

Technical Information

iTEMP[®] TMT162

Dual input temperature field transmitter with HART[®], FOUNDATION FieldbusTM or PROFIBUS[®] PA protocol

Solutions

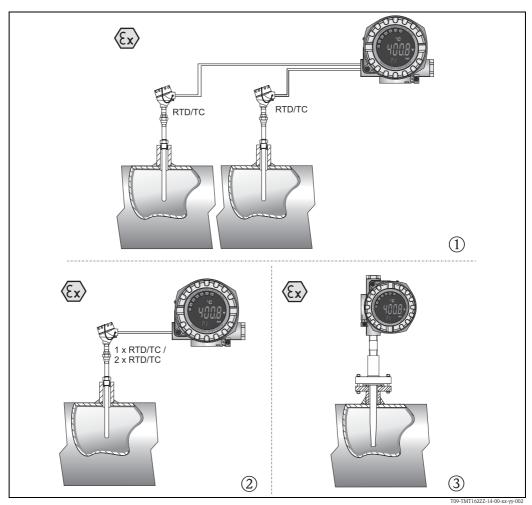
Application

- Universal input usable for resistance thermometer (RTD), thermocouple (TC), resistance transmitter (Ω), voltage transmitter (mV)
- Output:
- HART[®] protocol for converting various input signals to a scalable 4 to 20 mA analog output signal. Operating the transmitter using handheld terminals Field Xpert SFX100, DXR275/375/475 or remotely via PC
- FOUNDATION Fieldbus™ ITK 5.2.0
- PROFIBUS® PA Profile 3.02
- Optional: stainless steel housing for hygienic or Ex d application

Features and benefits

- High reliability in harsh industrial environments due to dual compartment housing and compact, fully potted electronics
- Backlit display with large measured value, bargraph and status condition indication

- Ability to display measured values other devices (FOUNDATION Fieldbus[™]: up to 5; PROFIBUS[®] PA: 1)
- Dual sensor input capability, e.g. 2 Pt100 3-wire or 1 Pt100 4-wire and thermocouple
- Diagnostics information according to NAMUR NE107
- Reliable operation due to sensor monitoring:
- breakdown information, sensor backup, drift alarm and corrosion detection
- High measuring point accuracy due to sensor transmitter matching
- Operation voltage monitoring for high measurement reliability (HART[®])
- Mathematic functions for differential and average temperature add flexibility to the measurement
- FISCO/FNICO compliant according to IEC 60079-27
- International approvals guarantee safe operation in hazardous area: FM, CSA (IS, NI, XP and DIP) and ATEX (Ex ia, Ex nA nL, Ex d and dust-Ex)
- Galvanic isolation 2 kV (sensor input to the output)



Function and system design

Measuring principle

Electronic monitoring, conversion and display of input signals in industrial temperature measurement.

Measuring system

Examples of applications

① Two sensors with measuring input (RTD or TC) in remote installation with the advantages: drift alert, sensor backup function and temperature dependent sensor switch

② 1 x RTD/TC or 2 x RTD/TC as redundancy

③ Temperature field transmitter in combination with a sensing element, insert and thermowell as compact thermometer

The iTEMP[®] temperature field transmitter TMT162 is a two-wire transmitter with an analog output or fieldbus protocol, two (optional) measuring inputs for resistance thermometers and resistance transmitters in 2, 3 or 4-wire connection (for a resistance measuring input), thermocouples and voltage transmitters. The LC display shows the current measured value digitally and as a bar graph. The current device status is also shown on the display.

Standard diagnostic functions

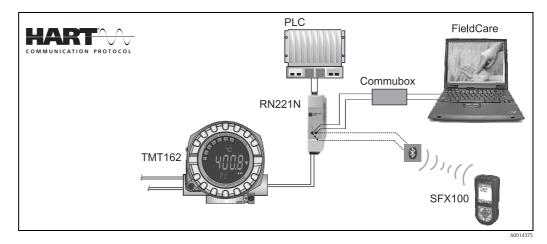
- Cable open-circuit, short-circuit
- Incorrect wiring
- Internal device errors
- Overrange/underrange detection
- Ambient temperature out-of-range detection

Corrosion detection according to NAMUR NE89

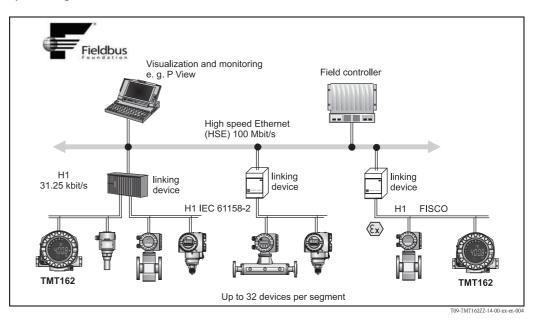
Corrosion of the sensor connections can lead to corruption of the measured value. The field transmitter offers the option of detecting corrosion on thermocouples and resistance thermometers with a 4-wire connection before measured value corruption occurs. The transmitter avoids false measured readings and is also able to indicate a warning on the display as well as through HART[®] or Fieldbus protocol when wire resistance exceeds reasonable values.

Low voltage detection for HART® communication

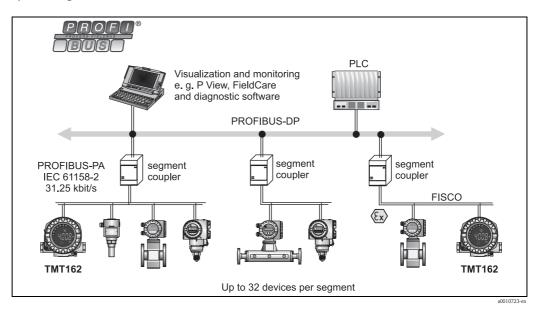
The low voltage detection prevents the device from continuously outputting an incorrect analog output value (i.e. due to damaged or incorrect power supply or due to a damaged signal cable). If the required supply voltage is undershot, the analog output value drops < 3.6 mA for approx. 3 s. An error message appears on the display. Afterwards the device tries to output the normal analog output value again. If the supply voltage is still too low, the analog output value drops again to < 3.6 mA.


Optional 2-channel functions

These functions increase the reliability and availability of the process values:


- Sensor backup: If sensor 1 fails, the output signal is switched without interruption to the measured value of sensor 2.
- Temperature-dependent sensor switchover: The measured value is measured by sensor 1 or 2 depending on the process temperature.
- Sensor drift detection: If the two measured values of sensor 1 and 2 deviate from a predefined value, a drift warning or alarm is output.

Equipment architecture


Analog current output 4 to 20 mA with HART®-Protocol

System integration via FOUNDATION Fieldbus™

System integration via PROFIBUS® PA

Input

Measured variable

Temperature (temperature linear transmission behaviour), resistance and voltage.

Measuring range

Type of input	Designation	Measuring range limits	Min. span
Resistance thermometer (RTD)	Pt100	-200 to 850 °C (-328 to 1562 °F)	10 °C (18 °F)
to IEC 60751	Pt200	-200 to 850 °C (-328 to 1562 °F)	10 °C (18 °F)
$(\alpha = 0.00385)$	Pt500	-200 to 250 °C (-328 to 482 °F)	10 °C (18 °F)
	Pt1000	-200 to 250 °C (-328 to 482 °F)	10 °C (18 °F)
to JIS C1604-81 (α = 0.003916)	Pt100	-200 to 649 °C (-328 to 1200 °F)	10 °C (18 °F)
to DIN 43760	Ni100	-60 to 250 °C (-76 to 482 °F)	10 °C (18 °F)
$(\alpha = 0.006180)$	Ni1000	-60 to 150 °C (-76 to 302 °F)	10 °C (18 °F)
to Edison Copper Winding No.15 $(\alpha = 0.004274)$	Cu10	-100 to 260 °C (-148 to 500 °F)	10 °C (18 °F)
to Edison Curve $(\alpha = 0.006720)$	Ni120	-70 to 270 °C (-94 to 518 °F)	10 °C (18 °F)
to GOST	Pt50	-200 to 1100 °C (-328 to 2012 °F)	10 °C (18 °F)
$(\alpha = 0.003911)$	Pt100	-200 to 850 °C (-328 to 1562 °F)	10 °C (18 °F)
to GOST $(\alpha = 0.004280)$	Cu50, Cu100	-200 to 200 °C (-328 to 392 °F)	10 °C (18 °F)
()	Pt100 (Callendar - van Dusen)	10 to 400 Ω	10 Ω
		10 to 2000 Ω	100 Ω
	Nickel polynomial	10 to 400 Ω	10 Ω
	(not for HART [®] protocol)	10 to 2000 Ω	100 Ω
	Copper polynomial	10 to 400 Ω	10 Ω
	(not for HART [®] protocol)	10 to 2000 Ω	100 Ω
	 With 2-wire circuit, compensation of 	r 4-wire connection, sensor current: ≤ 0.3 mA wire resistance possible (0 to 30 Ω) sensor wire resistance to max. 50 Ω per wire	
Resistance transmitter	Resistance Ω	10 to 400 Ω 10 to 2000 Ω	10 Ω 100 Ω

Type of input	Designation	Measuring range limits	Min. span
Thermocouples (TC) to IEC 584 part 1	Type B (PtRh30-PtRh6) ^{1) 2)} Type E (NiCr-CuNi) Type J (Fe-CuNi) Type K (NiCr-Ni) Type N (NiCrSi-NiSi) Type R (PtRh13-Pt) Type S (PtRh10-Pt) Type T (Cu-CuNi)	+40 to +1820 °C (+104 to +3308 °F) -270 to +1000 °C (-454 to +1832 °F) -210 to +1200 °C (-346 to +2192 °F) -270 to +1372 °C (-454 to +2501 °F) -270 to +1300 °C (-454 to +2372 °F) -50 to +1768 °C (-58 to +3214 °F) -50 to +1768 °C (-58 to +3214 °F) -260 to +400 °C (-436 to +752 °F)	500 °C (900 °F) 50 °C (90 °F) 50 °C (90 °F) 50 °C (90 °F) 50 °C (90 °F) 500 °C (900 °F) 500 °C (900 °F) 500 °C (900 °F) 500 °C (900 °F)
to ASTM E988	Type C (W5Re-W26Re) Type D (W3Re-W25Re)	0 to +2315 °C (32 to +4199 °F) 0 to +2315 °C (32 to +4199 °F)	500 °C (900 °F) 500 °C (900 °F)
to DIN 43710	Type L (Fe-CuNi) Type U (Cu-CuNi)	-200 to +900 °C (-328 to 1652 °F) -200 to +600 °C (-328 to 1112 °F)	50 °C (90 °F) 50 °C (90 °F)
	 Internal cold junction (Pt100) External cold junction: configurable value -40 to +85 °C (-40 to +185 °F) Max. sensor resistance 10 kΩ (if sensor resistance is greater than 10 kΩ, error message as per NAMUR NE89)³⁾ 		
Voltage transmitter (mV)	Millivolt transmitter (mV)	-20 to 100 mV	5 mV

1) Significant measuring inaccuracy for temperatures lower than 300 °C (572 °F).

2) When operating conditions are based on a large temperature range, the TMT162 offers the ability to split the range. For example, a Type S or R thermocouple can be used for the low range and a Type B can be used for the upper range. The TMT162 is then programmed to switch at a predetermined temperature. This allows for utilization of the best performance from each individual thermocouple and provides 1 output that represents the process temperature. Note: the dual sensor option must be included in the order code for the HART[®] protocol. Two sensor inputs are already provided as standard if the FF and PA protocol are selected.

3) Basic requirements NE89: detection of increased sensor resistance (e.g. corrosion of contacts or wires) of TC or RTD/4-wire.

Output

Output signal

HART®		
Analog output	4 to 20 mA, 20 to 4 mA	
Signal encoding	$FSK \pm 0.5 \text{ mA}$ via current signal	
Data transmission rate	1200 baud	
Galvanic isolation	U = 2 kV AC (input/output)	

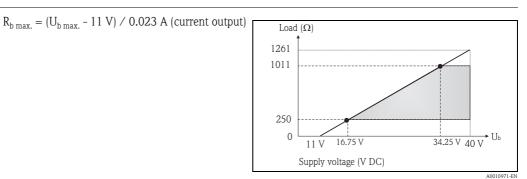
FOUNDATION Fieldbus TM		
Signal encoding	FOUNDATION Fieldbus TM H1, IEC 61158-2, Manchester Bus Powered (MBP)	
Data transmission rate	31.25 kBit/s, voltage mode	
Galvanic isolation	U = 2 kV AC (input/output)	

PROFIBUS [®] PA	
Signal encoding	PROFIBUS [®] PA as per EN 50170 volume 2, IEC 61158-2, Manchester Bus Powered (MBP)
Data transmission rate	31.25 kBit/s, voltage mode
Galvanic isolation	U = 2 kV AC (input/output)

Breakdown information

HART®		
Breakdown information to NAMUR NE43: The information is created when the measuring information is invalid or not present anymore and gives a complete listing of all errors occurring in the measuring system.		
Under ranging	linear drop from 4.0 to 3.8 mA	
Over ranging	linear rise from 20.0 to 20.5 mA	
Failure, e. g. sensor break; sensor short circuit	\leq 3.6 mA ("low") or 21 mA ("high") can be selected ¹)	

1) The high alarm is adjustable between 21.6 mA and 23 mA allowing for flexibility when working with the requirements of most control systems.


FOUNDATION FieldbusTM

Status message according to specification FOUNDATION FieldbusTM.

PROFIBUS® PA

Status and alarms according to specification PROFIBUS® PA Profile 3.01/3.02

Load (HART®)

behavior Filter	1st order digital filter: 0 to 60 s

Current consumption

HART [®]		
	3.6 mA to 23 mA Min. current consumption \leq 3.5 mA Current limit \leq 23 mA	

FOUNDATION Fieldbus TM	
Current consumption (device basic current)	≤11 mA
Switch-on current (device inrush current)	≤11 mA
Error current FDE (Fault Disconnection Electronic)	0 mA

PROFIBUS® PA		
Current consumption (device basic current)	≤11 mA	
Error current FDE (Fault Disconnection Electronic)	0 mA	

Protocol-specific data

HART [®]		
Version	5	
Device address in multi-drop mode	Software setting	
Write lock	Write lock activated by hardware or software setting	
Device description files (DD)	Information and files available free of charge online at: www.endress.com www.hartcom.org	
Load (communication resistance)	Min. 250 Ω	

FOUNDATION Fieldbus TM		
Supported functions	Instantiation of function blocks. The following methods are supported: Ouick Setup User sensor trim Factory trim settings Callendar Van Dusen Linearization polynomial nickel/copper Sensor drift monitoring Refer to the relevant Operating Instructions for detailed descriptions.	
Basic data	1	
Manufacturer ID	452B48 (Endress+Hauser)	
Device type	10CC (Hex)	
Device or bus address	247 (default)	
Device revision	02 (hex)	
ITK version	5.2.0	
ITK certification driver no.	IT070400	
Link Master functionality supported (LAS)	Yes	
Link Master/Basic Device selectable	Yes; factory setting: Basic Device	
Virtual Communication Relationship (V	CRs)	
Number of VCRs	44	
Number of link objects in VFD	50	
Permanent entries	44	
Client VCRs	0	
Server VCRs	5	
Source VCRs	8	
Sink VCRs	0	
Subscriber VCRs	12	
Publisher VCRs	19	
Link settings		
Slot time	4	
Min. Inter PDU delay	12	
Max. response delay	40	

FOUNDATION Fieldbus TM Blocks				
Resource Block Transducer Block Sensor 1 Transducer Block Sensor 2 Transducer Block Display Transducer Block Adv. Diag. Function Block AI1 Function Block AI2 Function Block AI3 Function Block AI3 Function Block AI4 Function Block AI5 Function Block AI6 Function Block ISEL	Permanent Pre-instantiated Pre-instantiated Pre-instantiated Pre-instantiated 35 ms (pre-instantiated) 35 ms (pre-instantiated) 35 ms (not instantiated) 35 ms (not instantiated) 30 ms	Extended Manufacturer-specific Manufacturer-specific Manufacturer-specific Extended Extended Extended Extended Extended Extended Extended Extended Standard Standard		
Short description of blocks				
Resource Block	The Resource Block contains all the data to uniquely identify and characterize the device. It corresponds to an electronic nameplate for the device. In addition to parameters required for operation of the device at the Fieldbus, the Resource Block provides information such as order code, device ID, hardware revision, software revision, device release etc.			
Transducer Block "Sensor 1" and "Sensor 2"	The field transmitter Transducer Blocks contain all the measuring and device-specific parameters relating to the measurement of the input variables.			
Display Transducer	The "Display" Transducer Block parameters enable configuration of the display.			
Advanced Diagnostic	All parameters for self-monitoring and diagnostics are grouped in this Transducer Block.			
Analog Input (AI)	In the AI function block, the process variables from the Transducer Blocks are processed for the subsequent automation functions in the control system (e.g. scaling, limit value processing).			
PID	This function block contains input channel processing, proportional- integral-differential control (PID) and analog output channel processing. Basic closed-control loops, control loops with feedforward control, cascade control and cascade control with limiting can all be performed.			
Input Selector (ISEL)	The block for signal selection (Input Selector Block – ISEL) allows you to select up to four inputs and generates an output based on the configured action.			

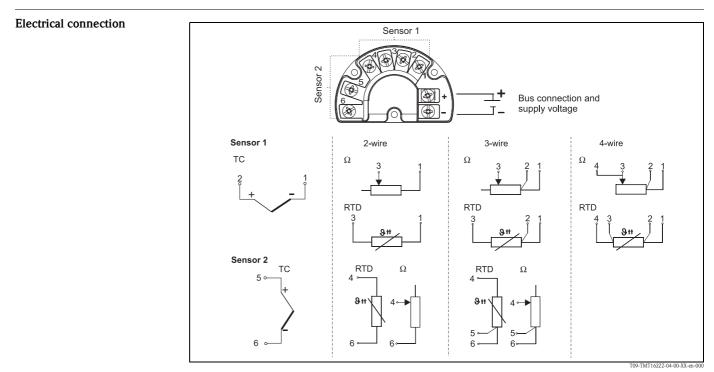
PROFIBUS [®] PA	
Profile version	3.02
Manufacturer-specific ID.:	1549 (Hex)
Device or bus address	 126 (default) The device or bus address is set either using the configuration software, e.g. FieldCare or with the DIP switches on the electronics compartment ■ 16.
GSD files	Sources of GSD files and device drivers: GSD file: www.endress.com (Download Software) Profile GSD file: www.profibus.com FieldCare/DTM: www.endress.com (Automation Fieldbus Fieldbus device integration) SIMATIC PDM: www.endress.com (Automation Fieldbus Fieldbus device integration) or www.fielddevices.com
Write lock	Write lock activated using hardware setting (DIP switch)
Cyclic data exchange	
Output data	Display value

PROFIBUS® PA		
Input data	Process temperature, internal reference temperature	
Short description of blocks		
Physical Block	The Physical Block contains all the data to uniquely identify and characterize the device. It corresponds to an electronic nameplate for the device. In addition to parameters required for operation of the device at the Fieldbus, the Physical Block provides information such as order code, device ID, hardware revision, software revision etc. The display settings are also made using the Physical Block.	
Transducer Block "Sensor 1" and "Sensor 2"	The field transmitter Transducer Blocks contain all the measuring and device-specific parameters relating to the measurement of the input variables.	
Analog Input (AI)	In the AI function block, the process variables from the Transducer Blocks are processed for the subsequent automation functions in the control system (e.g. scaling, limit value processing).	

Switch-on delay

HART®

4 s, during switch-on operation $I_a \le 4.0 \text{ mA}$


FOUNDATION FieldbusTM

8 s

PROFIBUS® PA

8 s

Power supply

Supply voltage

HART®

 $\mathrm{U_{b}}{=}$ 11 to 40 V (8 to 40 V without display), reverse polarity protection

The TMT162 device must be powered by an 11 to 40 VDC power supply according to NEC Class 02 (low voltage/low current) with restricted power limited to 8 A/150 VA in the event of a short circuit (in accordance with IEC 61010-1, CSA 1010.1-92).

FOUNDATION FieldbusTM

 U_b = 9 to 32 V, polarity-independent (reverse polarity protection for T17 housing), max. voltage $U_b = 35 V$ According to IEC 60079-27, FISCO/FNICO

PROFIBUS® PA

 U_{b} = 9 to 32 V, polarity-independent (reverse polarity protection for T17 housing), max. voltage $U_b = 35 V$ According to IEC 60079-27, FISCO/FNICO

Cable e	ntry
---------	------

Version	Туре
Thread	2x thread ½" NPT
	2x thread M20
	2x thread G ¹ / ₂ "
Cable entry	2x cable entry M20
Thread and fieldbus connector	2x thread ½" NPT 1x plug M12 PA
	2x thread M20x1.5 1x plug M12 PA
	2x thread M20x1.5 1x plug 7/8" PA
	2x thread ½" NPT 1x plug 7/8" FF
	2x thread M20x1.5 1x plug 7/8" FF

Residual ripple (HART®)

Perm. residual ripple $U_{ss}~\leq 3~V$ at $U_{b}~~13.5~V,~f_{max.}=1~kHz$

Performance characteristics

Calibration temperature: $+25 \degree C \pm 5 \text{ K} (77 \degree F \pm 9 \degree F)$

Response time Measured value update < 1 s per channel, depending on the type of sensor and connection method

Reference operating conditions

Maximum measured error

The accuracy data are typical values and correspond to a standard deviation of $\pm 3\sigma$ (normal distribution), i.e. 99.8% of all the measured values achieve the given values or better values.

	D 1 1	Accuracy	
	Designation	Digital	D/A ¹⁾
Resistance thermometer (RTD)	Cu100, Pt100, Ni100, Ni120 Pt500 Cu50, Pt50, Pt1000, Ni1000 Cu10, Pt200	0.1 °C (0.18 °F) 0.3 °C (0.54 °F) 0.2 °C (0.36 °F) 1 °C (1.8 °F)	0.02% 0.02% 0.02% 0.02%
Thermocouples (TC)	K, J, T, E, L, U N, C, D S, B, R	typ. 0.25 °C (0.45 °F) typ. 0.5 °C (0.9 °F) typ. 1.0 °C (1.8 °F)	0.02% 0.02% 0.02%
	Maaauring range	Accuracy	
	Measuring range	Digital	D/A ¹
Resistance transmitter (Ω)	10 to 400 Ω 10 to 2000 Ω	$\begin{array}{c} \pm \ 0.04 \ \Omega \\ \pm \ 0.8 \ \Omega \end{array}$	0.02% 0.02%
Voltage transmitter (mV)	-20 to 100 mV	± 10 µV	0.02%

1) % relates to the set span. Accuracy = digital + D/A accuracy, for 4 to 20 mA output

Physical input range of the sensors		
10 to 400 Ω	Cu10, Cu50, Cu100, Polynom RTD, Pt50, Pt100, Ni100, Ni120	
10 to 2000 Ω	Pt200, Pt500, Pt1000, Ni1000	
-20 to 100 mV	Thermocouple type: C, D, E, J, K, L, N, U	
-5 to 30 mV	Thermocouple type: B, R, S, T	

Sensor transmitter matching

Resistance thermometers have high linearity. However, every sensor has an individual temperature resistance characteristic curve. This characteristic curve must be described as accurately as possible in order to achieve a high level of accuracy in the linearization of the measured values in the transmitter. The TMT162 allows you to utilize two methods:

Customer-specific linearization

Using PC configuration software or the HART[®] handheld, the device can be programmed with sensor-specific curve data. Once the sensor-specific data has been entered, the device utilizes this to generate a custom curve. Readwin[®] 2000 software supports by calculating sensor-specific curves.

Callendar - Van Dusen coefficients

The Callendar - Van Dusen equation is described as:

$$R_T = R_0 [1 + AT + BT^2 + C (T - 100)T^3]$$

where A, B and C are constants, commonly referred to as Callendar – Van Dusen coefficients. The precise values of A, B and C are derived from the calibration data and are specific to each RTD sensor.

The process involves programming the device with curve data for a specific RTD, instead of using the standard curve.

Sensor transmitter matching using any of the above methods substantially improves the temperature measurement accuracy of the entire system. This is as a result of the transmitter using the sensor's actual resistance vs. temperature curve data instead of the ideal curve data.

Repeatability	0.0015% of the physical	0.0015% of the physical input range (16 Bit). Resolution A/D conversion: 18 Bit		
Influence of supply voltage (HART [®])	$\leq \pm 0.005\%/V$ deviation from 24 V, related to the full scale value			
Long-term stability	\leq 0.1 °C/year (\leq 0.18 °F/year) or \leq 0.05%/year Data under reference conditions. % relates to the set span. The larger value applies.			
Influence of ambient temperature (temperature	Total temperature drift = input temperature drift + output temperature drift			
drift)	Effect on the accuracy when ambient temperature changes by 1 K (1.8 °F):			
	Input 10 to 400 Ω	typ. 0.001% of measured value, min. 1 m Ω		
	Input 10 to 2000 Ω	typ. 0.001% of measured value, min. 10 m Ω		
	Input -20 to 100 mV	typ. 0.001% of measured value, min. 0.2 μV		
	Input -5 to 30 mV	typ. 0.001% of measured value, min. 0.2 µV		
	Output 4 to 20 mA	typ. 0.001% of span		

Typical sensitivity of resistance ther	mometers:	
Pt: 0.00385 * R _{nominal} /K	Cu: 0.0043 * R _{nominal} /K	Ni: 0.00617 * R _{nominal} /K

Example Pt100: 0.00385 x 100 Ω/K = 0.385 Ω/K

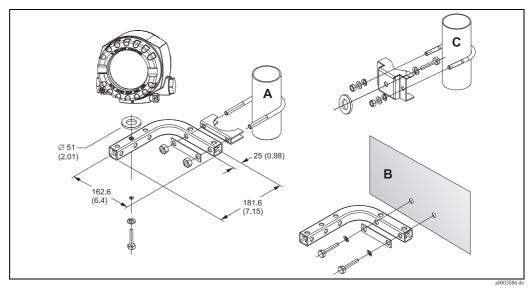
Typical sensitivity of thermocouples:					
B: 10 μV/K at		D: 20 µV/K at	E: 75 μV/K at 500 °C	J: 55 µV/K at	K: 40 μV/K at
1000 °C (1832 °F)		1000 °C (1832 °F)	(932 °F)	500 °C (932 °F)	500 °C (932 °F)
L: 55 µV/K at 500	N: 35 μV/K at 500	R: 12 µV/K at		T: 50 µV/K at	U: 60 µV/K at
°C (932 °F)	°C (932 °F)	1000 °C (1832 °F)		100 °C (212 °F)	500 °C (932 °F)

Example for calculating measured error for ambient temperature drift:

Input temperature drift = 10 K (18 °F), Pt100, measuring range 0 to 100 °C (32 to 212 °F) Maximum process temperature: 100 °C (212 °F) Measured resistance value: 138.5 Ω (IEC 60751) at maximum process temperature

Typical temperature drift in Ω : (0.001% of 138.5 $\Omega)$ * 10 = 0.01385 Ω Conversion to Kelvin: 0.01385 Ω / 0.385 Ω/K = 0.04 K (0.054 °F)

Influence of the reference junction (internal cold junction)


Pt100 DIN IEC 60751 Cl. B (internal cold junction with thermocouples TC)

Installation conditions

Installation instructions

Mounting location

Direct mounting on the thermometer assembly or indirect mounting using mounting bracket (see 'Accessories').

A, B: Mounting with combined wall/pipe mounting kit C: Mounting with pipe mounting kit 2" /V4A

Environment conditions

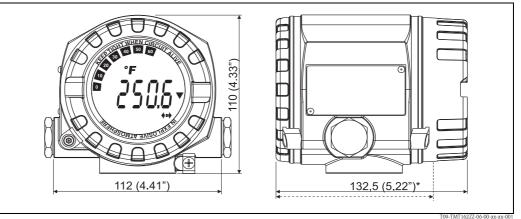
Ambient temperature limits	 Without display: -40 to +85 °C (-40 to +185 °F) With display: -40 to +80 °C (-40 to +176 °F) 		
	For use in Ex area, see Ex certificate		
	At temperatures < -20 °C (-4 °F), the display may react slowly. Readability of the display cannot be guaranteed at temperatures < -30 °C (-22 °F).		
Storage temperature	 Without display: -40 to +100 °C (-40 to +212 °F) With display: -40 to +80 °C (-40 to +176 °F) 		
Altitude	Up to 2000 m (6560 ft) above sea level according to IEC 61010-1, CSA 1010.1-92		
Climate class	As per IEC 60654-1, Class C		
Degree of protection	 Aluminum die-cast or stainless steel housing: IP67, NEMA 4X Stainless steel housing for hygienic applications (T17 housing): IP66/IP68 (1.83 m H₂O for 24 h), NEMA 4X, NEMA 6P 		
Shock and vibration resistance	3g / 2 to 150 Hz as per IEC 60 068-2-6		
	Care should be taken when using L-form brackets (see wall/tube 2" brackets in Section 'Accessories') since this can cause resonance. Caution: vibrations at the transmitter must not exceed the specified values.		

Electromagnetic compatibility (EMC)

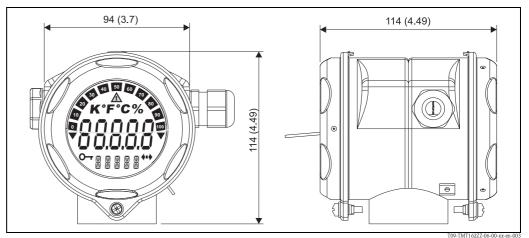
CE Electromagnetic Compatibility Compliance

EMC meets all relevant requirements listed under $EN\,\,61326$ Series and NAMUR NE21. Details as per declaration of conformity.

This recommendation is a uniform and practical way of determining whether the devices used in laboratories and process control are immune to interference with an objective to increase its functional safety.


ESD (Electrostatic discharge)	IEC 61000-4-2	6 kV cont., 8 kV air	
Electromagnetic fields	IEC 61000-4-3	0.08 to 2 GHz (0.08 to 4 GHz for FF/PA) 0.08 to 2 GHz for HART 2 to 2.7 GHz	10 V/m 10 V/m 30 V/m 1V/m
Burst (fast transient)	IEC 61000-4-4	1 kV (2 kV for HART)	
Surge	IEC 61000-4-5	1 kV asym. (0.5 kV sym. for HART)	
Conducted RF	IEC 61000-4-6	0.01 to 80 MHz	10 V

Condensation	Permitted
Measuring category	Measuring category II as per IEC 61010-1. The measuring category is provided for measurements at circuits with a direct electrical connection to the low voltage supply.
Pollution degree	Pollution degree 2 as per IEC 61010-1


Mechanical construction

Design, dimensions

Dimensions in mm (in)

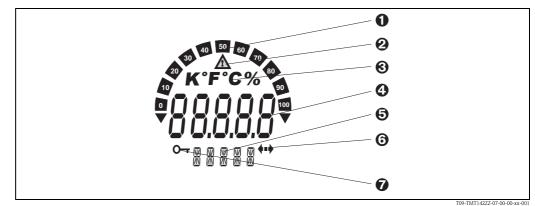
Die-cast aluminum housing for general purpose or, as option, stainless steel housing (316L) * Dimensions without display = 112 mm (4.41")

Optional T17 stainless steel housing for hygienic applications

- Separate electronics compartment and connection compartment
- Display pluggable in 90° stages

Weight

- Approx. 1.4 kg (3 lbs), with display, aluminum housing
- Approx. 4.2 kg (9.3 lbs), with display, stainless steel housing
- Approx. 1.25 kg (2.76 lbs), with display, T17 housing

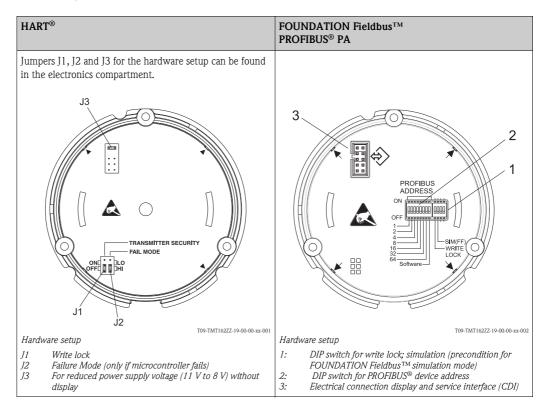

laterial	Housing	Nameplate
	Die-cast aluminum housing AlSi10Mg/AlSi12 with powder coating on polyester basis	Aluminum AlMgl, anodized in black
	Stainless steel 1.4435 (AISI 316L)	1.4404 (AISI 316L)
	Stainless steel 1.4435 (AISI 316L) for hygienic applications (T17 housing)	-

Terminals

 2.5 mm^2 (12 AWG) plus wire end ferrules

Human interface

Display elements


LC display of the field transmitter (illuminated, pluggable in 90°-stages)

1: Bar graph display in 10 % stages with indicators for overranging/underranging

- 2: 'Caution' display in 10 % stages with indicators for overlat.
 2: 'Caution' display
 3: Unit display K, °F, °C or %
 4: Measured value display height of digits 20.5 mm (0.81")
 5: Status and information display
- 6: 'Communication' display 7: 'Programming disabled' display

Operating elements

No operating elements are present directly on the display to prevent manipulation.

Remote operation

Remote operation via:

- HART[®] protocol
 FOUNDATION Fieldbus[™]
- PROFIBUS[®] PA

Certificates and approvals

CE-Mark

The device meets the legal requirements of the EC directives. Endress+Hauser confirms that the device has been successfully tested by applying the CE mark.

MTBF

ATEX

■ HART[®]: 147 a

■ FOUNDATION FieldbusTM / PROFIBUS[®] PA: 126 a

according to Siemens Standard SN29500

ATEX II1G Ex ia IIC T6/T5/T4	HART®	FOUNDATION Fieldbus TM / PROFIBUS [®] PA
Power supply (+ and – terminals)	$\begin{array}{l} U_i \leq 30 \text{ V DC} \\ I_i \leq 300 \text{ mA} \\ P_i \leq 1000 \text{ mW} \\ C_i \leq 5 \text{ nF} \\ I_i \approx 0 \end{array}$	$\begin{array}{lll} U_i \leq 17.5 \text{ V DC} & \text{or:} & U_i \leq 24 \text{ V DC} \\ I_i \leq 500 \text{ mA} & I_i \leq 250 \text{ mA} \\ P_i \leq 5.5 \text{ W} & P_i \leq 1.2 \text{ W} \\ C_i \leq 5 \text{ nF} & \\ I_i = 10 \ \mu\text{H} \\ \end{array}$ Suitable for connecting to a fieldbus system in accordance with the FISCO/FNICO model (valid for FOUNDATION Fieldbus^{TM} protocol)
ATEX II3G Ex nA II T6/T5/T4	HART®	FOUNDATION Fieldbus [™] / PROFIBUS [®] PA
Power supply (+ and - terminals)	$U \le 40 \text{ V DC}$	$U \le 32 \text{ V DC}$
Output	I = 4 to 20 mA	Current consumption $I \le 11 \text{ mA}$

ATEX II3G Ex nL IIC T6/T5/T4		HART®	FOUNDATION Fieldbus TM / PROFIBUS [®] PA
Power supply (+ and - terminals)		-	$ \begin{array}{l} U_i \leq 32 \; V \; DC \\ C_i \leq 5 \; nF \\ L_i = 10 \; \mu H \end{array} $
Temperature range	T6 T5	Ta = -40 °C to +55 °C Ta = -40 °C to +70 °C	
with display without display	T4 T4	Ta = -40 °C to +70 °C $Ta = -40 °C to +85 °C$	

ATEX II2D Ex tD A21 IP67 T110°C ATEX II2G Ex d IIC T6/T5/T4 Note! Not valid for T17 housing	HART®	FOUNDATION Fieldbus™ / PROFIBUS [®] PA
Power supply (+ and - terminals)	$\begin{array}{l} U \leq 40 \text{ V DC} \\ P \leq 3 \text{ W} \end{array}$	$U \le 35 V DC$ $P \le 3 W$
Temperature range for Ex d T6 T5 T4	$Ta = -40 \ ^{\circ}C \ to +55$ $Ta = -40 \ ^{\circ}C \ to +70$ $Ta = -40 \ ^{\circ}C \ to +80$	°C
Temperature range for dust	$Ta = -40 \ ^{\circ}C \ to \ +80$	°C

FM (Factory Mutual)

Intrinsic Safety; Non-Incendive

Mark:

- IS / I / 1 / ABCD / T4 Ta = 85 °C, Entity;
- NI / I / 2 / ABCD / T4 Ta = 85 °C;
- NI / I / 2 / ABCD / T4 Ta = 85 °C, NIFW;
- I / 0 / AEx ia IIC T4 Ta = 85 °C, Entity;

For Entity Parameters/Non-incendive Field Wiring parameters, refer to CSA approval under: Intrinsical Safety.

Explosion-proof¹⁾, Dust ignition-proof

Mark:

- XP / I / 1 / ABCD / T6 Ta = 55 °C; T5 Ta = 70 °C; T4 Ta = 85 °C
- DIP / II, III / 1 / EFG / T6 Ta = 55 °C; T5 Ta = 70 °C; T4 Ta = 85 °C
- XP / I / 1 / IIC T6

For connection data, see CSA approval under: Explosion-proof, Dust ignition-proof. Ta = 55 °C; T5 Ta = 70 °C; T4 Ta = 85 °C; Type 4X; IP66, IP67

CSA (Canadian Standard Association)

Explosion-proof¹⁾, Dust ignition-proof

Mark:

Class I, Zone 1, Ex d IIC: Class I, Div. 1, Groups A, B, C & D; Class II, Div. 1 Groups E, F & G; Class III

Connection data:

	HART®	FOUNDATION Fieldbus TM / PROFIBUS [®] PA
Power supply (+ and - terminals)	$U \le 40 \text{ V DC}$ $P \le 3 \text{ W}$	$U \le 35 \text{ V DC}$ $P \le 3 \text{ W}$
Output	I = 4 to 20 mA	Current consumption $I \le 11 \text{ mA}$
For temperature range, see ATEX II1G, II3G table		

Housing type 4X.

Intrinsical Safety Mark:

Ex ia IIC: Class I, Div. 1, Groups A, B, C & D; Class II, Div. 1, Groups E, F & G; Class III, Div. 1

¹⁾ not available for T17 housing

Connection data:

	HART®	FOUNDATION Fieldbus TM	/ / PROFIBUS [®] PA
Power supply (+ and - terminals)	Ui/Vmax = 30V DC Imax = 300 mA Pmax = 1 W Ci = 5.3 nF Li = 0 µH	Entity: Ui/Vmax = 24 V DC Imax = 250 mA Pmax = 1.2 W Ci = 5 nF $Li = 10 \mu H$	FISCO: Ui/Vmax = 17.5 V DC Imax = 500 mA Pmax = 5.5 W Ci = 5 nF Li = 10 µH

For temperature range, see ATEX II1G, II3G table.

Non-Incendive

Mark:

Ex nA IIC: Class I, Div. 2, Groups A, B, C & D; Class II, Div. 2, Groups E, F, G; Class III, Div. 2

	HART®	FOUNDATION Fieldbus TM / PROFIBUS [®] PA
Power supply (+ and - terminals)	Ui/Vmax = 30 V DC Ci = 5.3 nF Li = 0 µH	$Ui/Vmax \le 35 V DC$ Ci = 5 nF Li = 10 μ H
Output	I = 4 to 20 mA	Current consumption I \leq 11 mA

For further details on the available Ex versions (ATEX, CSA, FM, etc.), please contact your nearest Endress+Hauser sales organization. All relevant data for hazardous areas can be found in separate Ex documentation. If required, please request copies.

GL	Ship building approval – Germanischer Lloyd (HART $^{\ensuremath{\text{\$}}}$ device only)		
Other standards and guidelines	 IEC 60529: Degree of protection by housing (IP-Code) IEC 61010-1: Safety requirements for electrical measurement, control and laboratory instrumentation. EN 61326-series: Electrical equipment for measurement, control and laboratory use - EMC requirements. NAMUR: User association of automation technology in process industries (www.namur.de) NEMA: Standardization association for the electrical industry in North America. 		
UL	Recognized component to UL 3111-1 (HART [®] device only)		
CSA GP	CSA General Purpose		
Functional safety according to IEC 61508/ IEC 61511	FMEDA including SFF determination and PFD_{AVG} -calculation according to IEC 61508. See also Functional Safety Manual in Section 'Documentation' (for HART [®] device).		
Certification FOUNDATION Fieldbus™	The temperature transmitter is certified and registered by the Fieldbus Foundation. The device meets all the requirements of the following specifications:		
	 Certified according to FOUNDATION Fieldbus[™] specification FOUNDATION Fieldbus[™] H1 Interoperability Test Kit (ITK), revision status 5.2.0 (device certification no. operated with certified devices of other manufacturers Physical Layer Conformance Test of Fieldbus FOUNDATION[™] (FF-830 FS 1.0) 		
Certification PROFIBUS [®] PA	The temperature transmitter is certified and registered by the PNO (PROFIBUS [®] Nutzerorganisation e. V.), PROFIBUS user organization. The device meets all the requirements of the following specifications:		
	 Certified in accordance with PROFIBUS[®] PA Profile 3.02 The device can also be operated with certified devices of other manufacturers (interoperability) 		

Ordering information

- Detailed ordering information is available from the following sources:
- In the **Product Configurator** on the Endress+Hauser website:
- www.endress.com \rightarrow Select country \rightarrow Instruments \rightarrow Select device \rightarrow Product page function: Configure this product
- From your Endress+Hauser Sales Center: www.endress.com/worldwide

Product Configurator - the tool for individual product configuration:

- Up-to-the-minute configuration data
- Depending on the device: Direct input of measuring point-specific information such as measuring range or operating language
- Automatic verification of exclusion criteria
- Automatic creation of the order code and its breakdown in PDF or Excel output format
- Ability to order directly in the Endress+Hauser Online Shop

Accessories

Accessories included in the scope of delivery:

- Hard copy of multilingual Brief Operating Instructions
- Operating Instructions on CD-ROM
- Additional ATEX documentation:
 - ATEX Safety Instructions (XA), Control Drawings (CD)
- 1 set of lead-sealable screws in stainless steel housing for hygiene applications (T17 housing)

Device-specific accessories	Туре	Description		Order code
	Blanks (blind)	 M20x1,5 EEx-d/XP G ½" EEx-d/XP NPT ½" Aluminum NPT ½" V4A 		51004489 51004916 51004490 51006888
	Cable glands	 M20x1.5 cable entry for 	1 sensor	51004949
		 NPT ¹/₂" cable gland 2 x ¹/₂ M20x1.5 cable gland 2 x 		51004654 51004653
	Adapter	M20x1.5/NPT ¹ /2" cable en	try	51004387
	Wall and stand pipe mounting brackets	 Stainless steel wall/tube Stainless steel tube 2" V4 	=	51004823 51006412
	Fieldbus connector (FF)	Threaded connection NPT ½" M20 	Cable connecting thread 7/8" 7/8"	71005803 71005804
	Fieldbus connector (PA)	 M20x1.5 NPT ¹/₂" M20x1.5 	 M12 M12 7/8" 	71090687 71005802 71089147
	Surge arrester HAW569	Order code: HAW569-A11, Order code: HAW569-B11,	ion; suitable for HART [®] , FF and PA fiel A for Non-hazardous area A for hazardous area ATEX 2(1)G EEx i cchnical Information: T11013K/09)	

System components and Recorders	Accessory	Description
	Graphic Data Manager Memograph M	The Memograph M graphic data manager provides information on all the relevant process variables. Measured values are recorded correctly, limit values are monitored and measuring points analyzed. The data are stored in the 256 MB internal memory and also on a SD card or USB stick. For details, see "Technical Information" TI133R/09

Accessory	Description	
Multi channel recorder Ecograph T	Multi-channel data recording system with LC color grafic display (120 mm / 4.7" screen size), galvanically isolated universal inputs (U, I, TC, RTD), digital input, transmitter power supply, limit relay, communication interfaces (USB, Ethernet, RS232/485), internal Flash memory and CompactFlash card. For details, see "Technical Information" TI115R/09	
RN221N	Active barrier with power supply for safe separation of 4-20 mA standard signal circuits. Offers bidirectional HART transmission. For details, see "Technical Information" TI073R/09	
RNS221	Supply unit for powering two 2-wire measuring devices solely in the non-Ex area. Bidi- rectional communication is possible via the HART communication jacks. For details, see "Technical Information" TI081R/09	
RB223	One or two-channel, loop-powered barrier for the safe separation of 4 to 20 mA standa signal circuits. Bidirectional communication is possible via the HART communication jacks. For details, see "Technical Information" TI132R/09	
RIA14, RIA16	Loop powered field indicator for 4 to 20 mA current loops, RIA14 with explosion proof enclosure. For details, see "Technical Informations" TI143R/09 and TI144R/09	
RIA15	Process display, digital loop powered display for 4 to 20 mA current loops. For details, see "Technical Information" TI1040K/09	

Documentation

- 'iTEMP[®] TMT162 HART' Operating manual (BA132R/09/) + Functional safety manual (SD005R/09/en)
 'iTEMP[®] TMT162 HART' Brief operating instructions (KA250R/09)
- 'iTEMP[®] TMT162 FOUNDATION Fieldbus[™]' Operating manual (BA224R/09/en)
 'iTEMP[®] TMT162 FOUNDATION Fieldbus[™]' Brief operating instructions (KA189R/09)
- 'iTEMP[®] TMT162 PROFIBUS[®] PA' Operating manual (BA275R/09/en)
 'iTEMP[®] TMT162 PROFIBUS[®] PA' Brief operating instructions (KA276R/09)
- Ex supplementary documentation (HART[®]): ATEX II2(1)G: XA020R/09/a3 ATEX II2G, EEx d: XA031R/09/a3 ATEX II2D: XA032R/09/a3 ATEX II1G: XA033R/09/a3 ATEX II1/2GD: XA065R/09/a3
- Ex supplementary documentation (FOUNDATION Fieldbus[™] / PROFIBUS[®] PA): ATEX II2G, EEx d: XA058R/09/a3 ATEX II1/2D: XA059R/09/a3 ATEX II1G: XA060R/09/a3 ATEX EEx ia + EEx d: XA061R/09/a3 ATEX II1/2GD: XA067R/09/a3
- Technical Informations Omnigrad S TMT162R and TMT162C (TI266T/02/en and TI267T/02/en)

Instruments International

Endress+Hauser Instruments International AG Kaegenstrasse 2 4153 Reinach Switzerland

Tel.+41 61 715 81 00 Fax+41 61 715 25 00 www.endress.com info@ii.endress.com

