2	113	79	2	79	40	11	220	300	8	268	11	420	340	310	40	280
180	214	132	325	320	356	542	338	374	178	304	75	330	131	2	131	90	2	90	40	11	258	338	8	306	11	480	400	360	40	280
210	250	154	380	374	416	620	398	436	208	354	75	330	150	3	100	101	2	101	40	12	306	386	8	354	12	530	460	420	40	280
240	286	176	440	426	474	715	450	500	236	406	75	330	168	3	112	112	2	112	40	12	346	426	8	394	12	600	520	470	40	280
270	322	198	490	480	534	798	514	568	266	462	75	500	189	3	126	129	2	129	50	12	390	490	8	450	12	670	580	520	50	400
302	360	222	550	538	598	890	562	622	298	506	75	500	210	3	140	140	2	140	50	14	436	536	8	492	13	750	640	580	50	400
340	404	250	620	604	674	1000	638	708	336	576	85	650	231	3	154	156	3	104	50	14	490	590	8	550	13	840	720	650	65	540
372	442	274	680	660	736	1090	700	774	368	630	100	650	249	3	166	165	3	110	50	14	536	636	12	596	14	900	780	700	65	540
405	480	298	740	722	800	1190	760	840	400	682	100	690	268	4	134	177	3	118	50	14	582	682	12	642	14	970	850	770	75	560
450	534	330	820	800	890	1330	844	934	444	760	100	690	302	4	151	201	3	134	65	18	646	746	12	706	14	1090	940	850	75	560
500	594	368	900	888	988	1470	940	1040	494	845	100	730	332	4	166	219	3	146	65	18	722	822	12	782	14	1200	1040	940	75	600
550	654	404	1000	978	1088	1610	1034	1145	544	930	100	880	365	5	146	237	3	158	65	18	790	920	12	860	14	1260	1140	1030	75	720
600	714	440	1090	1066	1186	1750	1130	1250	592	1015	100	980	400	5	160	266	4	133	75	18	864	994	16	936	18	1430	1240	1120	75	810
660	784	486	1190	1172	1304	1920	1240	1370	652	1116	120	1060	438	6	146	288	4	144	75	18	950	1080	16	1020	18	1580	1360	1230	75	890
725	860	534	1320	1288	1432	2104	1360	1505	716	1225	120	1120	474	6	158	312	4	156	75	18	1042	1172	16	1112	18	1720	1500	1340	100	950
800	950	588	1450	1420	1580	2312	1502	1662	790	1352	120	1160	519	6	173	340	4	170	75	18	1148	1278	16	1220	18	1860	1650	1480	100	990



MVR Series Radial Tip Centrifugal Fans

The MVR range of radial tip centrifugal fans are similar in contruction to the laminar bladed centrifugal fans. However the impeller blades are curved at the leading edge while the blade tips are radial to provide a self-cleaning action.

Radial tip centrifugal fans are used mainly in large sizes (above 750 mm wheel diameter) for light to moderate loading of dust, dirt, powder, flakes, process exhausts and industrial applications involving hot gases. The radial tip is an important feature in the presence of dust, fly ash etc. Material buildup on the blade, which causes unbalance and vibration is avoided. Wear plates for abrasive particles can be supplied.

MVR fans do not have the non-overloading characteristics and have a steadily rising power curve.

M Series Dust Fans

Rugged construction provides long trouble free performance under arduous conditions. The impellers have radial blades which are easy to clean and prevent material build-up or deposit. Its rigid construction from heavy steel plate will ensure many years of trouble free service.

Radial bladed fans produce a power curve which is almost a straight line rising from a minimum at zero flow to a maximum at maximum flow. These fans normally do not surge or pulsate at low volumes. At high speeds they tend to be noisy.

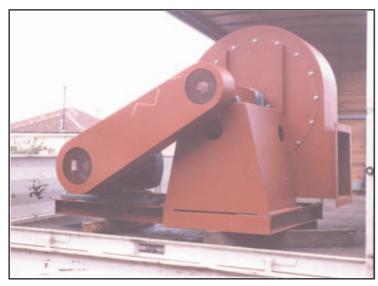
Types Of Impellers And Applications:

Type M Impeller - the radial blades are welded to the backplate and front shroud. This impeller is suitable for air containing granular material, sawdust, grain, particle laden industrial process air or gases.

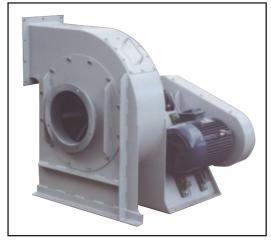
Type L Impeller - the radial blades are welded to the backplate with an open front. This impeller is designed for handling long stringy material, fibrous material such as textile scrap, wool, wood shavings and paper trim segments. It is not suitable for continuous paper trim handling.

Type O Impeller (paddle) - the radial blades are welded to a heavy duty steel hub. This impeller is designed for heavy or abrasive dust, conveying of air or gases containing sticky material that would have a tendency to build up on other types of impellers. The paddle design facilitates coating or attaching replaceable bolt-on wear plates.

Chopper Impeller - the radial blades are welded to a conical backplate with an open front. This impeller has polished surfaces and is designed for handling continuous paper trim. The blades of the impeller have sharp and hardened cutting edges, which can be supplied as a bolt-on option.


Construction

Casing - heavy welded construction from plate steel. Side plates stiffened to prevent drumming. Scroll designed to optimise fan pressure developed by impeller.


Pedestal - top & sides fabricated from heavy mild steel plate.

Optional Extras

Anti-vibration mounts, matching flanges, split housing, corrosive resistant coatings, stainless steel housing & impeller, anti-sparking construction, high temperature construction.

Arr. 1 Belt Driven

Chopper Fan with Cutting Edges on Impeller, Arr. 9

M SERIES DUST FANS - RADIAL BLADED

N	MODEL				Impe	eller Di	amete	r : 398	mm	Inlet D	iam.(O.D.) =	236 ı	nm l	nlet A	rea(Ins	ide) =	0.041	m2		
	M09			Outlet	(Outsi	de) = 2	28 mi	n x 19	0 mm	Outle	et Area	a(Insid	e) = 0.	.041 m	² Tip	Spee	d (m/s) = 0.0	208 X	RPM	
M ³ /	HR	18	39	22	07	25	75	29	43	33	11	36	79	404	47	44	15	47	82	51	50
O.VEI	M/S	12	2.5	15	.0	17	.5	20	.0	22	.5	25	.0	27	.5	30	.0	32	.5	35	.0
CF	М	10)83	12	99	15	16	17	32	194	49	21	65	23	82	25	98	28	15	30:	31
0.V. F	T/MIN	24	161	29	53	34	45	39	37	442	29	49	21	54	13	59	06	63	98	689	90
KPA	IN.WG	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW
1	4	1834	0.8	1909	1.0	1998	1.3	2091	1.5	2196	1.9	2301	2.3	2419	2.8	2539	3.4	2661	4.0	2791	4.8
1.5	6	2164	1.2	2237	1.5	2316	1.7	2394	2.1	2485	2.5	2580	2.9	2681	3.5	2791	4.1	2911	4.8	3026	5.6
2	8			2514	1.9	2588	2.3	2666	2.6	2747	3.1	2830	3.5	2918	4.1	3026	4.8	3129	5.5		
2.5	10			2766	2.4	2832	2.8	2901	3.2	2984	3.7	3062	4.3	3151	4.9						
3	12					3058	3.3	3126	3.8	3200	4.3										
3.5	14																			\Box	
4	16																			\sqcup	-
4.5	18																			\sqcup	
5	20																			oxdot	
5.5	22																				

	MODEL				Imp	eller Di	amete	er : 486	mm	Inlet D	Diam.(O.D.) =	= 286 ı	mm I	nlet A	rea(Ins	ide) =	0.061	m2		
	M11			Outlet	(Outsi	de) = 2	280 mr	n x 23	0 mm	Outle	et Area	a(Insid	e) = 0	.061 m	² Tip	Spee	d (m/s) = 0.0	255 X	RPM	
M^3	HR	27	59	33	11	38	63	44	15	496	36	55	18	60	70	66	22	71	74	77	26
	M/S		2.5	15	5.0	17	.5	20	.0	22	.5	25	5.0	27	.5	30	0.0	32	.5	35	.0
CF	-M	16	24	19	49	22	74	25	98	292	23	32	48	35	73	38	98	42	22	45	47
O.V. F	T/MIN	24	61	29	53	34	45	39	37	442	29	49	21	54		59		63		68	
KPA	IN.WG	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW
1	4	1498	1.2	1560	1.5	1632	1.9	1708	2.3	1794	2.9	1880	3.5	1976	4.2	2074	5.1	2174	6.0	2280	7.2
1.5	6	1768	1.8	1828	2.2	1892	2.6	1956	3.1	2030	3.7	2108	4.4	2190	5.2	2280	6.1	2378	7.2	2472	8.4
2	8			2054	2.9	2114	3.4	2178	3.9	2244	4.6	2312	5.3	2384	6.2	2472	7.2	2556	8.3	2646	9.6
2.5	10			2260	3.6	2314	4.2	2370	4.8	2438	5.6	2502	6.4	2574	7.3	2646	8.4	2724	9.5	2816	10.9
3	12					2498	5.0	2554	5.7	2614	6.5	2680	7.4	2748	8.5	2816	9.5	2890	10.8	2972	12.3
3.5	14					2668	5.9	2722	6.7	2780	7.5	2842	8.5	2906	9.6	2978	10.8	3050	12.1		
4	16							2878	7.6	2928	8.5	2992	9.6	3062	10.8						
4.5	18							3028	8.6	3082	9.5										$\overline{}$
5	20																				
5.5	22																				

ı	MODEL				Impe	eller Di	amete	r : 574	mm	Inlet D	Diam.(O.D.) =	336 ı	nm I	nlet A	rea(Ins	ide) =	0.085	m2		
	M13			Outlet	(Outsi	de) = 3	30 mr	n x 26	6 mm	Outle	et Area	a(Insid	e) = 0.	086 m	² Tip	Spee	d (m/s) = 0.0	301 X	RPM	
M ³ /	HR	38	88	460	35	54	43	62	21	699	98	77	76	85	53	93	31	101	108	108	386
0.V.	M/S	12	2.5	15	.0	17	.5	20	.0	22	.5	25	.0	27	.5	30	.0	32	.5	35	.0
CI	-M	22	88	27	46	32	04	36	61	41	19	45	77	50	34	54	92	59	50	64	07
O.V. F	T/MIN	24	61	29	53	34	45	39	37	44:	29	49	21	54	13	59	06	63	98	68	90
KPA	IN.WG	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW
1	4	1266	1.7	1319	2.2	1374	2.6	1445	3.3	1517	4.1	1596	5.0	1681	6.1	1762	7.2	1852	8.6	1940	
1.5	6	1493	2.5	1543	3.0	1591	3.7	1651	4.4	1716	5.3	1787	6.3	1857	7.4	1938	8.8	2021	10.2	2099	
2	8			1739	4.0	1787	4.7	1834	5.6	1891	6.5	1954	7.7	2023	8.9	2097	10.4	2171	11.9	2242	_
2.5	10			1912	5.0	1956	5.9	2000	6.8	2055	8.0	2108	9.0	2173	10.4	2240	12.0	2309	13.7	2386	
3	12					2113	7.0	2159	8.0	2205	9.2	2256	10.4	2314	11.9	2379	13.6	2448		2517	
3.5	14					2256	8.2	2302	9.4	2344	10.5	2397	12.1	2450	13.7	2510	15.3	2577	17.4	2640	
4	16							2434	10.7	2480	11.9	2526	13.5	2577	15.2	2628	16.9	2693	19.0	2757	-
4.5	18							2563	12.2	2607	13.5	2651	15.1	2700	16.8		18.8	2806	20.8	2868	
5	20									2725	15.0	2769	16.5		18.4	2866	20.6	2914	22.7	2977	25.2
5.5	22									2841	16.6	2884	18.2	2926	20.1	2977	22.2	3030	24.8	3081	27.3

	MODEL				Imp	eller Di	amete	r : 664	mm	Inlet D	Diam.(O.D.) =	= 388 ı	mm l	nlet A	rea(Ins	ide) =	0.114	m2		
	M15			Outlet	(Outsi	de) = 3	882 mr	n x 30	8 mm	Outle	et Area	a(Insid	e) = 0	.115 m	² Tip	Spee	d (m/s) = 0.0	348 X	RPM	
M^3	'HR	51	84	62	21	72	57	82	94	933		103		114		124	141	134	78	145	515
0.V	M/S	12	2.5	15	.0	17	.5	20	.0	22	.5	25	5.0	27	.5	30	0.0	32	.5	35	.0
CI	-M	30	51	36	61	42	72	48	82	549	92	61	02	67	12	73	23	79	33	85	43
O.V. F	T/MIN	24	61	29	53	34	45	39	37	442	29	49	21	54	13	59	06	63	98	68	
KPA	IN.WG	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	
1	4	1096	2.2	1142	2.9	1190	3.5	1251	4.4	1314	5.4	1382	6.6	1456	8.1	1526	9.6	1604	11.5	1680	13.5
1.5	6	1293	3.3	1336	4.0	1378	4.9	1430	5.8	1486	7.0	1548	8.4	1608	9.9	1678	11.7	1750	13.6	1818	15.8
2	8			1506	5.3	1548	6.3	1588	7.4	1638	8.7	1692	10.2	1752	11.9	1816	13.9	1880	15.8	1942	18.2
2.5	10			1656	6.7	1694	7.8	1732	9.0	1780	10.6	1826	12.0	1882	13.9	1940	16.0	2000	18.2	2066	20.8
3	12					1830	9.3	1870	10.6	1910	12.3	1954	13.9	2004	15.9	2060	18.1	2120	20.6	2180	23.4
3.5	14					1954	10.9	1994	12.5	2030	14.0	2076	16.1	2122	18.2	2174	20.4	2232	23.2	2286	25.9
4	16							2108	14.2	2148	15.9	2188	18.0	2232	20.2	2276	22.5	2332	25.3	2388	28.5
4.5	18							2220	16.2	2258	18.0	2296	20.1	2338	22.4	2380	25.0	2430	27.7	2484	30.8
5	20									2360	20.0	2398	22.0	2436	24.5	2482	27.4	2524	30.2	2578	33.6
5.5	22									2460	22.1	2498	24.2	2534	26.8	2578	29.6	2624	33.0	2668	36.4

M SERIES DUST FANS - RADIAL BLADED

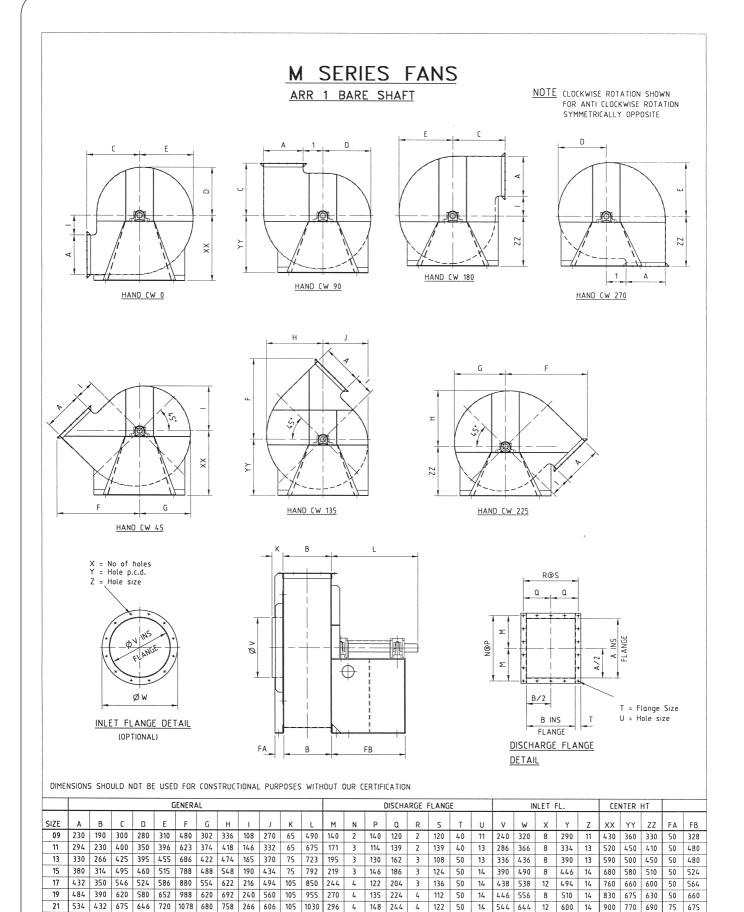
	MODEL				Imp	eller Di	amete	r : 752	2 mm	Inlet D	Diam.(O.D.) =	438 r	mm l	nlet A	rea(Ins	side) =	0.147	m2		
	M17			Outlet	(Outsi	de) = 4	132 mr	n x 35	0 mm	Outle	et Area	a(Insid	e) = 0.	.148 m	² Tip	Spee	d (m/s) = 0.0	394 X	RPM	
M ³ /	HR	66	47	79	76	93	06	106	35	119	65	132	294	146	323	159	953	172	282	186	312
O.VEI	M/S	12	2.5	15	.0	17	.5	20	.0	22	.5	25	.0	27	.5	30	0.0	32	.5	35	.0
CF	-M	39	12	46	95	54	77	62	60	704	42	78	25	86	07	93	90	101	172	109	954
0.V. F	T/MIN	24	61	29	53	34	45	39	37	44:	29	49	21	54	13	59	06	63	98	68	90
KPA	IN.WG	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW
1	4	959	3.1	1005	3.9	1056	4.8	1112	6.0	1172	7.5	1236	9.2	1302	11.0	1369	13.3	1441	15.9	1509	18.9
1.5	6	1132	4.4	1167	5.5	1212	6.6	1261	8.0	1316	9.6	1371	11.5	1431	13.7	1494	16.1	1564	18.9	1630	22.1
2	8			1314	7.1	1351	8.5	1396	10.1	1446	11.9	1497	13.9	1551	16.3	1610	18.9	1672	21.8	1733	25.2
2.5	10			1448	8.9	1479	10.4	1519	12.2	1563	14.2	1611	16.4	1663	19.0	1719	21.9	1776	25.1	1834	28.4
3	12					1600	12.5	1632	14.3	1673	16.5	1718	19.0	1768	21.8	1819	24.7	1876	28.1	1930	31.8
3.5	14					1712	14.5	1742	16.6	1780	19.0	1820	21.6	1866	24.7	1913	27.6	1972	31.5	2025	35.5
4	16							1844	18.7	1875	21.4	1916	24.3	1959	27.5	2007	30.9	2055	34.7	2111	38.7
4.5	18							1940	21.1	1971	23.9	2005	27.1	2046	30.3	2092	34.0	2141	38.2	2194	42.3
5	20									2061	26.4	2096	29.8	2133	33.3	2177	37.1	2223	41.3	2275	46.0
5.5	22									2150	29.0	2180	32.5	2217	36.3	2257	40.3	2302	44.7	2350	49.6

ı	MODEL				Imp	eller Di	amete	er : 838	3 mm	Inlet D	Diam.(O.D.) =	= 490 ı	mm I	nlet A	ea(Ins	ide) =	0.183	m2		
	M 19			Outlet	(Outsi	de) = 4	182 mr	n x 39	0 mm	Outle	et Area	a(Insid	e) = 0	.183 m	² Tip	Spee	d (m/s) = 0.0	439 X	RPM	
M ³ /	HR	82	36	98	83	115	30	131	177	148	24	164	471	181	18	197	765	214	113	230	060
O.V.	M/S	12	2.5	15	5.0	17	.5	20	0.0	22	.5	25	5.0	27	.5	30	0.0	32	.5	35	.0
CF	М	48	47	58	17	67	86	77	56	872	25	96	95	106	664	116	334	126	603	135	572
0.V. F	T/MIN	24	61	29	53	34	45	39	37	442	29	49	21	54	13	59	06	63	98	68	90
KPA	IN.WG	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW
1	4	861	3.8	902	4.8	948	6.0	998	7.5	1052	9.3	1110	11.4	1169	13.7	1229	16.5	1294	19.7	1355	23.4
1.5	6	1016	5.5	1048	6.8	1088	8.2	1132	9.9	1181	11.9	1231	14.3	1285	17.0	1341	20.0	1404	23.5	1463	27.4
2	8			1180	8.8	1213	10.6	1253	12.5	1298	14.8	1344	17.2	1392	20.2	1445	23.5	1501	27.1	1556	31.3
2.5	10			1300	11.0	1328	12.9	1364	15.2	1403	17.6	1446	20.3	1493	23.6	1543	27.2	1594	31.1	1646	35.3
3	12					1436	15.5	1465	17.8	1502	20.5	1542	23.6	1587	27.0	1633	30.7	1684	34.9	1733	39.5
3.5	14					1537	18.0	1564	20.6	1598	23.6	1634	26.8	1675	30.6	1717	34.2	1770	39.1	1818	
4	16							1655	23.2	1683	26.6	1720	30.2	1759	34.1	1802	38.4	1845	43.0	1895	48.0
4.5	18							1742	26.2	1769	29.7	1800	33.6	1837	37.6	1878	42.2	1922	47.4	1970	
5	20									1850	32.8	1882	37.0	1915	41.3	1954	46.0	1996	51.2	2042	
5.5	22									1930	36.0	1957	40.3	1990	45.0	2026	50.0	2067	55.5	2110	61.6

1	MODEL				Impe	eller Di	amete	er : 928	3 mm	Inlet D	Diam.(O.D.) =	= 540 ı	mm I	nlet A	rea(Ins	ide) =	0.223	m2		
	M21			Outlet	(Outsi	de) = 5	34 mr	n x 43	2 mm	Outle	et Area	a(Insid	e) = 0	.224 m	² Tip	Spee	d (m/s) = 0.0	486 X	RPM	\neg
M ³ /	HR	10	075	120	90	141	05	161	120	181	35	201	150	221	65	241	180	261	195	282	210
0.V.	M/S	12	2.5	15	.0	17	.5	20	0.0	22	.5	25	0.0	27	.5	30	.0	32	.5	35	0.0
CF	М	59	30	71	16	83	02	94	88	106	74	118	360	130)46	142	232	154	118	166	304
0.V. F	T/MIN	24	61	29	53	34	45	39	37	442	29	49	21	54	13	59	06	63	98	68	90
KPA	IN.WG	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW
1	4	773	4.4	810	5.6	848	7.0	889	8.6	933	10.6	979	12.9	1026	15.6	1076	18.5	1129	22.1	1185	26.0
1.5	6	910	6.3	942	7.9	979	9.7	1018	11.6	1056	13.7	1097	16.4	1141	19.4	1185	22.8	1233	26.6	1282	30.9
2	8	-		1058	10.2	1092	12.4	1127	14.7	1166	17.3	1203	19.9	1243	23.2	1284	26.8	1328	30.9	1377	35.9
2.5	10			1164	12.3	1192	14.9	1224	17.7	1261	20.7	1300	23.9	1339	27.3	1377	31.2	1420	35.5	1462	40.5
3	12					1288	17.5	1317	20.7	1351	24.3	1388	28.0	1427	31.6	1466	35.7	1504	40.2	1545	45.4
3.5	14					1374	20.1	1400	23.6	1434	27.6	1471	31.7	1506	36.0	1545	40.5	1584	45.2	1623	50.6
4	16							1483	26.6	1511	30.9	1547	35.6	1582	40.2	1619	45.0	1660	50.5	1697	55.9
4.5	18							1559	29.6	1586	33.9	1619	39.2	1654	44.4	1690	49.8	1728	55.4	1765	61.1
5	20									1660	37.4	1690	43.0	1723	48.5	1760	54.5	1795	60.4	1834	66.9
5.5	22									1728	40.7	1757	46.5	1790	52.9	1824	59.2	1859	65.4	1896	72.3

	MODEL				Impe	ller Di	amete	r : 101	6 mm	Inlet	Diam.((O.D.)	= 590	mm	Inlet A	rea(In	side) =	= 0.268	3 m2		
	M23			Outlet	(Outsi	de) = 5	84 mi	n x 47	4 mm	Outle	et Area	a(Insid	e) = 0	.269 m	² Tip	Spee	d (m/s) = 0.0	532 X	RPM	
M^3	HR	12	123	145	548	169	973	193	398	218	22	242	247	266	72	290	96	315	521	339	946
0.V.	M/S	12	2.5	15	.0	17	.5	20	0.0	22	.5	25	0.0	27	.5	30	.0	32	.5	35	5.0
CF	-M	71	36	85	63	99	90	114	117	128	44	142	271	156	98	171	126	185	553	199	980
O.V. F	T/MIN	24	161	29	53	34	45	39	37	44:	29	49	21	54	13	59	06	63	98	68	90
KPA	IN.WG	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW
1	4	705	5.3	739	6.8	774	8.4	811	10.3	851	12.8	893	15.5	937	18.7	982	22.3	1030	26.6	1082	31.2
1.5	6	830	7.5	859	9.5	893	11.6	929	14.0	964	16.5	1001	19.7	1041	23.4	1082	27.3	1125	31.9	1170	37.1
2	8			966	12.2	996	14.9	1028	17.7	1064	20.8	1098	23.9	1135	27.8	1172	32.2	1212	37.1	1257	43.1
2.5	10			1062	14.8	1088	17.9	1117	21.2	1151	24.9	1186	28.7	1222	32.7	1257	37.5	1296	42.6	1334	
3	12					1175	21.0	1202	24.9	1233	29.1	1267	33.6	1302	38.0	1337	42.9	1373	48.3	1410	
3.5	14					1254	24.2	1278	28.3	1308	33.2	1342	38.1	1374	43.2	1410	48.6	1445	54.2	1481	60.7
4	16							1353	31.9	1379	37.1	1411	42.7	1444	48.3	1477	54.1	1514	60.6	1548	
4.5	18							1423	35.5	1447	40.7	1477	47.1	1510	53.3	1542	59.8	1577	66.6	1611	73.4
5	20									1514	44.9	1542	51.7	1572	58.3	1606	65.4	1638	72.6	1674	
5.5	22									1577	48.8	1603	55.8	1634	63.5	1664	71.0	1696	78.6	1730	86.9

M SERIES DUST FANS - RADIAL BLADED


N	MODEL				Impe	ller Di	amete	r : 114	6 mm	Inlet	Diam.	(O.D.)	= 666	mm	Inlet A	rea(In	side) =	0.343	3 m2		
	M26			Outlet	(Outsi	de) = 6	660 mr	n x 53	0 mm	Outle	et Area	a(Insid	e) = 0	.343 m	² Tip	Spee	d (m/s	s) = 0.0	601 X	RPM	
$M^3/$	HR	15	426	188	511	215	596	246	82	277	67	308	352	339	937	370	023	40	108	43	193
O.VEL	M/S	12	2.5	15	5.0	17	.5	20	0.0	22	.5	25	5.0	27	.5	30	0.0	32	2.5	35	5.0
CF	М	90	79	108	395	127	711	145	527	163	43	18 ⁻	159	199	975	21	791	236	307	254	423
0.V. F	T/MIN	24	61	29	53	34	45	39	37	44	29	49	21	54	13	59	06	63	98	68	90
KPA	IN.WG	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW
1	4	625	6.8	655	8.6	686	10.7	719	13.2	755	16.3	792	19.8	830	23.8	870	28.4	913	33.8	959	39.7
1.5	6	736	9.6	762	12.0	792	14.8	823	17.8	855	21.0	887	25.0	923	29.7	959	34.8	997	40.6	1037	47.2
2	8			856	15.5	883	18.9	912	22.5	943	26.4	973	30.5	1006	35.4	1039	41.0	1074	47.3	1114	54.8
2.5	10			942	18.9	964	22.8	990	27.0	1020	31.6	1051	36.5	1083	41.7	1114	47.7	1148	54.2	1183	61.9
3	12					1041	26.7	1066	31.7	1093	37.1	1123	42.7	1154	48.3	1185	54.6	1217	61.4	1250	69.4
3.5	14					1111	30.8	1133	36.1	1160	42.2	1190	48.4	1218	55.0	1250	61.9	1281	69.0	1312	77.3
4	16							1200	40.6	1223	47.2	1251	54.3	1280	61.4	1310	68.8	1342	77.1	1372	85.5
4.5	18					L		1261	45.2	1283	51.8	1310	59.9	1338	67.8	1367	76.1	1398	84.7	1428	93.4
5	20									1342	57.1	1367	65.7	1394	74.2	1424	83.2	1452	92.4	1484	102.2
5.5	22									1398	62.2	1421	71.0	1448	80.8	1475	90.4	1504	100.0	1534	110.6

	MODEL				Impe	ller Di	amete	r : 128	2 mm	Inlet	Diam.	(O.D.)	= 744	mm	Inlet A	rea(In	side) =	= 0.426	6 m2		
	M 29			Outlet								·		.429 m				3) = 0.0		RPM	
M ³ /	HR	193	314	231	`	270			902	347		386		424			353		216		079
0.V.	M/S	12	2.5	15	.0	17	.5	20	0.0	22	.5	25	5.0	27	.5	30	0.0	32	2.5	35	5.0
CI	M	113	368	136	341	159	15	181	188	204	62	22	736	250	009	272	283	29	556	318	830
O.V. F	T/MIN	24	61	29	53	34	45	39	37	44	29	49	21	54	13	59	06	63	98	68	90
KPA	IN.WG	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW
1	4	558	8.5	585	10.8	613	13.4	642	16.5	674	20.4	707	24.7	742	29.8	778	35.5	816	42.3	857	49.7
1.5	6	658	12.0	681	15.1	707	18.5	736	22.3	764	26.3	793	31.3	825	37.2	857	43.6	891	50.9	927	59.1
2	8			765	19.4	789	23.7	815	28.2	843	33.1	869	38.2	899	44.4	928	51.4	960	59.2	996	68.7
2.5	10			841	23.6	862	28.6	885	33.8	911	39.6	939	45.7	968	52.2	996	59.7	1026	67.9	1057	77.5
3	12					931	33.5	952	39.7	976	46.5	1003	53.5	1031	60.5	1059	68.4	1087	76.9	1117	87.0
3.5	14					993	38.5	1012	45.2	1036	52.9	1063	60.7	1089	68.9	1117	77.5	1145	86.5	1173	96.8
4	16							1072	50.9	1092	59.1	1118	68.1	1143	76.9	1170	86.2	1200	96.6	1226	107.1
4.5	18							1127	56.6	1146	64.9	1170	75.1	1196	84.9	1221	95.3	1249	106.1	1276	116.9
5	20									1200	71.6	1221	82.3	1245	92.9	1272	104.2		115.7		128.0
5.5	22									1249	77.8	1270	88.9	1294	101.2	1318	113.2	1344	125.2	1370	138.5

1	MODEL				lana a	llas Di		1 10	0	Inlak	Diam /	0.07	- 040		Inlah A	/	-:	0.556			
						ller Dia								mm							
	<u>M33</u>			Outlet	(Outsi	de) = 8	338 mr	n x 67	4 mm	Outl	et Area	a(Insid	e) = 0	.556 m	² Tip	Spee	d (m/s) = 0.0	765 X	RPM	
M ³ /	HR	25	041	300)49	350)58	400	066	450	74	500	082	550)91	600	99	651	107	70°	115
O.V.	M/S	12	2.5	15	5.0	17	.5	20	0.0	22	.5	25	5.0	27	.5	30	0.0	32	2.5	35	5.0
CF	М	14	739	176	387	206	34	235	582	265	30	294	478	324	125	353	373	383	321	412	269
0.V. F			61		53	34		39		44		49			13	59			98		90
KPA	IN.WG	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW
1	4	490	11.0	514	14.0	539	17.3	564	21.4	592	26.4	621	32.1	652	38.6	683	46.0	717	54.9	752	64.5
1.5	6	578	15.6	598	19.5	621	24.0	646	28.9	671	34.1	696	40.6	724	48.3	752	56.5	783	66.0	814	76.6
2	8			672	25.2	693	30.7	715	36.5	740	42.9	764	49.5	789	57.5	815	66.6	843	76.7	874	89.0
2.5	10	_		739	30.6	757	37.0	777	43.9	800	51.4	825	59.3	850	67.7	874	77.4	901	88.1	928	100.5
3.5	12 14	-		-		817	43.4	836	51.5	858	60.2	881	69.4	906	78.4	930	88.7	955	99.7	981	112.7
4	16	-				872	49.9	889 942	58.6 66.0	910 959	68.5 76.6	934 982	78.7 88.2	956 1004	89.4 99.7	981 1028	100.5	1005 1054	112.1 125.3		_
4.5	18							990	73.4	1006	84.2	1028	97.3	1050	110.1	1028	123.5		137.5	_	
5	20							000	, 5.4	1054	92.8	1073	106.7	1094	120.5		135.1	1140			165.9
5.5	22									1097				1136							

1	MODEL				Impe	ller Di	amete	r : 163	6 mm	Inlet	Diam.((O.D.)	= 950	mm	Inlet A	rea(In	side) =	= 0.694	4 m2		
	M37			Outlet	(Outsi	de) = 9	940 mi	n x 75	2 mm	Outl	et Area	a(Insid	e) = 0	.698 m	² Tip	Spee	d (m/s	s) = 0.0	857 X	RPM	
$M^3/$	HR	31:	396	376	375	439	954	502	233	565	12	62	791	690	070	753	349	816	628	879	908
O.V.	M/S	12	2.5	15	5.0	17	'.5	20	0.0	22	.5	25	5.0	27	.5	30	0.0	32	2.5	35	5.0
CF	М	184	479	221	175	258	370	295	566	332	262	369	958	406	553	44:	349	480	045	517	
0.V. F	T/MIN	24	61	29	53	34	45	39	37	44	29	49	21	54	13	59	06	63	98	68	90
KPA	IN.WG	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW	RPM	KW
1	4	438	13.8	459	17.5	481	21.7	504	26.8	529	33.1	555	40.2	582	48.4	610	57.7	640	68.8	672	80.8
1.5	6	516	19.5	534	24.5	555	30.1	577	36.2	599	42.7	622	50.9	647	60.5	672	70.8	699	82.7	727	96.0
2	8			600	31.6	619	38.5	639	45.8	661	53.8	682	62.0	705	72.1	728	83.5	753	96.2	781	111.6
2.5	10			660	38.4	676	46.4	694	55.0	715	64.4	737	74.3	759	84.8	781	97.0	805	110.4	829	126.0
3	12					730	54.4	747	64.5	766	75.5	787	87.0	809	98.3	831	111.2	853	125.0	876	141.3
3.5	14					779	62.6	794	73.4	813	85.9	834	98.6	854	112.0	876	126.0	898	140.5	920	157.3
4	16							841	82.7	857	96.0	877	110.6	897	125.0	918	140.0	941	157.0	962	174.0
4.5	18							884	92.0	899	105.5	918	122.0	938	138.0	958	154.8	980	172.4	1001	190.0
5	20									941	116.3	958	133.8	977	151.0	998	169.4	1018	188.0	1040	208.0
5.5	22									980	126.5	996	144.5	1015	164.5	1034	184.0	1054	203.5	1075	225.0

330

465

120 1265

4 165 274

146

7 148 420

6 155

300

380 5

137 65

134 65

152 75

5 168 75 18

150 65 14 670

5

14

18

18

596 696

746 876

850 980

950 1080

770

12 656

12 726 14 1110 950 850 75 725

12

12 920

16 1020

1000 850

1230 1050 950

1380 1200 1080

1540 | 1330 | 1200

18

18

18

816

75

75 725

75 795

100

23

660 530

810 796 894 1320 845 942 330 750 110 1125 365 5

584 474 750 702 792 1196 745 826 292 662 110 1070

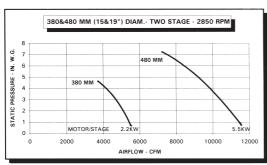
37 940 752 1050 1134 1272 1860 1202 1340 470 1066 120 1380 518

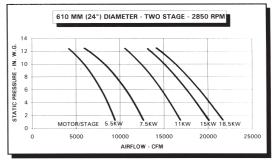
838 672 1010 1026 1140 1658 1072 1194 420 952

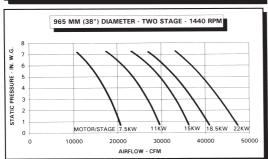
736 590 900 890 996 1465 942 1050 368 836 120 1155 408 6 136 335

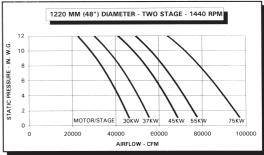
Mine Ventilation Fans Two-Stage Axial Flow Fans - Contra-Rotating

Features

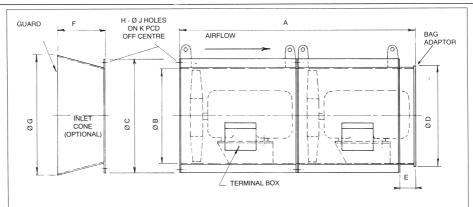

- * High Quality Aerofoil Bladed Cast Aluminium Impellers
- * Robustly Designed Casings, Flanges & Motor Mounting Brackets
- * Fully Welded Construction With Heavy Duty Hanging Brackets
- * Totally Enclosed Air Over Motors, With Minimum IP55 Protection
- * External Terminal Boxes Fully Welded Steel Construction
- Wire Mesh Guards At Fan Inlet For Protection
 Bag Adaptors At Fan Discharge (Optional)
- * Inlet Come With County (Ontional)
- * Inlet Cone With Guard (Optional)
- * External Greasing Points For Motors (Optional)


Proven Performers - Over the past 20 years, our extensive skills and experience have gone into supplying numerous contra-rotating axial flow fans for underground mine ventilation throughout Australia, particularly the Kalgoorlie region of Western Australia.




AF 1220 Two Stage Fan, Heavy Duty, 55kw per stage

MINE VENTILATION FANS – Specifications



CONVERSIONS: 1 CFM = 1.699 M³/HR = 0.472 L/S; 1 IN. W.G. = 0.249 KPA = 25.4 MM W.G.

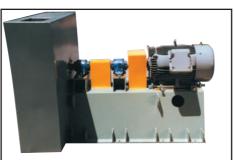
SIZE	Α	В	С	D	Е	F	G	Н	J	K
380	900	386	472	412	100	190	475	4	12	440
480	1200	486	592	514	100	240	600	4	15	548
610	1500	618	726	646	100	305	760	6	15	682
965	1500	974	1114	1004	100	485	1205	8	18	1056
1220	2400	1230	1370	1260	100	610	1525	10	18	1312

ALL DIMENSIONS IN MM

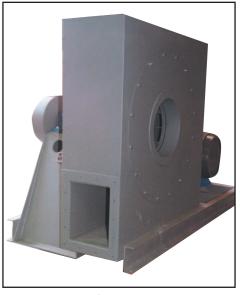
^{*} OTHER CUSTOM BUILT SIZES AVAILABLE ON APPLICATION *

Inline centrifugal fans

The Aerotech inline centrifugal fans are heavy duty industrial type, non-overloading fans which are quiet and compact. The consolidation of the centrifugal wheel in a tube with guide vanes produce a highly efficient performance characteristics comparable to scroll type centrifugal fans but with minimum space requirements similar to that of axial flow fans. The tubular design eliminates the need for duct turns and transition pieces, thus providing simpler and less costly installation. The inlet and outlet diameters are identical and the fan can be mounted vertically or horizontally.



Acoustically Lagged Centrifugal fans


The Aerotech range of centrifugal fans can all be acoustically lagged to reduce radiated noise from the fan casing. The whole casing is double skinned and insulated with sound absorbent material. It is more economical to purchase a lagged fan than to acoustically insulate the fan casing on site to meet the necessary noise requirements.

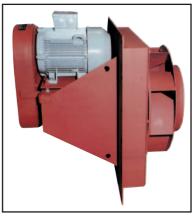
HP 332 fan, Arr.8, Coupling Driven, 22kw

HP 406 fan, Arr.1, 120kw

Petrol Engine Driven centrifugal fans

These fans are ideal for use in remote areas where electricity supply is not easily available.

F 24 Fan


MVZ 160 fan

Plug Fans for high temperature

The Aerotech plug fans are solidly welded, non-overloading fans which can be square panel mounted to the side or top of oven dryer panel. The mounting panel is insulated. These fans are designed for internal operation in furnaces, ovens or kilns where air has to be exhausted, re-circulated, or distributed. Plug units eliminate ductwork and special mounting platforms.

Direct Driven

Belt Driven