KRTM 3B

We reserve the right to make changes • DS_KRTM3B_en_50110625_04.fm

Dimensioned drawing

A Green indicator diode
B Yellow indicator diode
C Light spot orientation horizontal
D Light spot orientation vertical
E Transmitter
F Receiver
G Optical axis
H Teach button
Mounting sleeve

Electrical connection

Plug connection, 4-pin

Specifications

Optical data

Scanning range ${ }^{1)}$
Light spot dimensions
in RUN-Mode in Teach-Mode
Light spot orientation
Light source ${ }^{2)}$
Wavelength

Sensor operating modes

IO-Link
SIO
Dual Core
Timing of the sensor
Internal switching frequency
Internal response time
Response jitter, internal
Repeatability ${ }^{3}$)
Delay before start-up
Conveyor speed during teach
Teach process
Teach delay

Timing of the outputs

Response time
pin $4 \quad$ IO-Link COM2: acc. to IO-Link specification (typically 2.5 ms)

Electrical data

$14.5 \mathrm{~mm} \pm 2 \mathrm{~mm}$
$1.5 \mathrm{~mm} \times 4 \mathrm{~mm}$ (at a distance of 14.5 mm)
$1.5 \mathrm{~mm} \times 6.5 \mathrm{~mm}$ (at a distance of 14.5 mm) vertical or horizontal (see dimensioned drawing)
LEDs (red, green, blue)
$640 \mathrm{~nm}, 525 \mathrm{~nm}, 470 \mathrm{~nm}$

COM2 (38.4kBaud)
standard push-pull
no
10 kHz
$50 \mu \mathrm{~s}$
$20 \mu \mathrm{~s}$
0.02 mm
$\leq 300 \mathrm{~ms}$
$\leq 0.1 \mathrm{~m} / \mathrm{s}$ for a mark width of 1 mm
static 1-point, static 2-point or dynamic 2-point $\leq 10 \mathrm{~ms}$

Operating voltage $U_{B}{ }^{4}$)
Residual ripple
Output/function
with SIO $10 \ldots 30 \mathrm{VDC}$ (incl. residual ripple)
with COM2 $18 \ldots 30 \mathrm{VDC}$ (incl. residual ripple) $\leq 15 \%$ of U_{B}
$\ldots / 2 \ldots$ pin 4: GND if mark detected
$\ldots / 4 \ldots$ pin 4: U_{B} if mark detected
.../6.0001... pin 4 without IO-Link:
.../6.1121...
Signal voltage high/low
Output current
Open-circuit current

Indicators

Green LED in continuous light
Green and yellow LED flashing at 3 Hz
Green and yellow LED flashing at 8 Hz
Green LED off and yellow LED flashing at 8 Hz
Yellow LED in continuous light
Transmitter LEDs flashing at 8 Hz

Mechanical data

Housing
Optics cover
Weight
Connection type

Environmental data

Ambient temp. (operation/storage)
Protective circuit ${ }^{5}$
VDE safety class
Protection class
Light source
Standards applied
Certifications

Options

Input pin 2
Function characteristics
Input active/not active
Output pin 4
Line teach active
Error after line teach pin 4: IO-Link SIO mode, U_{B} if mark detected pin 4: IO-Link COM2 mode, see configuration file IODD
$\geq\left(U_{B}-2 \mathrm{~V}\right) / \leq 2 \mathrm{~V}$
max. 100 mA
$\leq 25 \mathrm{~mA}$
ready
teach event active
teaching error
mark detected (dependent on the teach sequence)
teaching error
plastic (PC-ABS), with nickel-plated mounting sleeve
plastic (PMMA)
10 g
M8 connector, metal
$-30^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C} /-30^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
2, 3
III
IP 67
free group (in acc. with EN 62471)
IEC 60947-5-2
UL 508, C22.2 No.14-13 4) 6)
keyboard lockout / line teach / pulse stretching
$\geq 8 \mathrm{~V} / \leq 2 \mathrm{~V}$ or not connected
for $\mathrm{SIO} \quad 2 \mathrm{~Hz}$ at the switching output
for COM2 see configuration file IODD
for SIO 2 Hz at the switching output

PNP: U_{B} if mark is detected, NPN: GND if mark is detected for COM2 see configuration file IODD

Tables

Remarks

Operate in accordance with

 intended use!${ }^{4}$ This product is not a safety sensor and is not intended as personnel protection.
${ }^{4}$ The product may only be put into operation by competent persons.
${ }^{4}$ Only use the product in accordance with the intended use.

- With glossy objects, the sensor is to be fastened at an inclination of approx. 10° relative to the object surface.

C

1) Scanning range: recommended range with performance reserve
2) Average life expectancy $100,000 \mathrm{~h}$ at an ambient temperature of $25^{\circ} \mathrm{C}$
3) At conveyor speed $1 \mathrm{~m} / \mathrm{s}$
4) For UL applications: for use in class 2 circuits according to NEC only
5) 2=polarity reversal protection, 3=short-circuit protection for all transistor outputs
6) These proximity switches shall be used with UL Listed Cable assemblies rated 30V, 0.5 A min, in the field installation, or equivalent (categories: CYJV/CYJV7 or PVVA/PVVA7)

KRTM 3B

Order guide

IO-Link process data

The sensor transmits 2 bytes to the master.

Additional information on the IO-Link service data is available on request.

Static 2-point teach

Suitable for manual positioning of the marks (availability dependent on sensor type).

Switching threshold in center:

Switching threshold near the mark:

KRTM 3B

Dynamic 2-point teach

Suitable for marks moved during automated machine processes (availability dependent on sensor type).
Switching threshold in center

Switching threshold near the mark

Static 1-point teach

Suitable for detecting all marks outside of the reference value (dependent on available sensor type).
Standard sensitivity

High sensitivity

Alternating
flashing

Switching threshold diagrams

Static 2-point teach

Dynamic 2-point teach

Receive signal

Switching threshold in center
Switching threshold near the mark
Switching output for switching threshold in center \qquad

Switching output for switching threshold near the mark \qquad

Static 1-point teach

Pulse stretching option

Switching pulse stretching on or off:

"EasyTune" option - fine tuning of the switching threshold

Following power-on and completed teach event:

Increasing the switching threshold:

Green LED illuminates continuously (ready) Yellow LED on/off continuously (mark detected/not detected)

Reducing the switching threshold:

If the upper or lower end of the adjustment range is reached, the green and yellow LEDs flash at a considerably higher frequency of 8 Hz for the duration of one second.

Sensor adjustments via the input IN (Pin 2)

Signal level HIGH $\geq\left(U_{B}-2 V\right)$
With the NPN models, the signal levels are inverted!

Switching threshold in center / standard sensitivity

Switching threshold near the mark / high sensitivity

Pulse stretching ON

Pulse stretching OFF

Locking the teach button via the input IN (Pin 2)

A static HIGH signal ($\geq 20 \mathrm{~ms}$) at the teach input locks the teach button on the sensor if required, such that no manual operation is possible (e.g., protection from erroneous operation or manipulation).
If the teach input is not connected or if there is a static low signal, the button is unlocked and can be operated freely.

