MINITIMER
Timer, Release Delay
MK 9962N

Function Diagram

Circuit Diagrams

MK 9962N. 82

MK 9962N.82/300

Connection Terminals
Terminal designation Signal designation A1 $\mathrm{L} /+$ A2 Changeover contact $15,16,18$ Changeover contact $25,26,28$ Control Input (start time delay) B1(+) Control Input (time interruption with time adding) X2, X3 Input to connect a remote potentio- meter for time setting t1 Z1, Z2

- According to IEC/EN 61 812-1
- 8 time ranges from 0.05 s to 300 h selectable via rotational switch
- With auxiliary supply
- Voltage range AC/DC 12 ... 240 V for auxiliary supply and control input
- Adjustment aid for quick setting of long time values
- With input for interruption of timing
- LED indicators for operation, contact position and time delay
- 2 changeover contacts
- With remote potentiometer facility as option
- Wire connection: also $2 \times 1.5 \mathrm{~mm}^{2}$ stranded ferruled, or $2 \times 2.5 \mathrm{~mm}^{2}$ solid DIN 46 228-1/-2/-3/-4
- As option with pluggable terminal blocks for easy exchange of devices
- with screw terminals
- or with cage clamp terminals
- 22.5 mm width

Approvals and Markings

* see variants

Applications

Time-dependent controllers

Indicators

green LED:
yellow LED "R/t":

- LED off
- LED continuously on
- LED flashing (long on, short off)
on when auxiliary voltage connected shows status of output relay and time delay:
output relay not active; no time delay output relay active; no time delay ($=$ B1 input active) output relay active; time delay

Notes

Adjustment assistance

The flashing period of the yellow LED is $1 \mathrm{~s} \pm 4 \%$ and can be used to adjust the time. Especially on the lower end of scale and for long times it is suitable as the multiplication factors between the different time ranges are exact without tolerance.
Example:
The required time is 40 min . It has to be adjusted within the range 3 ... 300 min . The time check takes too long as several timing cycles would be necessary for a precise value.

For faster adjustment the setting is made to $0.03 \ldots 3 \mathrm{~min}$. On this range the potentiometer should be set to $0.4 \mathrm{~min}(=24 \mathrm{sec})$. With the right potentiometer setting the LED must show 24 flashing cycles. After that the time range is switched over to $3 \ldots 300 \mathrm{~min}$ and the setting is complete.

Notes

Remote potentiometer

With the variant MK 9962N.82/300 the time setting can also be made via remote potentiometer of 10 kOhms . It is connected to the terminals Z1-Z2. The corresponding potentiometer on the relay has to be set to min. If no remote potentiometer is required the terminals $\mathrm{Z} 1-\mathrm{Z} 2$ have to be linked.
The wires to the remote potentiometers should be installed separately from the lines with mains voltage. If this is not possible, a screened cable is recommendet where the shield is connected to Z2.
To terminals Z 1 and Z 2 no external voltage must be connected, as the unit might be damaged.

Control input B1

The unit needs a continuously connected auxiliary supply on A1-A2. The timing is controlled via input B1. The control unit B1 (+ with DC) has to be supplied with voltage against A2. The control signal could be the same as the auxiliary/control voltage of A1 or any other voltage between 12 and 240 V AC or DC. Operating a parallel load (e.g. a contactor) between B1 and A 2 is also allowed.

Time interruption and time addition with X2-X3
The time delay can be interrupted during timing by bridging the terminals X2 - X3. By opening the bridge the time continues (time addition).
While X2 and X3 are bridged the control input is disabled and the yellow LED remains in the state it had at stop. No external voltage must be connected to X 2 and X 3 as the unit may be damaged.

Setting

Technical Data

Time circuit

Time ranges:

Time setting:
Minimum on time (B1):
AC 50 Hz
DC:
Repeat accuracy:

Voltage and

temperature influence:

8 time ranges settable via rotationa switch:
$0.05 \ldots 1 \mathrm{~s} \quad 0.3 \ldots 30 \mathrm{~min}$
0.06 ... 6 s $\quad 3$... 300 min
$0.3 \ldots 30 \mathrm{~s} \quad 0.3 \ldots \quad 30 \mathrm{~h}$
0.03 ... 3 min 3 ... 300 h
continuous, 1:100 on relative scale
approx. 15 ms
approx. 5 ms
$\pm 0.5 \%$ of selected
end of scale value +20 ms
$\leq 1 \%$ with the complete operating range

Input

Auxiliary voltage $\mathrm{U}_{\mathrm{H}}:$	AC/DC $12 \ldots 240 \mathrm{~V}$
Voltage range:	$0.8 \ldots 1.1 \mathrm{U}_{\mathrm{N}}$
Frequency range (AC):	$45 \ldots 400 \mathrm{~Hz}$
Nominal consumption	
at AC 12 V :	approx. 1.5 VA
at AC 24 V :	approx. 2 VA
at AC 240 V :	approx. 3 VA
at DC 12 V :	approx. 1 W
at DC $24 \mathrm{~V}:$	approx. 1 W
at DC 240 V :	approx. 1 W
Release voltage (A1/A2)	
AC 50 Hz :	approx. 7.5 V
DC:	approx. 7 V
Control voltage (B1/A2):	AC/DC $12 \ldots 240 \mathrm{~V}$
Voltage range (B1/A2):	$0.8 \ldots 1.1 \mathrm{U}_{\mathrm{N}}$
Control current (B1):	approx. 1 mA, over complete voltage
	range

Release voltage (B1/A2)
AC 50 Hz :
DC:
approx. 3.5 V
approx. 3 V

Output

Contacts

MK 9962N.82:
Contact material:
Measured nominal voltage:
Thermal current $I_{t h}$:

Switching capacity

o AC 15
NO contact:
NC contact
o DC 13:
Electrical life
o AC 15 at 1 A, AC 230 V
Permissible switching
frequency:
Short circuit strength
max. fuse rating:
Mechanical life:

2 changeover contacts
AgNi
AC 250 V
see quadratic total current limit curve (max. 4 A per contact)

3 A / AC 230 V
IEC/EN 60 947-5-1
1 A / AC 230 V
IEC/EN 60 947-5-1
1 A / DC 24 V
IEC/EN 60 947-5-1
1.5×10^{5} switching cycles

6000 switching cycles / h

4 A gL
IEC/EN 60 947-5-1
$\geq 30 \times 10^{6}$ switching cycles

Technical Data

General Data

Operating mode:
Temperature range
Operation:

Storage:
Relative air humidity:
Altitude:
Clearance and creepage distances
rated impulse voltage /
pollution degree:
Input / Output:
Output / Output:
Overvoltage category:
Insulation test voltage,
type test:
EMC
Electrostatic discharge:
HF irradiation
80 MHz ... 1 GHz :
1 GHz ... 2.7 GHz :
Fast transients:
Surge voltages
between
wires for power supply:
between wire and ground:
HF-wire guided:
Interference suppression:

Degree of protection
Housing:
Terminals:
Housing:
Vibration resistance:
Climate resistance:
Terminal designation:
Wire connection
Screw terminals
(integrated):

Insulation of wires
or sleeve length:
Plug in with screw terminals
max. cross section for connection:

Insulation of wires or sleeve length:
Plug in with cage clamp terminals max. cross section for connection:
min. cross section for connection: Insulation of wires or sleeve length:
Wire fixing:

Fixing torque:

Mounting:
Weight:

Continuous operation
$-40 \ldots+60^{\circ} \mathrm{C}$
(higher temperature see
quadratic total current limit curve)
$-40 \ldots+70^{\circ} \mathrm{C}$
93% at $40^{\circ} \mathrm{C}$
<2,000 m

4 kV / 2 (basis insulation) IEC 60 664-1 $4 \mathrm{kV} / 2$ (basis insulation) IEC $60664-1$ III
$2.5 \mathrm{kV} ; 1 \mathrm{~min}$
8 kV (air)
IEC/EN 61 000-4-2

IEC/EN 61 000-4-3
$10 \mathrm{~V} / \mathrm{m} \quad$ IEC/EN 61 000-4-3
2 kV IEC/EN 61 000-4-4

2 kV IEC/EN 61 000-4-5
4 kV IEC/EN 61 000-4-5
10 V
IEC/EN 61 000-4-6
Limit value class A^{*})
*) The device is designed for the usage under industrial conditions (Class A, EN 55011).
When connected to a low voltage public system (Class B, EN 55011) radio interference can be generated. To avoid this, appropriate measures have to be taken.
$\begin{array}{ll}\text { IP } 40 & \text { IEC/EN } 60529 \\ \text { IP } 20 & \text { IEC/EN } 60529\end{array}$
Thermoplastic with V0 behaviour
according to UL subject 94
Amplitude 0.35 mm ,
frequency $10 \ldots 55 \mathrm{~Hz}$, IEC/EN 60 068-2-6 20/060/04 IEC/EN 60 068-1 EN 50005
DIN 46 228-1/-2/-3/-4
$1 \times 4 \mathrm{~mm}^{2}$ solid or
$1 \times 2.5 \mathrm{~mm}^{2}$ stranded ferruled or
$2 \times 1.5 \mathrm{~mm}^{2}$ stranded ferruled or
$2 \times 2.5 \mathrm{~mm}^{2}$ solid

8 mm
$1 \times 2.5 \mathrm{~mm}^{2}$ solid or
$1 \times 2.5 \mathrm{~mm}^{2}$ stranded ferruled

8 mm
$1 \times 4 \mathrm{~mm}^{2}$ solid or
$1 \times 2.5 \mathrm{~mm}^{2}$ stranded ferruled
$0.5 \mathrm{~mm}^{2}$
$12 \pm 0.5 \mathrm{~mm}$
Plus-minus terminal screws M 3.5
box terminals with wire protection or cage clamp terminals
max. 0.8 Nm
DIN rail
150 g

Technical Data

Dimensions

Width x heigth x depth

MK 9962N:	$22.5 \times 90 \times 97 \mathrm{~mm}$
MK 9962N PC:	$22.5 \times 111 \times 97 \mathrm{~mm}$
MK 9962N PS:	$22.5 \times 104 \times 97 \mathrm{~mm}$

UL-Data

Switching capacity:
Ambient temperature $60^{\circ} \mathrm{C}$: Pilot duty B300
5A 250Vac G.P.

Wire connection:

Screw terminals fixed
Plug in screw:
Plug in cage clamp:
$60^{\circ} \mathrm{C} / 75^{\circ} \mathrm{C}$ copper conductors only AWG 20-12 Sol/Str Torque 0.8 Nm AWG 20-14 Sol Torque 0.8 Nm AWG 20-16 Str Torque 0.8 Nm AWG 20-12 Sol/Str

Technical data that is not stated in the UL-Data, can be found in the technical data section.

Standard Type

MK 9962N.82/61 AC/DC 12 ... 240 V $0.05 \ldots 300$ h
Article number: 0054105

- Output: 2 changeover contacts
- Auxiliary voltage U_{H} : AC/DC $12 \ldots 240 \mathrm{~V}$
- Time ranges: $\quad 0.05 \ldots 300 \mathrm{~h}$
- Width:
22.5 mm

Variants

MK 9962N.82/300/61
Connection facility for a remote potentiometer $10 \mathrm{k} \Omega$ to adjust the time

Ordering example for variants

Options with Pluggable Terminal Blocks

Screw terminal (PS/plugin screw) (PC/plugin cage clamp)

Notes

Removing the terminal blocks with cage clamp terminals

1. The unit has to be disconnected.
2. Insert a screwdriver in the side recess of the front plate.
3. Turn the screwdriver to the right and left.
4. Please note that the terminal blocks have to be mounted on the belonging plug in terminations.

Accessories

AD 3:

Degree of protection front side:

External potentiometer $10 \mathrm{k} \Omega$ Article number: 0028962

The external potentiometer is used for remote setting of the time delay. The internal potentiometer of the timer must be set to min. time delay.

$$
\text { IP } 60
$$

Characteristics

Quadratic total current limit curve

Control with parallel connected load

Connection with 2 different control voltages

