PRK 328
Retro-reflective photoelectric sensors for semi-transparent media

- Polarized retro-reflective photoelectric sensor using visible red light
- Easy adjustment via teach button
- Axial and 90° light beam gate for flexible integration
- Active suppression of extraneous light A^{2} LS
- Fast alignment through brightVision ${ }^{\circledR}$
- Simple fine adjustment via omni-mount
- Sturdy plastic housing with stainless steel threaded sleeve with cylindrical M18x1 design
- Complementary outputs for light/dark switching

Dimensioned drawing

A Optical axes
B Indicator diode
C Teach button

Electrical connection

Specifications

Optical data

Typ. op. range limit (TK(S) $100 \times 100)^{11}$
Operating range ${ }^{2)}$
Light source
Wavelength

Timing

Switching frequency
 Response time

Delay before start-up

Electrical data

Operating voltage $\mathrm{U}_{\mathrm{B}}{ }^{3}$)
Residual ripple
Open-circuit current
Switching output
500 Hz
1 ms
$\leq 300 \mathrm{~ms}$

Signal voltage high/low
Output current

Indicators

Green LED
Yellow LED
Yellow LED, flashing

Mechanical data

Housing
Optics cover
Weight
Connection type

Environmental data

Ambient temp. (operation/storage)
Protective circuit 5)
VDE safety class
Protection class
Light source
Standards applied
Certifications
$\underset{\leq 300 \mathrm{~ms}}{1}$
10 ... 30VDC
$\leq 15 \%$ of U_{B}
$\leq 20 \mathrm{~mA}$
.../4P... 2 PNP transistor outputs
$\begin{array}{ll}\text {.../2N... } & \text { pin 2: PNP dark switching } \\ 2 \text { NPN transistor outputs }\end{array}$
axial optics: 0.02 ... $6.0 \mathrm{~m} 90^{\circ}$ optics 0.02 ... 5.0 m see tables
LED (modulated light)
620 nm (visible red light, polarized)
500 Hz

$$
2 \text { ir puarsicit vapato }
$$

pin 2: NPN dark switching, pin 4: NPN light switching
$\geq\left(\mathrm{U}_{\mathrm{B}}-2.5 \mathrm{~V}\right) / \leq 2.5 \mathrm{~V}$
max. $100 \mathrm{~mA}{ }^{4}$

ready

light path free
light path free, no performance reserve
plastic with stainless steel threaded sleeve
plastic
30 g with M12 connector
80 g with 2 m cable
M12 connector, 4-pin
cable $2 \mathrm{~m}, 4 \times 0.20 \mathrm{~mm}^{2}$
$-40^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C} /-40^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
2, 3
III
IP 67
exempt group (in acc. with EN 62471)
IEC 60947-5-2
UL 508, C22.2 No.14-13 3) 6)

1) Typ. operating range limit: max. attainable range without performance reserve
2) Operating range: recommended range with performance reserve
3) For UL applications: for use in class 2 circuits according to NEC only
4) Sum of the output currents for both outputs, 50 mA when ambient temperatures $>40^{\circ} \mathrm{C}$
5) $2=$ polarity reversal protection, $3=$ short circuit protection for all outputs
6) These proximity switches shall be used with UL Listed Cable assemblies rated 30V, 0.5A min, in the field installation, or equivalent (categories: CYJV/CYJV7 or PVVA/PVVA7)

Remarks

Operate in accordance with intended use!

${ }^{n}$ This product is not a safety sensor and is not intended as personnel protection.
${ }^{\wedge}$ The product may only be put into operation by competent persons.
$\stackrel{\leftrightarrow}{\mapsto}$ Only use the product in accordance with the intended use.

Tables
Axial optics:

Reflectors			Operating range
1	TK(S)	100×100	$0.02 \ldots 4.5 \mathrm{~m}$
2	TKS	40×60	$0.02 \ldots 3.0 \mathrm{~m}$
3	TKS	82.2	$0.05 \ldots 3.6 \mathrm{~m}$
4	TKS	30×50	$0.03 \ldots 1.9 \mathrm{~m}$
5	TKS	20×40	$0.04 \ldots 1.6 \mathrm{~m}$
6	Tape 4	50×50	$0.08 \ldots 1.4 \mathrm{~m}$

1	0.02		4.5	6.0
2	0.02	3.0 4.0		
3	0.05	3.6	4.5	
4	0.03	1.9	2.5	
5	0.04	1.6	2.2	
6	0.08	1.4	2.0	
90 ${ }^{\circ}$ optics:				
Reflectors			Operating range	
1	TK(S)	100×100	$0.02 \ldots 4.0 \mathrm{~m}$	
2	TKS	40×60	0.02 ... 2.6m	
3	TKS	82.2	0.05 .. 3.3m	
4	TKS	30x50	0.05... 1.6m	
5	TKS	20x40	$0.04 \ldots 1.5 \mathrm{~m}$	
6	Tape 4	50x50	$0.10 \ldots 1.3 \mathrm{~m}$	

Operating range [m]
Typ. operating range limit [m]

Diagrams

> Typ. response behavior (TK 100x100)

Typ. performance reserve (axial model)

A TKS 100×100
B TKS 40×60
C TKS 20×40

PRK 328
Retro-reflective photoelectric sensors for semi-transparent media

Order guide

The sensors listed here are preferred types; current information at www.leuze.com.

		Designation	Part no.
Sensors with axial optics			
With M12 connector	Pin 4: PNP light switching, pin 2: PNP dark switching	PRK328.3/4P-M12	50122695
	Pin 4: NPN light switching, pin 2: NPN dark switching	PRK328.3/2N-M12	50122697
With cable, 2m	Pin 4: PNP light switching, pin 2: PNP dark switching	PRK328.3/4P	50122696
	Pin 4: NPN light switching, pin 2: NPN dark switching	PRK328.3/2N	50122698
Sensors with 90° angular optics			
With M12 connector	Pin 4: PNP light switching, pin 2: PNP dark switching	PRK328.W3/4P-M12	50122689
	Pin 4: NPN light switching, pin 2: NPN dark switching	PRK328.W3/2N-M12	50122691
With cable, 2m	Pin 4: PNP light switching, pin 2: PNP dark switching	PRK328.W3/4P	50122690
	Pin 4: NPN light switching, pin 2: NPN dark switching	PRK328.W3/2N	50122694
Accessories for optimum fastening			
Mounting system omni-mount		BT318B-0M	50121904
Mounting bracket for standard mounting		BT D18M. 5	50113548
Mounting bracket for omni-mount		BT D21M	50117257

Part number code

	\mathbf{P} \mathbf{R}	K		2	8	W	3	/	4	P	-	M	1
Operating principle													
PRK Polarized retro-reflective photoelectric sensor													
Series													
328 328 Series													
Optics design													
. 3 Axial optics, Teach-in via teach button													
.W3 90° angular optics, Teach-in via teach button													
Switching output/function /OUT10UT2 (0UT1 = Pin 4, OUT2 = Pin 2)													
$4 \quad$ PNP transistor output, light switching													
\mathbf{P} PNP transistor output, dark switching													
2 NPN transistor output, light switching													
\mathbf{N} NPN transistor output, dark switching													
\mathbf{X} Pin not used													
Combinations of functions are possible via two-digit code!													
Electrical connection													
N/A Cable, standard length 2000 mm													
-M12 M12 connector													

Sensor adjustment (teach) via teach button

- The sensor is factory-adjusted for maximum operating range.
 Recommendation: teach only if the desired objects are not reliably detected.
- Prior to teaching:

Clear the light path to the reflector!
The device setting is stored in a fail-safe way. A reconfiguration following voltage interruption or switch-off is thus not required.

Standard teaching for average sensor sensitivity

- Press teach button until the yellow LED flashes.
- Release teach button.
- Ready.

After the standard teaching, the sensor switches when half of the light beam is covered by the object.

Teaching for increased sensor sensitivity

- Press teach button until green and yellow LEDs flash alternately.
- Release teach button.
- Ready.

After the teaching for increased sensor sensitivity, the sensor switches when about 25% of the light beam are covered by the object.
 flashes yellow and green alternately with 3 Hz

Teaching for maximum operating range (factory setting at delivery)

- Prior to teaching:

Cover the light path to the reflector!

- Procedure as for standard teaching.

Adjusting the switching behavior of the switching output - light/dark switching

This function permits inversion of the sensors' switching logic.

- Press teach button until the green LED flashes.
- Release teach button.
- The LED then displays the changed switching logic for 2s:
YELLOW = switching outputs light switching Continuous light (in the case of complementary sensors, Q1 (pin 4) light switching, Q2 (pin 2) dark switching), this means output active when object is detected.
GREEN = switching outputs dark switching Flashing light (in the case of complementary sensors, Q1 (pin 4) dark switching, Q2 (pin 2) light switching), this means output inactive when object is detected.

[^0]

[^0]: - Ready.

