PRK 3B Retro-reflective photoelectric sensors with polarization filter for bottles

- Polarized retro-reflective photoelectric sensor, autocollimation optics with visible red light
- Particularly suited for highly transparent bottles (PET and glass)
- Small and compact construction with robust plastic housing, protection class IP 67 for industrial application
- Push-pull output with light/dark switching via teach-in button
- High switching frequency for detection of fast events
- Easy adjustment via lockable teach button or teach input

Dimensioned drawing

A Green indicator diode
B Yellow indicator diode
C Optical axis
D Teach button
E Mounting sleeve

Electrical connection

Specifications

Optical data

Typ. operating range limit $(\operatorname{TK}(\mathrm{S}) 100 \times 100)^{1)} 0 \ldots 3.5 \mathrm{~m}$
Operating range ${ }^{2)}$
Light source ${ }^{3)}$
Wavelength

Timing

Switching frequency
Response time
Delay before start-up

Electrical data

Operating voltage $U_{B}{ }^{4)}$

Residual ripple
Open-circuit current
Switching output 5)
.../6.42
.../6D. 42
.../6.42...-S8. 3

Function characteristics
Signal voltage high/low
Output current
Operating range

Indicators

Green LED
Yellow LED

Mechanical data

Housing ${ }^{6}$
Optics cover
Weight

Connection type

Environmental data

Ambient temp. (operation/storage)
Protective circuit ${ }^{7}$
VDE safety class
Protection class
Light source
Standards applied
Certifications

Options

Teach-in input/activation input
Transmitter active/not active
Activation/disable delay
Input resistance
see tables
see tables
$1,000 \mathrm{~Hz}$
0.5 ms
$\leq 300 \mathrm{~ms}$
$\leq 15 \%$ of U_{B}
$\leq 18 \mathrm{~mA}$
$\geq\left(\mathrm{U}_{\mathrm{B}}-2 \mathrm{~V}\right) / \leq 2 \mathrm{~V}$
max. 100 mA

ready

light path free plastic (PMMA)

2, 3
III
IP 67
IEC 60947-5-2
UL $508{ }^{4)}$

LED (modulated light)
620 nm (visible red light, polarized)
$10 \ldots 30 \mathrm{VDC}$ (incl. residual ripple)

1 push-pull switching output
pin 4: PNP light switching, NPN dark switching pin 2: teach input
1 push-pull switching output
pin 4: PNP dark switching, NPN light switching pin 2: teach input
1 push-pull switching output
pin 4: PNP light switching, NPN dark switching
1 PNP switching output, dark switching,
pin 2: teach input
light/dark reversible
setting via teach-in
plastic (PC-ABS); 1 attachment sleeve, nickel-plated steel
with connector: 10 g
with 200 mm cable and connector: 20 g
with 2 m cable: 50 g
2 m or 5 m cable (cross section $4 \times 0.20 \mathrm{~mm}^{2}$),
connector M8 metal,
0.2 m cable with connector M8 or M12
$-30^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C} /-30^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
fee group (in acc. with EN 62471)

1) Typ. operating range limit: max. attainable range without performance reserve
2) Operating range: recommended range with performance reserve
3) Average life expectancy $100,000 \mathrm{~h}$ at an ambient temperature of $25^{\circ} \mathrm{C}$
4) For UL applications: for use in class 2 circuits according to NEC only
5) The push-pull switching outputs must not be connected in parallel
6) Patent Pending Publ. No. US $7,476,848$ B2
7) 2=polarity reversal protection, $3=$ short circuit protection for all transistor outputs

Remarks

- The light spot may not exceed the reflector.
- Preferably use MTK(S) or tape 6.
- For foil 6 , the sensor's side edge must be aligned parallel to the side edge of the reflective tape.
- Adapter plate:

BT 3.2 (part no. 50103844) for alternate mounting on 25.4 mm hole spacing (Omron E3Z, Sick W100...)

Tables

Reflectors			Operating range	
1	TK(S)	100×100	$0 \ldots 3.0$	
2	TK	40×60	$0 \ldots 2.0$	
3	MTKS	50×50.1	0... 1.3	
4	Tape 6	50×50	0... 1.2	
5	TK	20×40	0...1.0	
1	0		3	3.6
2	0	2.0	2.4	
3	0	1.3		
4	0	1.2		
5	0	1.0 1.2		

[^0]
Diagrams

A TKS 40×60
B TKS 20×40
C Tape 4: 50×50

Remarks

Mounting system:

$$
\begin{aligned}
& \text { (1) }=\mathrm{BT} 3 \\
& \text { (part no. 50060511) } \\
& \text { (2) }+ \text { (3) } \\
& \text { BT } 3.1^{1)} \\
& \text { (part no. 50105585) } \\
& \text { (1)+(2)+(3) }=\text { BT 3B } \\
& \text { (part no. 50105546) }
\end{aligned}
$$

1) Packaging unit: $P U=10$ pcs.

PRK 3B Retro-reflective photoelectric sensors with polarization filter for bottles

Order guide

Selection tableEquipment \downarrow		Order code \rightarrow						
Switching output	$1 \times$ push-pull switching output		\bullet	-	\bullet	-	-	\bullet
Switching function	light switching		-	-			-	\bullet
	dark switching				\bullet	-		
	light/dark switching configurable		\bullet	-	\bullet	-	-	\bullet
Connection	M8 connector, metal, 4-pin		\bullet		\bullet			
	M8 connector, metal, 3-pin							
	cable 200 mm with M12 connector, 4-pin			-		-		
	2000mm cable, 4-wire						-	
	cable 5000 mm , 4-wire							\bullet
Configuration	teach-in via button (lockable) and teach input 1)		\bullet	-	\bullet	-	-	\bullet
Indicators	green LED: ready + teach sequence		\bullet	-	\bullet	-	-	\bullet
	yellow LED: switching output		\bullet	-	\bullet	-	-	\bullet
Detection	foils $<20 \mu \mathrm{~m}$ thick							
	foils $>20 \mu \mathrm{~m}$ thick		\bullet	-	\bullet	-	-	\bullet
	bottles (PET and glass)		\bullet	-	\bullet	-	-	\bullet

1) Teach input not present with 3-pin connector

- Approved purpose:

This product may only be used by qualified personnel and must only be used for the approved purpose. This sensor is not a safety sensor and is not to be used for the protection of persons.

Sensor adjustment (teach) via teach button

- The sensor is factory-adjusted for maximum operating range.

Recommendation: teach only if the desired objects are not reliably detected.

- Prior to teaching:

Clear the light path to the reflector!
The device setting is stored in a fail-safe way. A reconfiguration following voltage interruption or switch-off is thus not required.

Teach for 11% sensor sensitivity (highly transparent bottles and foils with thickness >20 $\mathbf{~ m}$)

- Press teach button until both LEDs flash simultaneously.
- Release teach button.
- Ready.

After the teaching, the sensor switches when about 11% of the light beam are covered by the object.

simultaneously
flashing at
3 Hz

Teach for 18\% sensor sensitivity (standard bottles)

- Press teach button until both LEDs flash alternatingly.
- Release teach button.
- Ready.

After the teaching, the sensor switches when about 18% of the light beam are covered by the object.

Teaching for maximum operating range (factory setting at delivery)

- Prior to teaching:

Cover the light path to the reflector!

- Press teach button until both LEDs flash simultaneously.
- Release teach button.
- Ready.

Adjusting the switching behavior of the switching output - light/dark switching

- Press teach button until the green LED flashes. The yellow LED displays the current setting of the switching output:
ON $\quad=$ output switches on light
OFF $\quad=$ output switches on dark
- Continue to press the teach button in order to change the switching behavior.
- Release teach button.
- Ready.

PRK 3B Retro-reflective photoelectric sensors with polarization filter for bottles

Locking the teach button via the teach input

A static HIGH signal ($\geq 4 \mathrm{~ms}$) at the teach
 input locks the teach button on the device if required, such that no manual operation is possible (e.g., protection from erroneous operation or manipulation).
If the teach input is not connected or if there is a static low signal, the button is unlocked and can be operated freely.

Sensor adjustment (teach) via teach input

The following description applies to PNP switching logic!
$\mathbf{U}_{\text {Teach low }} \leq \mathbf{2 V}$
$\mathrm{U}_{\text {Teach high }} \geq\left(\mathrm{U}_{\mathrm{B}} \mathbf{- 2 V}\right)$
Prior to teaching: Clear the light path to the reflector!
The device setting is stored in a fail-safe way. A reconfiguration following voltage interruption or switch-off is thus not required.

Teach for 11% sensor sensitivity

(highly transparent bottles and foils with thickness > 20 $\mu \mathrm{m}$)

Quick teach for 11% sensor sensitivity
(highly transparent bottles and foils with thickness $>\mathbf{2 0} \mu \mathrm{m}$)

After the teaching, the sensor switches when about 11% of the light beam are covered by the object.

[^0]: Operating range [m] Typ. operating range limit [m]

 TK... = adhesive
 TKS ... = screw type

