NZM-XMC Mess- und Kommunikationsmodul

Alle Marken- und Produktnamen sind Warenzeichen oder eingetragene Warenzeichen der jeweiligen Titelhalter.

Störfallservice

Bitte rufen Sie Ihre lokale Vertretung an: http://www.eaton.eu/aftersales oder Hotline After Sales Service: +49 (0) 180 5 223822 (de, en) <u>AfterSalesEGBonn@eaton.com</u>

Originalbetriebsanleitung

Die deutsche Ausführung dieses Dokuments ist die Originalbetriebsanleitung.

Übersetzung der Originalbetriebsanleitung

Alle nicht deutschen Sprachausgaben dieses Dokuments sind Übersetzungen der Originalbetriebsanleitung.

- 1. Auflage 2009, Redaktionsdatum 07/09
- 2. Auflage 2010, Redaktionsdatum 05/10
- 3. Auflage 2011, Redaktionsdatum 07/11
- 4. Auflage 2012, Redaktionsdatum 10/12
- 5. Auflage 2013, Redaktionsdatum 05/13
- 6. Auflage 2014, Redaktionsdatum 04/14

Siehe Änderungsprotokoll im Kapitel "Zu diesem Handbuch"

© 2009 by Eaton Industries GmbH, 53105 Bonn

Autor: Rainer Menden, Daniel Jansen Redaktion: René Wiegand, Heidrun Riege

Alle Rechte, auch die der Übersetzung, vorbehalten.

Kein Teil dieses Handbuches darf in irgendeiner Form (Druck, Fotokopie, Mikrofilm oder einem anderen Verfahren) ohne schriftliche Zustimmung der Firma Eaton Industries GmbH, Bonn, reproduziert oder unter Verwendung elektronischer Systeme verarbeitet, vervielfältigt oder verbreitet werden.

Änderungen vorbehalten.

Vor Beginn der Installationsarbeiten

- Gerät spannungsfrei schalten
- Gegen Wiedereinschalten sichern
- Spannungsfreiheit feststellen
- Erden und kurzschließen
- Benachbarte, unter Spannung stehende Teile abdecken oder abschranken.
- Die f
 ür das Ger
 ät angegebenen Montagehinweise (AWA/IL) sind zu beachten.
- Nur entsprechend qualifiziertes Personal gemäß EN 50110-1/-2 (VDE 0105 Teil 100) darf Eingriffe an diesem Gerät/System vornehmen.
- Achten Sie bei Installationsarbeiten darauf, dass Sie sich statisch entladen, bevor Sie das Gerät berühren.
- Die Funktionserde (FE) muss an die Schutzerde (PE) oder den Potenzialausgleich angeschlossen werden. Die Ausführung dieser Verbindung liegt in der Verantwortung des Errichters.
- Anschluss- und Signalleitungen sind so zu installieren, dass induktive und kapazitive Einstreuungen keine Beeinträchtigung der Automatisierungsfunktionen verursachen.

- Einrichtungen der Automatisierungstechnik und deren Bedienelemente sind so einzubauen, dass sie gegen unbeabsichtigte Betätigung geschützt sind.
- Damit ein Leitungs- oder Aderbruch auf der Signalseite nicht zu undefinierten Zuständen in der Automatisierungseinrichtung führen kann, sind bei der E/A-Kopplung hard- und softwareseitig entsprechende Sicherheitsvorkehrungen zu treffen.
- Bei 24-Volt-Versorgung ist auf eine sichere elektrische Trennung der Kleinspannung zu achten.
 Es dürfen nur Netzgeräte verwendet werden, die die Forderungen der IEC 60364-4-41 bzw.
 HD 384.4.41 S2 (VDE 0100 Teil 410) erfüllen.
- Schwankungen bzw. Abweichungen der Netzspannung vom Nennwert dürfen die in den technischen Daten angegebenen Toleranzgrenzen nicht überschreiten, andernfalls sind Funktionsausfälle und Gefahrenzustände nicht auszuschließen.

I.

Eaton Industries GmbH Sicherheitshinweise

- NOT-AUS-Einrichtungen nach IEC/EN 60204-1 müssen in allen Betriebsarten der Automatisierungseinrichtung wirksam bleiben. Entriegeln der NOT-AUS-Einrichtungen darf keinen Wiederanlauf bewirken.
- Einbaugeräte für Gehäuse oder Schränke dürfen nur im eingebauten Zustand, Tischgeräte oder Portables nur bei geschlossenem Gehäuse betrieben und bedient werden.
- Es sind Vorkehrungen zu treffen, dass nach Spannungseinbrüchen und -ausfällen ein unterbrochenes Programm ordnungsgemäß wieder aufgenommen werden kann. Dabei dürfen auch kurzzeitig keine gefährlichen Betriebszustände auftreten. Gegebenenfalls ist NOT-AUS zu erzwingen.
- An Orten, an denen in der Automatisierungseinrichtung auftretende Fehler Personen- oder Sachschäden verursachen können, müssen externe Vorkehrungen getroffen werden, die auch im Fehler- oder Störfall einen sicheren Betriebszustand gewährleisten beziehungsweise erzwingen (z. B. durch unabhängige Grenzwertschalter, mechanische Verriegelungen usw.).

II

Inhaltsverzeichnis

0 0.1 0.2 0.3 0.4 0.4.1 0.4.2 0.4.3	Einleitung Zielgruppe Weitere Handbücher zu den Geräten Änderungsprotokoll Lesekonventionen Warninweise vor Sachschäden Warnhinwise vor Personenschäden Tipps	3 3 3 4 4 4 4
1 1.1 1.2 1.3	Geräteübersicht Einleitung Gerätetypen Merkmale	5 5 6 7
2 2.1 2.2 2.3	Installation Grundgeräte Universalmodul Spannungsabgriff bei Verwendung mehrerer Geräte NZM-XMC-TC-MB	8 10 11
3 3.1 3.2 3.2.1 3.3 3.4 3.4.1 3.4.2 3.4.3 3.4.4 3.4.5 3.4.6 3.4.7 3.4.8 3.4.9	BedienungBedienung Universalmodul NZM-XMC-TC-MBLED-AnzeigenImpulsausgabeNetzwerkbetriebAnschließen des GerätsAnschlüsse für NZMXMC-S0BeschaltungAnschlüsse für NZMXMC-MB und NZMXMC-MB-250Beschaltung der EingängeBeschaltung der AusgängeAnschlüsse für NZM-XMC-TC-MBPC-Anschluss mit NZM-XMC-USB485ZusatzversorgungAnschließen des Displays	12 12 12 12 13 13 14 15 16 16 18 19 20
4 4.1 4.2 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7 4.3	Konfiguration des Geräts	21 22 23 26 26 26 26 27 28 29 32

0 Einleitung

Das vorliegende Handbuch dokumentiert die Mess- und Kommunikationsmodule NZM...-XMC-...

Es beschreibt die beiden Gerätereihen NZMx-XMC-S0 sowie NZM...-XMC-MB.

0.1 Zielgruppe

Das Handbuch richtet sich an Ingenieure und Elektrotechniker. Für die Inbetriebnahme werden elektrotechnische Fachkenntnisse vorausgesetzt.

0.2 Weitere Handbücher zu den Geräten

Zusätzliche Informationen zu den Messmodulen NZM...-XMC... finden Sie in der Montageanweisung IL01219006.

Im Internet als PDF-Dokument unter:

<u>http://www.eaton.com/moeller</u>→Support→Montageanweisungen AWA/IL

"Suche nach": 01219006

0.3 Änderungsprotokoll

Redaktions- datum	Seite	Stichwort	neu	geän- dert	entfällt
04/14	11	"Spannungsabgriff bei Verwendung mehrerer Geräte NZM-XMC-TC-MB"	1		
	49 ff.	Technische Daten		\checkmark	
05/13	49 ff.	Technische Daten		\checkmark	
10/12	diverse	neuer Gerätetyp NZM-XMC-TC-MB	\checkmark		
07/11	alle	allgemeine Überarbeitung		\checkmark	
05/10	_	Gerät XMC-MB-250	\checkmark	_	
	40	Kapitel 5, "Display"	\checkmark	_	
	43	Kapitel 6, "Erweiterungskarten"	\checkmark		
	alle	allgemeine Überarbeitung		\checkmark	_

0 Einleitung

0.4 Lesekonventionen

0.4 Lesekonventionen

In diesem Handbuch werden Symbole eingesetzt, die folgende Bedeutung haben:

0.4.1 Warninweise vor Sachschäden

ACHTUNG

Warnt vor möglichen Sachschäden.

0.4.2 Warnhinwise vor Personenschäden

VORSICHT

Warnt vor gefährlichen Situationen, die möglicherweise zu leichten Verletzungen führen.

WARNUNG

Warnt vor gefährlichen Situationen, die möglicherweise zu schweren Verletzungen oder zum Tod führen können.

GEFAHR

Warnt vor gefährlichen Situationen, die zu schweren Verletzungen oder zum Tod führen.

0.4.3 Tipps

Weist auf nützliche Tipps hin.

1 Geräteübersicht

1.1 Einleitung

Das NZM...-XMC-...-Sortiment enthält Messgeräte für elektrische Größen bei 3-Phasen-Systemen. Es besitzt ein neuartiges Konzept für die Montage und Installation:

Stromführende Leitungen werden durch das Gerät geführt. Dort befestigen Stanzschrauben das Gerät an den Leitungen und messen die Spannung.

Es können die Aktual- sowie Maximal- und Minimalwerte von Strömen, Spannungen und Leistungen über einen bestimmten Zeitraum gemessen, berechnet und ausgegeben werden.

Die Mess- und Kommunikationsmodule können universell in einem Spannungsbereich von 35 bis 600 V und in einem Strombereich von 1,5 bis 500 A (mit Einbausatz auch bis 630 A) benutzt werden.

Der Einbau eines Mess- und Kommunikationsmoduls NZM...-XMC-... kann an beliebiger Stelle in einem Schrank erfolgen. Das Gerät kann alternativ an einer Montageplatte befestigt werden.

Das System ist unabhängig von der Bauart und vom Typ der Schalter. Es können alle bestehenden Leistungsschalter und Lasttrennschalter verwendet werden. Es ist lediglich der durch die Bauart des jeweiligen Schalters erforderliche Mindestabstand bei der Montage einzuhalten.

Nach der ordnungsgemäßen Installation der Leitungen oder Verteilerschienen kann das Gerät mit bis zu 75 kg belastet werden.

1 Geräteübersicht

1.2 Gerätetypen

1.2 Gerätetypen

Es stehen bei den Messmodulen NZM...-XMC-... zwei Baugrößen zur Verfügung, die auf die Strombereiche des Leistungsschalters NZM abgestimmt sind.

- Baugröße 2 (NZM2-XMC-MB-250) für Ströme bis 250 A
- Baugröße 3 (NZM3-XMC) für Ströme bis 600 A

Beide Baugrößen werden in einer 3- (NZM...-XMC-...) sowie in einer 4-poligen Version (NZM...-**4**-XMC-...) angeboten.

Neben einer Variante mit einem digitalen S0-Ausgang (siehe hierzu den Hinweis auf Seite 7) wird auch eine mit Modbus-Schnittstelle und Anzeigeschnittstelle angeboten. Insgesamt stehen somit zehn Typen (Grundgeräte) des Mess- und Kommunikationsmoduls NZM...-XMC-... zur Verfügung.

Des Weiteren wird ein Universalmessmodul NZM-XMC-TC-MB für einen externen Wandleranschluss (Transducer) angeboten. Dieses Modul ist weitgehend datenkompatibel mit den obigen Grundgeräten und bietet eine hohe Flexibilität für den gewünschten Strombereich. Das Gerät wird mit einer Spannung von 230 V AC versorgt.

Außerdem existieren ein Einbausatz (NZM-XMC-KIT-630) für einen maximalen Strom von 630 A sowie ein Display (NZM-XMC-DISP) mit LED-Anzeige zur Anzeige der Messwerte.

Gerätetyp	Polzahl	Maximaler Strom [A]	Eigenschaft
Grundgeräte			
NZM2-XMC-S0	3	300	digitaler SO-Ausgang
NZM3-XMC-S0	3	500	digitaler SO-Ausgang
NZM2-4-XMC-S0	4	300	digitaler SO-Ausgang
NZM3-4-XMC-S0	4	500	digitaler SO-Ausgang
NZM2-XMC-MB-250	3	250	+ Modbus + Anzeigeschnittstelle
NZM2-XMC-MB	3	300	+ Modbus + Anzeigeschnittstelle
NZM3-XMC-MB	3	500	+ Modbus + Anzeigeschnittstelle
NZM2-4-XMC-MB-250	4	250	+ Modbus + Anzeigeschnittstelle
NZM2-4-XMC-MB	4	300	+ Modbus + Anzeigeschnittstelle
NZM3-4-XMC-MB	4	500	+ Modbus + Anzeigeschnittstelle
Universalgerät			
NZM-XMC-TC-MB			+ Modbus
Einbausatz			
NZM-XMC-KIT-630	3	630	+ Modbus + Anzeigeschnittstelle
Display			
NZM-XMC-DISP			Anzeigegerät für alle Grundgeräte

Tabelle 1: Übersicht über die Gerätetypen

1.3 Merkmale

Tabelle 2:	Gegenüberstellung einiger Merkmale der Grundgeräte NZMXMC und
	des Universalgeräts NZM-XMC-TC-MB

Merkmal	NZMXMC	NZM-XMC-TC-MB				
Versorgungsspannung	24 V DC	230 V AC				
Stromwandler	integriert	extern				
Spannungsabgriff	über Madenschraube	über Leiteranschluss oder Spannungswandler				
Anzahl digitaler Eingänge	2	-				
Anzahl digitaler Ausgänge	2 + 2 SO-Puls-Ausgänge	2 (Alarm oder SO-Puls)				
Harmonische	-	THD (V + I)				
Phasenbezogene Energiewerte	ја	nein				

S0-Schnittstelle

Die S0-Schnittstelle ist eine Hardware-Schnittstelle für die Übertragung von elektrischen Messwerten. Sie ist in der Norm DIN 43 864 definiert.

Die Datenübertragung erfolgt mittels gewichteter Impulse (Impulse pro kWh); die Gewichtung ist abhängig vom Zählertyp. Beim Anschluss der Schnittstelle ist auf die Polarität zu achten, da der Ausgang als Transistor oder Optokoppler realisiert ist. Es kann eine Spannung von maximal 27 V DC angeschlossen werden. Der maximale Stromfluss beträgt ca. 30 mA. Das Signal wird vom Zähler als Stromimpuls generiert. Dabei entspricht ein Stromfluss kleiner als 3 mA einem Low-Wert. Ein größerer Stromfluss wird als High-Wert interpretiert.

Hinweis:

Die oben beschriebene S0-Schnittstelle darf nicht mit dem S0-Bus innerhalb einer ISDN-Installation verwechselt werden!

2 Installation

2.1 Grundgeräte

2 Installation

2.1 Grundgeräte

Die Messmodule NZM...-XMC... (Grundgeräte) gestatten zwei Montageoptionen:

Sie können entweder "schwebend" nur an den Stromleitern oder alternativ an einer Montageplatte befestigt werden.

Elektrischer Strom – Lebensgefahr!

Nur Elektrofachkräfte und elektrotechnisch unterwiesene Personen dürfen die nachfolgend beschriebenen Arbeiten ausführen.

Führen Sie die Leitungen durch die drei Tunnel. Beachten Sie dabei die Phasensequenz L1, L2, L3, N sowie die Stromrichtung. Setzen Sie, falls erforderlich, einen Kabeladapter ein.

GEFAHR

Abbildung 1: Einführen der Leitungen

Befestigen Sie das Gerät (falls gewünscht) an der Montageplatte. Das Gerät muss hierbei nicht gesondert befestigt werden, sondern wird lediglich von den Leitungen bzw. der Verteilerschiene festgehalten.

Abbildung 2: Befestigung auf der Montageplatte

> Ziehen Sie die Schrauben für die Leitungsklemmen fest.

Abbildung 3: Anziehen der Schrauben

GEFAHR

```
Gefahr durch Stromschlag!
```

Tragen Sie hierbei Schutzhandschuhe und verwenden Sie einen isolierten Schraubenschlüssel. Die Schrauben müssen die Isolierung durchdringen und den Kupferleiter berühren, um eine Spannungsmessung zu ermöglichen. \rightarrow

Für das Anziehen der Schrauben sind Imbussschlüssel mit Kugelkopf nicht geeignet. Das empfohlene Anzugsmoment für die Leitung Top Cable Toxfree ZH RZ1-K beträgt 1,8 bis 2 Nm.

Der Einbau erfolgt grundsätzlich so, dass die Zuordnung der Phasen mit der Frontbeschriftung L1, L2, L3 übereinstimmt. Hierdurch ist der Phasendrehsinn des Geräts vordefiniert.

Die Stromflussrichtung wird über das Register 1301, Bit 0 eingestellt. Das Gerät ist auf "Abgang", also Stromfluss von oben nach unten, vorkonfiguriert.

Bei einer "Einspeisung" ist der Stromfluss von unten nach oben. Dies wird dem Gerät durch Setzen des Bits 0 im Register 1301 auf den Wert TRUE mitgeteilt. Die positive Stromrichtung entspricht dann wieder der obigen Situation.

"Abgang":

Stromfluss von oben nach unten

"Einspeisung":

Stromfluss von unten nach oben

Dazu Bit 0 in Register 1301 auf den Wert TRUE setzen!

2.2 Universalmodul

Das Universalmodul NZM-XMC-TC-MB wird auf einer Hutschiene montiert.

Abbildung 5: Für Hutschienmontage und externen Wandleranschluss

2 Installation 2.3 Spannungsabgriff bei Verwendung mehrerer Geräte NZM-XMC-TC-MB

2.3 Spannungsabgriff bei Verwendung mehrerer Geräte NZM-XMC-TC-MB

Bei einer Verwendung von mehreren NZM-XMC-TC-MB Modulen kann der Spannungsabgriff einfach ausgeführt und an mehrere Module angeschlossen werden. Der Spannungsabgriff erfolgt hierbei entweder direkt vom Netz oder über Spannungswandler mit entsprechender Absicherung. Er wird parallel an die Module an den Klemmen 10 bis 13 angeschlossen.

Beachten Sie hierbei die maximale Leitungslänge und den damit verbundenen Spannungsabfall.

Die Verdrahtung hat wie in \rightarrow Abbildung 6 schematisch dargestellt zu erfolgen.

Abbildung 6: Verdrahtung bei mehreren NZM-XMC-TC-MB

3 Bedienung

3.1 Bedienung Universalmodul NZM-XMC-TC-MB

3 Bedienung

Nachfolgend werden Inbetriebnahme und Betrieb des Messmoduls NZM...-XMC-... beschrieben.

3.1 Bedienung Universalmodul NZM-XMC-TC-MB

Mit dem Reset-Knopf kann das Gerät gestartet und eine Voreinstellung der Kommunikationsparameter vorgenommen werden.

- Das Betätigen des Knopfes für mindestens 1 Sekunde bewirkt einen Neustart.
- Um die voreingestellten Kommunikationsparameter zu aktivieren, wird das Gerät von der Versorgungsspannung getrennt, der Reset-Knopf gedrückt und gehalten, die Versorgungsspannung wieder zugeschaltet und der Knopf losgelassen. Nach 5 Sekunden befindet sich das Gerät wieder in Betrieb mit den voreingestellten Kommunikationsparametern.

3.2 LED-Anzeigen

Das Messmodul NZM...-XMC-... verfügt über vier LED-Anzeigen:

- LED "Power On": Blinken bedeutet, dass das Gerät angeschlossen ist und ordnungsgemäß arbeitet.
- Die drei LEDs L1, L2, L3 zeigen Folgendes an:
 - stetiges Leuchten: Phase und Spannung sind in Ordnung
 - schnelles Blinken: Keine Phasenspannung vorhanden
 - langsames Blinken: Fehler in der Phasenfolge

3.2.1 Impulsausgabe

Die Impulsausgabe erfolgt über einen optoisolierten NPN-Transistorausgang.

3.3 Netzwerkbetrieb

Das Gerät ist für den Betrieb in mittelpunktgeerdeten Sternnetzen (Wye-Netzen) mit vier Leitungen ausgelegt.

3.4 Anschließen des Geräts

3.4.1 Anschlüsse für NZM…XMC-SO

Die nachfolgende Abbildung zeigt die Anschlüsse der Gerätevariante NZM...-XMC-S0.

Abbildung 7: Anschlüsse bei der Gerätevariante NZM...-XMC-S0

Die folgende Tabelle zeigt die Belegung der Anschlüsse.

Anschluss	Erläuterung
Impulsausgabe	3 x 3,5 mm Phoenix Contact MC 1.5/4-ST-3.5
1	Basisspannung
2	NPN-Collector
3	NPN-Emitter
Versorgung	2 x 7,62 mm Phoenix Contact GMVSTBR 2.5/2-ST-7.62
8	GND
9	24-V-DC-Versorgungsspannung

Tabelle 3: Belegung der Anschlüsse bei NZM...-XMC-S0

3 Bedienung

3.4 Anschließen des Geräts

3.4.2 Beschaltung

Abbildung 8: Beschaltung des S0-Ausgangs für positive Logik (= ein Puls ist ein TRUE am Eingang.)

Abbildung 9: Beschaltung des S0-Ausgangs für negative Logik (= ein Puls ist ein FALSE am Eingang nach EN 62053-31)

(1) SO-Eingang des Fremdgeräts

- NZM2-XMC-S0:
- Die Energie-Impulsrate beträgt 15 Impulse/kWh (300 A).NZM3-XMC-S0:

Die Energie-Impulsrate beträgt 7 Impulse/kWh (500 A).

Die Impulsdauer beträgt jeweils 120 ms.

3.4.3 Anschlüsse für NZM...-XMC-MB und NZM...-XMC-MB-250

		123	4567	8 9 10 1	4 15 ⁻	16 17	12 13 11	18	19
				<u></u>			9.8.0		
\	\	L B A	\land	-02 01	Л	Л		-	+
Exp card 2	Exp card 1	RS485	DISPLAY	COM	Po2	Po1	GND	24V=	3W

Abbildung 10: Anschlüsse bei den Gerätevarianten NZM...-XMC-MB und NZM...-XMC-MB-250

Die nachfolgende Tabelle listet die Belegung der Anschlüsse auf.

Tabelle 4:	Belegung der Anschlüsse bei				
	NZMXMC-MB und NZMXMC-MB-250				

Anschluss	Erläuterung
Modbus (isoliert)	
1	Data Ground
2	B RS485
3	A RS485
Modbus-Display (nicht isoliert)	4 x 3,5 mm Phoenix Contact MC 1.5/4-ST-3.5
4	0 V
5	B RS485
6	A RS485
7	5 V DC (intern)
Ein-/Ausgänge (isoliert)	10 x 5,08 mm Phoenix Contact MVSTBR 2.5/10-ST-5.08
8	Gemeinsamer Ausgang (1/2-common)
9	Ausgang 2
10	Ausgang 1
11	GND (intern mit Pin 18)
12	Eingang 2 (referenziert auf GND)
13	Eingang 1 (referenziert auf GND)
14	Impulsausgang 2 (Collector)
15	Impulsausgang 2 (Emitter)
16	Impulsausgang 1 (Collector)
17	Impulsausgang 1 (Emitter)
Versorgung	2 × 7,62 mm Phoenix Contact GMVSTBR 2.5/2-ST-7.62
18	GND
19	24-V-DC-Versorgungsspannung

ACHTUNG

Pin 18 (24-V-DC-Versorgung) ist intern mit Pin 11 (E/A) verbunden.

3 Bedienung

3.4 Anschließen des Geräts

3.4.4 Beschaltung der Eingänge

Abbildung 11: Beschaltung der Eingänge zur Statusanzeige NZM

3.4.5 Beschaltung der Ausgänge

Abbildung 12: Beschaltung der Ausgänge zur Ansteuerung eines Fernantriebes

Abbildung 13: Beschaltung des S0-Augangs bei positiver Logik (= ein Puls ist ein TRUE am Eingang)

Abbildung 14: Beschaltung des S0-Ausgangs bei negativer Logik (= Puls ist ein FALSE am Eingang nach EN 62053-31)

3 Bedienung 3.4 Anschließen des Geräts

3.4.6 Anschlüsse für NZM-XMC-TC-MB

Abbildung 15: Anschlüsse für NZM-XMC-TC-MB

Tabelle 5: Belegung der Anschlusse					
Anschluss	Erläuterung				
1	Stromwandler S1 für L1				
2	Stromwandler S2 für L1				
3	Stromwandler S1 für L2				
4	Stromwandler S2 für L2				
5	Stromwandler S1 für L3				
6	Stromwandler S2 für L3				
7	Ausgang 2				
8	Wurzel für Ausgänge				
9	Ausgang 1				
10	Spannung L3				
11	Spannung L2				
12	Spannung L1				
13	Neutralleiter N				
14	Supply N				
15	Supply P1 230 V AC				
Modbus	Phoenix-Stecker				
В	RS485 B				
S	Data Ground				
Α	RS485 A				

Taballa 5. Bala auna der Anschlü

3.4.7 PC-Anschluss mit NZM-XMC-USB485

Abbildung 16: PC-Anschluss mit NZM-XMC-USB485

3.4.8 Zusatzversorgung

Das Gerät muss mit einer Leistung von 3 W und einer Gleichspannung von 24 V DC ±10 % versorgt werden.

Dies gilt nur für die Baugröße 3!

Verwenden Sie für den Anschluss von Geräten mit 230 V das Gerät NZM-XMC-AC.

Wegen seiner kleineren Bauform ist das Gerät NZM2...-XMC-MB-250 nicht kompatibel mit dem Gerät NZM-XMC-AC.

Abbildung 17: Anschluss an die Zusatzversorgung

3 Bedienung

3.4 Anschließen des Geräts

3.4.9 Anschließen des Displays

Zum Anschluss des Displays NZM-XMC-DISP sind die Pins 4 bis 7 beim Gerät NZM...-XMC-MB(-250) vorgesehen.

Abbildung 18: Anschlüsse des Displays

Das Display NZM-XMC-DISP kann nicht an das Universalgerät NZM-XMC-TC-MB angeschlossen werden.

4 Konfiguration des Geräts

Dieses Kapitel betrifft alle Geräte des Messmoduls NZM...-XMC-..., die mit einer Modbus-Schnittstelle (d. h. NZM...-XMC-MB...) ausgestattet sind.

Funktionscode Modbus RTU	Beschreibung		unterstützt von NZMXMC-MB			
1	Coil-Status lesen	Bitvariablen lesen (Coil)	ја			
2	Status mehrerer Eingänge lesen	Bitvariablen lesen (Eingänge)	nein			
3	Mehrere Holding-Register lesen	Wortvariablen lesen (Register)	ја			
4	Mehrere Eingangs-Register lesen	Wortvariablen lesen (Eingänge)	nein			
5	Einzelne Coils schreiben	Bitvariable schreiben	ја			
6	Einzelne Register schreiben	Wortvariable schreiben	nein			
8	Test Loopback-Diagnose (00: Rückfrage-Daten)	Verbindungstest	nein			
15	Mehrere Coils schreiben	Mehrere Bitvariablen lesen (Coils)	nein			
16	Mehrere Register schreiben	Schreiben mehrerer Wortvariablen (Register)	ја			

Tabelle 6: Zusammenfassung der Modbus-Funktionscodes

Die Voreinstellung zur Ansprache des Geräts lautet:

Modbus-Geräteadresse: 2 9600 Baud; no parity; 1 Stop Bit, 8 Data Bits

Für eine Änderung dieser Konfigurationsparameter können zwei Register mit dem Funktionscode 16 an die Adresse 0 geschrieben werden. Die Adresse 0 wird als Broadcast verarbeitet und von allen Teilnehmern empfangen. Die Register enthalten die Seriennummer des Geräts, die Einstellungen für die Modbus-Adresse sowie die Übertragungsgeschwindigkeit (Datenrate).

Die Modbus-Adresse und die Datenrate werden nach dem Empfang des Telegramms sofort gültig, ohne dass das Gerät explizit zurückgesetzt werden muss.

Tabelle 7: Geräte-Konfigurationsdaten

Modbus	Variable	Wertebereich					
		Grundgeräte NZMXMC	Universalgerät NZM-XMC-TC-MB				
3000, 3001	Seriennummer des Geräts	0 - 999999999	0 - 999999999				
3002H ¹⁾	Geräteadresse	1 - 255	1 - 255				
3002L ²⁾	Baudrate	0: 9600 Bit/s 1: 19200 Bit/s 2: 38400 Bit/s	0: 9600 Bit/s 1: 19200 Bit/s				

1) H = High Byte

2) L = Low Byte

Zugriff nur als Broadcast (Adresse 0)

4 Konfiguration des Geräts

4.1 Konfiguration Grundgeräte NZM

4.1 Konfiguration Grundgeräte NZM

4.2 Modbus-Register

Nachfolgend die Modbus-Register der Messmodule NZM...-XMC-MB.

 Tabelle 8:
 Belegungen der Modbus-Register

Variable	Register	Typ R = Lesen/ W = Schreiben	→ Seite
Elektrische Parameter	0 - 95	R	23
Maximalwerte der elektrischen Parameter	96 - 191	R	26
Minimalwerte der elektrischen Parameter	192 - 287	R	26
Kommunikationseinrichtung	1000 - 1002	R/W	26
Passwort einrichten	1050 - 1051	R/W	26
Allgemeine Konfiguration	1100 - 1105	R/W	27
Alarm 1	1150 - 1156	R/W	28
Alarm 2	1160 - 1166	R/W	28
Alarm 3	1170 - 1176	R/W	28
Alarm 4	1180 - 1186	R/W	28
Alarm 5	1190 - 1196	R/W	28
Alarm 6	1200 - 206	R/W	28
Mittelwert über Zeitfenster	1250 - 1251	R/W	29
Spezielle Gerätekonfiguration	1300 - 1400	R/W	30
Adresse und Datenrate (Broadcast)	3000 - 3002	W	21
Seriennummer	10000 - 10001	R	-
Erweiterungskarte 1	20000 - 20003	R/W	45
Erweiterungskarte 2	20010 - 20013	R/W	45

Um Änderungen zu aktivieren, "wahr" an Coil 2000 schreiben.

Nachfolgend werden die Registerbelegungen beschrieben.

4.2.1 Elektrische Parameter

Die Register 0 bis 95 (bzw. 287) speichern die vom Gerät gemessenen elektrischen Werte (Aktualwerte).

Für jeden Wert sind zwei Modbus-Register erforderlich. Jeder Parameter stellt somit ein Register mit einer Länge von 32 Bit (vom Typ "long" mit Vorzeichen) dar.

Das Register mit den geraden Nummern (linke Seite der Spalte "Register" in Tabelle 9) enthält den hohen Teil, das Register mit den ungeraden Nummern (rechte Seite der Spalte "Register" in Tabelle 9) den niedrigen Teil des Integer-Wertes.

Einige Modbus-Treiber dekrementieren die Registernummer automatisch, wie es ursprünglich beim Modbus-System üblich war. Dies ist auch bei Treibern der XC-Steuerungen der Fall. Hier muss also bei der Anfrage jeweils die Registernummer des gewünschten Parameters in der Anwendung um 1 inkrementiert werden.

Beispiel:

Soll beispielsweise der Strom L1 abgefragt werden, so müssen die Registeradressen 3 (= 2 + 1) (High) und 4 (= 3 + 1) (Low) abgefragt werden.

Die nachfolgende Tabelle 9 führt die elektrischen Parameter auf.

4 Konfiguration des Geräts

4.2 Modbus-Register

	-	Tabelle 9:	Elektrische Parameter								
Para- meter Nr.	ira- NZMXMC eter ·.		NZM-XMC-TC-MB		Regis Istwe	Register Istwert		Register Maximal- wert		Register Minimal- wert	
	Parameter	Einheit	Parameter	Einheit	high	low	high	low	high	low	
1	Spannung L1	1 mV	Spannung L1	mV	0	1	96	97	192	193	R
2	Strom L1	mA	Strom L1	mA	2	3	98	99	194	195	R
3	Wirkleistung L1	W	Wirkleistung L1	W	4	5	100	101	196	197	R
4	Blindleistung L1	var	Blindleistung L1	var	6	7	102	103	198	199	R
5	Leistungsfaktor L1	_	Leistungsfaktor L1	-	8	9	104	105	200	201	R
6	Spannung L2	1 mV	Spannung L2	mV	10	11	106	107	202	203	R
7	Strom L2	mA	Strom L2	mA	12	13	108	109	204	205	R
8	Wirkleistung L2	W	Wirkleistung L2	W	14	15	110	111	206	207	R
9	Blindleistung L2	var	Blindleistung L2	var	16	17	112	113	208	209	R
10	Leistungsfaktor L2	-	Leistungsfaktor L2	-	18	19	114	115	210	211	R
11	Spannung L3	1 mV	Spannung L3	mV	20	21	116	117	212	213	R
12	Strom L3	mA	Strom L3	mA	22	23	118	119	214	215	R
13	Wirkleistung L3	W	Wirkleistung L3	W	24	25	120	121	216	217	R
14	Blindleistung L3	var	Blindleistung L3	var	26	27	122	123	218	219	R
15	Leistungsfaktor L3	-	Leistungsfaktor L3	-	28	29	124	125	220	221	R
16	Leistung 3-Phasen	W	Leistung 3-Phasen	W	30	31	126	127	222	223	R
17	induktive Blindleistung – 3-Phasen	var	induktive Blindleistung — 3-Phasen	var	32	33	128	129	224	225	R
18	kapazitive Blindleistung – 3-Phasen	var	kapazitive Blindleistung – 3-Phasen	var	34	35	130	131	226	227	R
19	verbrauchte kapazitive Blindenergie L1	kvarh	3-Phasen cos φ	-	36	37	132	133	228	229	R
20	Leistungsfaktor 3-Phasen	-	Leistungsfaktor 3-Phasen	-	38	39	134	135	230	231	R
21	Frequenz Leitung Lx	Hz x 10	Frequenz L1	Hz x 10	40	41	136	137	232	233	R
22	verbrauchte Wirkenergie L1	kWh	Spannung L1-L2	mV	42	43	138	139	234	235	R
23	verbrauchte Wirkenergie L2	kWh	Spannung L2-L3	mV	44	45	140	141	236	237	R
24	verbrauchte Wirkenergie L3	kWh	Spannung L3-L1	mV	46	47	142	143	238	239	R
25	erzeugte Wirkenergie L1	kWh	% THD V1	% x 10	48	49	144	145	240	241	R
26	erzeugte Wirkenergie L2	kWh	% THD V2	% x 10	50	51	146	147	242	243	R
27	erzeugte Wirkenergie L3	kWh	% THD V3	% x 10	52	53	148	149	244	245	R
28	verbrauchte induktive Blindenergie L1	kvarh	% THD I1	% x 10	54	55	150	151	246	247	R
29	verbrauchte induktive Blindenergie L2	kvarh	% THD 12	% x 10	56	57	152	153	248	249	R
30	verbrauchte induktive Blindenergie L3	kvarh	% THD 13	% x 10	58	59	154	155	250	251	R
31	Wirkenergie 3-Phasen	kWh	Wirkenergie 3-Phasen	kWh	60	61	156	157	252	253	R
32	induktive Blindenergie – 3-Phasen	kvarh	induktive Blindenergie – 3-Phasen	kvarh	62	63	158	159	254	255	R

4 Konfiguration des Geräts 4.2 Modbus-Register

Para- meter Nr.	• NZMXMC r		NZM-XMC-TC-MB		Register Istwert		Register Maximal- wert		Register Minimal- wert		R/W
	Parameter	Einheit	Parameter	Einheit	high	low	high	low	high	low	
33	kapazitive Blindenergie – 3-Phasen	kvarh	kapazitive Blindenergie — 3-Phasen	kvarh	64	65	160	161	256	257	R
34	Scheinleistung	VA	Scheinleistung	VA	66	67	162	163	258	259	R
35	Max. Demand von in Register 1250/1251 defi- niertem Parameter	W VA mA	Max. Demand von in Register 1250/1251 defi- niertem Parameter	W VA mA	68	69	164	165	260	261	R
36	verbrauchte kapazitive Blindenergie L2	kvarh	Strom gemittelt 3-Phasen	mA	70	71	166	167	262	263	R
37	verbrauchte kapazitive Blindenergie L3	kvarh	Neutralstrom	mA	72	73	168	169	264	265	R
38	Scheinleistung L1	VA	Scheinleistung L1	VA	74	75	170	171	266	267	R
39	Scheinleistung L2	VA	Scheinleistung L2	VA	76	77	172	173	268	269	R
40	Scheinleistung L3	VA	Scheinleistung L3	VA	78	79	174	175	270	271	R
41	intern (ohne Funktion)	-	intern (ohne Funktion)	-	80	81	176	177	272	273	R
42	maximale Aufnahme Wert 2	-	maximale Aufnahme Wert 2	-	82	83	178	179	274	275	R
43	maximale Aufnahme Wert 3	-	maximale Aufnahme Wert 3	-	84	85	180	181	276	277	R
44	Scheinenergie – 3-Phasen	kVAh	Scheinenergie – 3-Phasen	VAh	86	87	182	183	278	279	R
45	erzeugte Wirkenergie – 3-Phasen	kWh	erzeugte Wirkenergie – 3-Phasen	kWh	88	89	184	185	280	281	R
46	erzeugte induktive Blind- energie – 3-Phasen	kvarh	erzeugte induktive Blind- energie – 3-Phasen	kvarh	90	91	186	187	282	283	R
47	erzeugte kapazitive Blind- energie – 3-Phasen	kvarh	erzeugte kapazitive Blind- energie – 3-Phasen	kvarh	92	93	188	189	284	285	R
48	erzeugte Scheinenergie – 3-Phasen	kVAh	erzeugte Scheinenergie – 3-Phasen	kVAh	94	95	190	191	286	287	R

4 Konfiguration des Geräts

4.2 Modbus-Register

4.2.2 Maximale und minimale elektrische Parameter

Die Register 96 bis 191 speichern die Maximalwerte jedes Parameters (siehe die Spalte "Maximal" in Tabelle 9). Die Register 192 bis 287 speichern analog die erfassten Minimalwerte (siehe die Spalte "Minimal" in Tabelle 9).

4.2.3 Kommunikation (RS485) einrichten

Zur Kommunikationseinrichtung (RS485) dienen die Register 1000 bis 1002.

Register	Variable	Wertebereich	Wertebereich
		NZM-XMC	NZM-XMC-TC-MB
1000H ¹⁾	Protokoll	0 - Modbus	0 - Modbus
1000L ²⁾	Geräteadresse	1 - 255 (Standardwert: 2)	1 - 255 (Standardwert: 2)
1001H ¹⁾	Baudrate	0: 9600 Bit/s (Standardwert) 1: 19200 Bit/s 2: 38400 Bit/s	0: 9600 Bit/s (Standardwert) 1: 19200 Bit/s
1001L ²⁾	Parität	0: nein (Standardwert) 1: ungerade 2: gerade	0: nein (Standardwert) 1: ungerade 2: gerade
1002H ¹⁾	Datenbits	1 - 8 Bit	1 - 8 Bit
1002L ²⁾	Stoppbits	0: 1 Bit (Standardwert) 1: 2 Bits	0: 1 Bit (Standardwert) 1: 2 Bits

1) H = High Byte

2) L = Low Byte

Um Änderungen zu aktivieren, als nächstes Telegramm "wahr" an Coil 2000 schreiben.

4.2.4 Passwort einrichten

Die Einstellungen können mit einem Passwort geschützt werden, um somit keine Daten (versehentlich) zu löschen. Das Passwort ist auch erforderlich, um Änderungen an den Einstellungen vorzunehmen.

Zum Einrichten des Passwortes dienen die Register 1050 und 1051.

4.2.4.1 Passwort festlegen

Für den Schutz der Einstellungen muss das Passwort an Position 1050 und anschließend 0x0100 an Position 1051 geschrieben werden.

4.2.4.2 Passwort löschen

Zum Aufheben des Passwortschutzes muss das Passwort in Position 1050 und eine 0 in Position 1051 mit demselben Befehl geschrieben werden.

4.2.5 Frequenzmessung und Pulsausgänge für Energiewerte festlegen

Diese Variablen ermöglichen allgemeine Einstellungen.

- Register 1101L legt fest, auf welcher Leitung das Gerät die Frequenz misst (Register 40h).
- Die Register 1103 und 1104 legen die Impulsausgangsrate fest. Der angegebene Wert ist die für jeden Impuls erforderliche Energie in Wh.

Registerwert	1 Puls pro
1000	1 kWh
100	100 Wh
10	10 Wh
1	1 Wh

Der Wert 100 im Register 1103 beispielsweise bewirkt, dass immer ein Impuls erzeugt wird , sobald 100 Wh verbraucht sind.

- Register 1105 legt die Impulsbreite in Zehn-Millisekunden-Schritten fest.
- Als Voreinstellung ist der Wert 1 Puls/kWh eingestellt.

Register	Variable	Wertebereich
1101L ¹⁾	Frequenzmessung	0: Leitung L1 1: Leitung L2 2: Leitung L3
1101H ²⁾	nicht verwendet	-
1103	Impulsrate für Wirkenergie [Wh × Impuls]	0 (deaktiviert) 1 - 9999
1104	Impulsrate für Blindenergie [Wh × Impuls]	0 (deaktiviert) 1 - 9999
1105	Impulsbreite [in Zehn-Millisekunden-Schritten]	-

1) L = Low Byte

2) H = High Byte

4 Konfiguration des Geräts

4.2 Modbus-Register

4.2.6 Alarm einrichten

Es können bis zu sechs verschiedene Alarmmeldungen (Lastwarnungen) festgelegt werden. Die Einstellungen werden in sechs entsprechenden Registerbereichen (-> Tabelle 10) gespeichert. Dies sind die Alarmeinstellungen für die Maximal- und Minimalwerte, die Auslöseverzögerung, die zu überwachenden Parameter sowie für den Ausgang.

Tabelle 10: Register für Alarmmeldungen

Nr. des Alarms	Registerbereich NZM-XMC-MB	Registerbereich NZM-XMC-TC-MB
1	1150 - 1155	1150 - 1155
2	1160 - 1165	1200 - 1205
3	1170 - 1175	
4	1180 - 1185	
5	1180 - 1195	
6	1200 - 1205	

Register	Variable	Wertebereich
1150, 1151	Höchstwert	je nach Parameter (Standardwert: 0)
1152, 1153	Mindestwert	je nach Parameter (Standardwert: 0)
1154	Verzögerung	0 - 9999 s (Standardwert: 0)
1155H ¹⁾	Parametercode	1 - 48
1155L ²⁾	Ausgang	0: Alarm deaktiviert 1: Ausgang 1 Grundgerät 2: Ausgang 2 Grundgerät 3 - 6: Ausgänge Erweiterungskarte 1 7 - 10: Ausgänge Erweiterungskarte 2 (nicht bei Ausgränung NZMXMC-MB-250)

1) H = High Byte

2) L = Low Byte

Um Änderungen zu aktivieren, "wahr" an Coil 2000 schreiben.

4.2.7 Mittelwert über Zeitfenster (Max. Demand)

Hier wird der Parameter Nr 35 (Max. Demand) konfiguriert; dazu wird ein beliebiger anderer Parameter zugewiesen. Der gewählte Wert dieses Parameters wird während des Zeitfensters in kurzen Zeitintervallen gemessen und der Durchschnitt der gemessenen Werte berechnet.

Der Durchschnittswert ist ein gleitender Mittelwert, der nur aus den in der gewählten Periode ermittelten Einzelwerten besteht. Wird beispielsweise eine Periode von 60 Minuten gewählt, bezieht sich der Mittelwert auf die letzten 60 Minuten.

Die beiden Register 1250 und 1251 definieren das Verhalten des Messgeräts für den Einstellwert für Max. Demand:

- In das Register 1250 ist der Code des zu überwachenden Parameters einzutragen.
- In Register 1251 wird die Fensterzeit in Minuten festgelegt.

Register	Variable	Reichweite
1250	Parametercode	0: keine Maximaleinstellung X: Parametercode (1 - 48)
1251	Zeitfenster (= diejenige Periode, in der die maximale Aufnahme ermittelt werden soll)	1 - 60 Minuten

4.2.7.1 Modbus-Coils im Überblick

Variable	Coil	Тур	Funktions- code
Digitale Ausgänge	0 - 9	R/W	1; 5
Eingänge digital	10 - 19	R	1
Neustart des gesamten Geräts ¹⁾	2000	W	5
Leistungswerte löschen	2100	W	5
Max. Demand initialisieren	2101	W	5
Maximal- und Minimalwerte löschen	2102	W	5
Leistung (maximaler/minimaler, Abnahmewert) löschen	2103	W	5
Maximalen Abnahmewert löschen	2104	W	5

1) = Übernahme einer neuen Konfiguration

4 Konfiguration des Geräts

4.2 Modbus-Register

4.2.7.2 Spezielle Gerätekonfiguration

Modbus-Register 1300

Mit dem Modbus-Register 1300 können folgende Einstellungen vorgenommen werden:

- Bit 0:
 - 0 = Spannungsanzeige Phase Neutralleiter
 - 1 = Spannungsanzeige Phase Phase
- Bit 1:
 - 0 = PO 1 Wirkenergie, PO 2 Blindenergie
 - 1 = PO 1 Wirkenergie, PO 1 Wirkenergie

Modbus-Register 1301

Mit dem Modbus-Register 1301 können die Stromrichtung und die Phasenfolge wie folgt umgeschaltet werden:

- Bit 0:
 - 0 = Positiver Stromfluss von oben nach unten (Abgang)
 - 1 = Positiver Stromfluss von unten nach oben (Einspeisung Standardwert)
- Bit 1:
 - 0 = Die Phasenreihenfolge entspricht der auf dem Gerät markierten Reihenfolge.
 - 1 = Die Phasen 1 und 3 sind miteinander vertauscht.

Modbus-Register 1400 - 1405

Die Firmware-Version ist in den Registern 1400 - 1405 abgelegt.

4.2.7.3 Digitale Ausgänge (Modbus-Funktionscode 5)

Für die Digital-Ausgänge steht der Bereich von 0 bis 9 zur Verfügung. Die Ausgänge sind als optoentkoppelte Halbleiterausgänge ausgeführt.

- 0, 1: Digital-Ausgänge des NZM...-XMC-...-Grundgeräts
- 2 bis 5: für Erweiterungskarte 1
- 6 bis 9: für Erweiterungskarte 2

4.2.7.4 Digitale Eingänge

Für die Digital-Eingänge steht der Bereich von 10 bis 19 zur Verfügung.

- 10, 11: Digital-Eingänge des NZM...-XMC-...-Grundgeräts
- 12 bis 15: für Erweiterungskarte 1
- 16 bis 19: für Erweiterungskarte 2

4.2.7.5 Reset (Coil 2000)

Setzt das Gerät zurück. Die Einstellung wird auf 0 zurückgesetzt.

4.2.7.6 Energiewerte löschen (Coil 2100)

Hiermit wird der Zähler der Leistung gelöscht. Die Einstellung wird automatisch auf 0 zurückgesetzt.

4.2.7.7 Maximum Demand löschen (Coil 2101)

Initialisiert den maximalen Abnahmewert und löscht den vorherigen Wert. Alle gespeicherten Werte zur Berechnung des Maximum Demand-Wertes werden zurückgesetzt. Damit werden die Register 68 und 69 zu 0.

4.2.7.8 Maximal- und Minimalwerte löschen (Coil 2102)

Die maximalen bzw. minimalen Werte jedes Parameters werden gelöscht. Die Einstellung wird auf 0 zurückgesetzt.

4.2.7.9 Leistung (maximalen/minimalen, Abnahmewert) löschen (Coil 2103)

Diese Einstellung entspricht dem Senden der drei obenstehenden Befehlen. Die Einstellung wird auf 0 zurückgesetzt.

Es werden dabei ausgeführt:

- Leistungswerte löschen
- Max. Demand
- Maximal- und Minimalwert löschen

4.2.7.10 Maximalwert von Maximum Demand löschen (Coil 2104)

Der Maximalwert des Maximum Demand-Wertes wird zurückgesetzt. Die Register 164 und 165 werden zu 0 gesetzt. Die laufende Berechnung wird nicht verändert.

4.2.7.11 Kommunikationseinstellungen von NZM-XMC-MB zurücksetzen

Der folgende Ablauf beschreibt, wie die Einstellungen zurückgesetzt werden können:

- Gerät ausschalten.
- Digitaleingang 1 an logisch "0" und Digitaleingang 2 an logisch "1" anschließen.
- ► LED 1 erlischt, die anderen LEDs leuchten weiter.
- Innerhalb von 2 Sekunden beide Digitaleingänge an "0" anschließen.
 ► LED 1 leuchtet.
- Innerhalb von 2 Sekunden beide Digitaleingänge an "1" anschließen.
 LED 1 erlischt, die anderen LEDs leuchten weiter.
 - Innerhalb von 2 Sekunden beide Digitaleingänge an "0" anschließen.

Die Kommunikationsregister sind auf die Werkseinstellung zurückgesetzt (Modbus-Adresse 2, 9600 Bit/s, 8, n, 1); das Gerät führt ein automatisches Reset durch.

4 Konfiguration des Geräts

4.3 Konfiguration Universalgerät NZM-XMC-TC-MB

4.3 Konfiguration Universalgerät NZM-XMC-TC-MB

4.4 Modbus-Register

Nachfolgend die Modbus-Register des Universalgeräts NZM-XMC-TC-MB.

Variable	Register	Typ R = Lesen/ W = Schreiben
Elektrische Parameter	0 - 95	R
Maximalwerte der elektrischen Parameter	96 - 191	R
Minimalwerte der elektrischen Parameter	192 - 287	R
Kommunikationseinrichtung	1000 - 1002	R/W
Allgemeine Konfiguration	1100 - 1105	R/W
Alarm 1	1150 - 1156	R/W
Alarm 2	1160 - 1166	R/W
Alarm 3	1170 - 1176	R/W
Alarm 4	1180 - 1186	R/W
Alarm 5	1190 - 1196	R/W
Alarm 6	1200 - 1206	R/W
Mittelwert über Zeitfenster	1250 - 1251	R/W
Spezielle Gerätekonfiguration	1300 - 1400	R/W
Adresse und Datenrate (Broadcast)	3000 - 3002	W
Seriennummer	10000 - 10001	R

Tabelle 12: Belegungen der Modbus-Register bei NZM-XMC-TC-MB

Um Änderungen zu aktivieren, "wahr" an Coil 2000 schreiben.

Bei dem Universalgerät NZM-XMC-TC-MB muss das Aktivierungstelegramm direkt nach dem Änderungstelegramm gesendet werden. Jede Änderung muss somit direkt aktiviert (gespeichert) werden.

Nachfolgend werden die Registerbelegungen beschrieben.

4.4.1 Elektrische Parameter

Die Register 0 bis 95 (bzw. 287) speichern die vom Gerät gemessenen elektrischen Werte (Aktualwerte).

Für jeden Wert sind zwei Modbus-Register erforderlich. Jeder Parameter stellt somit ein Register mit einer Länge von 32 Bit (vom Typ "long" mit Vorzeichen) dar.

Das Register mit den geraden Nummern (linke Seite der Spalte "Register" in Tabelle 9) enthält den hohen Teil, das Register mit den ungeraden Nummern (rechte Seite der Spalte "Register" in Tabelle 9) den niedrigen Teil des Integer-Wertes.

Einige Modbus-Treiber dekrementieren die Registernummer automatisch, wie es ursprünglich beim Modbus-System üblich war.

Dies ist auch bei den Treibern der XC-Steuerungen der Fall. Hier muss also bei der Anfrage jeweils die Registernummer des gewünschten Parameters in der Anwendung um 1 inkrementiert werden.

Beispiel:

Soll beispielsweise der Strom L1 abgefragt werden, so müssen Registeradresse 3 (= 2 + 1) (High) und 4 (= 3 + 1) (Low) abgefragt werden.

Die nachfolgende Tabelle 9 führt die elektrischen Parameter auf.

4 Konfiguration des Geräts

4.4 Modbus-Register

Tabelle 13:	Elektrische Parameter

Para- meter Nr.	NZMXMC		NZM-XMC-TC-MB		Regis Istwe	ter rt	Regis Maxi wert	ster mal-	Regis Minin wert	ter nal-	R/W
	Parameter	Einheit	Parameter	Einheit	high	low	high	low	high	low	
1	Spannung L1	1 mV	Spannung L1	mV	0	1	96	97	192	193	R
2	Strom L1	mA	Strom L1	mA	2	3	98	99	194	195	R
3	Wirkleistung L1	W	Wirkleistung L1	W	4	5	100	101	196	197	R
4	Blindleistung L1	var	Blindleistung L1	var	6	7	102	103	198	199	R
5	Leistungsfaktor L1	-	Leistungsfaktor L1	-	8	9	104	105	200	201	R
6	Spannung L2	1 mV	Spannung L2	mV	10	11	106	107	202	203	R
7	Strom L2	mA	Strom L2	mA	12	13	108	109	204	205	R
8	Wirkleistung L2	W	Wirkleistung L2	W	14	15	110	111	206	207	R
9	Blindleistung L2	var	Blindleistung L2	var	16	17	112	113	208	209	R
10	Leistungsfaktor L2	-	Leistungsfaktor L2	-	18	19	114	115	210	211	R
11	Spannung L3	1 mV	Spannung L3	mV	20	21	116	117	212	213	R
12	Strom L3	mA	Strom L3	mA	22	23	118	119	214	215	R
13	Wirkleistung L3	W	Wirkleistung L3	W	24	25	120	121	216	217	R
14	Blindleistung L3	var	Blindleistung L3	var	26	27	122	123	218	219	R
15	Leistungsfaktor L3	-	Leistungsfaktor L3	-	28	29	124	125	220	221	R
16	Leistung 3-Phasen	W	Leistung 3-Phasen	W	30	31	126	127	222	223	R
17	induktive Blindleistung — 3-Phasen	var	induktive Blindleistung — 3-Phasen	var	32	33	128	129	224	225	R
18	kapazitive Blindleistung — 3-Phasen	var	kapazitive Blindleistung — 3-Phasen	var	34	35	130	131	226	227	R
19	verbrauchte kapazitive Blindenergie L1	kvarh	3-Phasen cos φ	-	36	37	132	133	228	229	R
20	Leistungsfaktor 3-Phasen	-	Leistungsfaktor 3-Phasen	-	38	39	134	135	230	231	R
21	Frequenz Leitung Lx	Hz x 10	Frequenz L1	Hz x 10	40	41	136	137	232	233	R
22	verbrauchte Wirkenergie L1	kWh	Spannung L1-L2	mV	42	43	138	139	234	235	R
23	verbrauchte Wirkenergie L2	kWh	Spannung L2-L3	mV	44	45	140	141	236	237	R
24	verbrauchte Wirkenergie L3	kWh	Spannung L3-L1	mV	46	47	142	143	238	239	R
25	erzeugte Wirkenergie L1	kWh	% THD V1	% x 10	48	49	144	145	240	241	R
26	erzeugte Wirkenergie L2	kWh	% THD V2	% x 10	50	51	146	147	242	243	R
27	erzeugte Wirkenergie L3	kWh	% THD V3	% x 10	52	53	148	149	244	245	R
28	verbrauchte induktive Blindenergie L1	kvarh	% THD I1	% x 10	54	55	150	151	246	247	R
29	verbrauchte induktive Blindenergie L2	kvarh	% THD 12	% x 10	56	57	152	153	248	249	R
30	verbrauchte induktive Blindenergie L3	kvarh	% THD 13	% x 10	58	59	154	155	250	251	R
31	Wirkenergie 3-Phasen	kWh	Wirkenergie 3-Phasen	kWh	60	61	156	157	252	253	R
32	induktive Blindenergie – 3-Phasen	kvarh	induktive Blindenergie — 3-Phasen	kvarh	62	63	158	159	254	255	R

4 Konfiguration des Geräts 4.4 Modbus-Register

Para- meter Nr.	NZMXMC		NZM-XMC-TC-MB		Register Istwert		Regis Maxi wert	ter mal-	Register Minimal- wert		R/W
	Parameter	Einheit	Parameter	Einheit	high	low	high	low	high	low	
33	kapazitive Blindenergie — 3-Phasen	kvarh	kapazitive Blindenergie — 3-Phasen	kvarh	64	65	160	161	256	257	R
34	Scheinleistung	VA	Scheinleistung	VA	66	67	162	163	258	259	R
35	Max. Demand von in Register 1250/1251 defi- niertem Parameter	W VA mA	Max. Demand von in Register 1250/1251 defi- niertem Parameter	W VA mA	68	69	164	165	260	261	R
36	verbrauchte kapazitive Blindenergie L2	kvarh	Strom gemittelt 3-Phasen	mA	70	71	166	167	262	263	R
37	verbrauchte kapazitive Blindenergie L3	kvarh	Neutralstrom	mA	72	73	168	169	264	265	R
38	Scheinleistung L1	VA	Scheinleistung L1	VA	74	75	170	171	266	267	R
39	Scheinleistung L2	VA	Scheinleistung L2	VA	76	77	172	173	268	269	R
40	Scheinleistung L3	VA	Scheinleistung L3	VA	78	79	174	175	270	271	R
41	intern (ohne Funktion)		intern (ohne Funktion)	-	80	81	176	177	272	273	R
42	maximale Aufnahme Wert 2	-	maximale Aufnahme Wert 2	-	82	83	178	179	274	275	R
43	maximale Aufnahme Wert 3	-	maximale Aufnahme Wert 3	-	84	85	180	181	276	277	R
44	Scheinenergie – 3-Phasen	kVAh	Scheinenergie – 3-Phasen	VAh	86	87	182	183	278	279	R
45	erzeugte Wirkenergie – 3-Phasen	kWh	erzeugte Wirkenergie – 3-Phasen	kWh	88	89	184	185	280	281	R
46	erzeugte induktive Blind- energie – 3-Phasen	kvarh	erzeugte induktive Blind- energie – 3-Phasen	kvarh	90	91	186	187	282	283	R
47	erzeugte kapazitive Blind- energie – 3-Phasen	kvarh	erzeugte kapazitive Blind- energie – 3-Phasen	kvarh	92	93	188	189	284	285	R
48	erzeugte Scheinenergie – 3-Phasen	kVAh	erzeugte Scheinenergie – 3-Phasen	kVAh	94	95	190	191	286	287	R

4.4.2 Maximale und minimale elektrische Parameter

Die Register 96 bis 191 speichern die Maximalwerte jedes Parameters (siehe die Spalte "Maximal" in Tabelle 9). Die Register 192 bis 287 speichern analog die erfassten Minimalwerte (siehe die Spalte "Minimal" in Tabelle 9).

4 Konfiguration des Geräts

4.4 Modbus-Register

4.4.3 Kommunikation (RS485) einrichten

Register	Variable	Wertebereich	Wertebereich
		NZM-XMC	NZM-XMC-TC-MB
1000H ¹⁾	Protokoll	0 - Modbus	0 - Modbus
1000L ²⁾	Geräteadresse	1 - 255 (Standardwert: 2)	1 - 255 (Standardwert: 2)
1001H ¹⁾	Baudrate	0: 9600 Bit/s (Standardwert) 1: 19200 Bit/s 2: 38400 Bit/s	0: 9600 Bit/s (Standardwert) 1: 19200 Bit/s
1001L ²⁾	Parität	0: nein (Standardwert) 1: ungerade 2: gerade	0: nein (Standardwert) 1: ungerade 2: gerade
1002H ¹⁾	Datenbits	1 - 8 Bit	1 - 8 Bit
1002L ²⁾	Stoppbits	0: 1 Bit (Standardwert) 1: 2 Bits	0: 1 Bit (Standardwert) 1: 2 Bits

Zur Kommunikationseinrichtung (RS485) dienen die Register 1000 bis 1002.

1) H = High Byte

2) L = Low Byte

Um Änderungen zu aktivieren, als nächstes Telegramm "wahr" an Coil 2000 schreiben.

4.4.4 Wandlerverhältnis konfigurieren

Das Universalmodul NZM-XMC-TC-MB kann Strom- und Spannungsmessungen über Wandler ausführen. Hierzu muss das Wandlerübersetzungsverhältnis eingegeben werden.

Register	Variable	Wertebereich
1100, 1101	Primärspannung	0 - 100000
1102	Sekundärspannung	0 - 999
1103	Primärstrom	0 - 10000
1105H ¹⁾		0 - THD / 01 - D

1) H = High Byte

Bei einem direkten Anschluss der Spannung ohne Wandler ist in Register 1100 und 1101 eine 1 einzutragen; ebenso in Register 1102 für die Sekundärspannung.

Beim Strom geht das Gerät stets von einem Übersetzungsverhältnis von X:5 aus. Es reicht daher aus, nur den Primärstrom in Register 1103 einzutragen. Beispiel: Wollen Sie beispielsweise einen maximalen Strom von 250 A messen, so sehen Sie Wandler 300/5 A vor und schreiben in das Register 1103 den Wert 300 (FC 16). Um den Wert zu aktivieren, muss anschließend als nächstes Telegramm direkt "wahr" auf Coil 2000 geschrieben werden (FC 5). Falls Sie einen Wandler mit einem Übersetzungsverhältnis von 1:1 verwenden, so geben Sie den 5-fachen Primärstrom ein. Für das obige Beispiel wäre dann der Wandler 300/1 A und im Register der Wert 1500 einzutragen.

4.4.5 Ausgänge konfigurieren

Die Ausgänge Q1 und Q2 können auf drei Arten verwendet werden:

- Remote-Ausgang,
- Alarmausgang
- Pulsausgang für Energiewerte

Remote-Ausgang

Die Ausgänge können über direkte Modbus-RTU-Befehle geschaltet werden. Dies ist beispielsweise für die Ansteuerung von Fernantrieben für Leistungsschalter gedacht.

Coil	Ausgang
0	1
1	2

Wird Coil 1 mit TRUE geschrieben, so wird Ausgang 2 angesteuert; wird Coil 1 hingegen mit FALSE geschrieben, so wird Ausgang 2 abgesteuert.

Alarmausgang

Tabelle 14: Register für Alarmmeldungen

Ausgang	Registerbereich
1	1150 - 1155
2	1200 - 1205

Register	Variable	Wertebereich
1150, 1151	Höchstwert	je nach Parameter (Standardwert: 0)
1152, 1153	Mindestwert	je nach Parameter (Standardwert: 0)
1154	Verzögerung	0 - 9999 Sekunden (Standardwert: 0)
1155H ¹⁾	Parametercode	1 - 48 (keine Energiewerte)
1155L ²⁾	frei	-

1) H = High Byte

2) L = Low Byte

Um Änderungen zu aktivieren, als nächstes Telegramm "wahr" an Coil 2000 schreiben. 4.4 Modbus-Register

Register	Variable	Wertebereich
1150, 1151	Impulsrate (Wh x Impuls)	je nach Parameter (Standardwert: 0)
1152, 1153	Mindestwert	je nach Parameter (Standardwert: 0)
1154	Verzögerung	0 - 9999 Sekunden (Standardwert: 0)
1155H ¹⁾	Parametercode	31, 48 – Energiewerte
		Hinweis: Wird als Parametercode 31 oder 48 eingetragen, so wird der Ausgang als Pulsausgang verwendet und die Pulsfrequenz (Wh x Impuls) in Register 1150 und 1151 eingetragen. Die Pulsdauer bei Energiewerten beträgt 100 ms.
1155L ²⁾	frei	

1) H = High Byte

2) L = Low Byte

Um Änderungen zu aktivieren, als nächstes Telegramm "wahr" an Coil 2000 schreiben.

4.4.6 Mittelwert über Zeitfenster (Max. Demand)

Hier wird der Parameter Nr 35 (Max. Demand) konfiguriert; dazu wird ein anderer Parameter zugewiesen. Der gewählte Wert dieses Parameters wird während des Zeitfensters in kurzen Zeitintervallen gemessen und der Durchschnitt der gemessenen Werte berechnet.

Der Durchschnittswert ist ein gleitender Mittelwert, der nur aus den in der gewählten Periode ermittelten Einzelwerten besteht. Wird beispielsweise eine Periode von 60 Minuten gewählt, bezieht sich der Mittelwert auf die letzten 60 Minuten.

Register 1250 und 1251 definieren das Verhalten des Messgeräts für den Einstellwert für Max. Demand: In das Register 1250 ist der Code des zu überwachenden Parameters einzutragen. Register 1251 bestimmt die Fensterzeit in Minuten.

Register	Variable	Wertebereich
1250	Parametercode	0: keine Maximaleinstellung 16: Leistung 3-Phasen 34: Scheinleistung 3-Phasen 36: Strom gemittelt 3-Phasen
1251	Zeitfenster (diejenige Periode, in der die maximale Aufnahme ermit- telt werden soll)	1 - 60 Minuten

4.4.6.1 Modbus-Coils im Überblick

Variable	Coil	Тур	Funktions- code
Digitale Ausgänge	1 -2	R/W	1; 5
Neustart des gesamten Geräts ¹⁾	2000	W	5
Leistungswerte löschen	2100	W	5
Max. Demand initialisieren	2101	W	5
Maximal- und Minimalwerte löschen	2102	W	5
Leistung (maximaler/minimaler, Abnahmewert) löschen	2103	W	5
Maximalen Abnahmewert löschen	2104	W	5

1) = Übernahme einer neuen Konfiguration

4.4.6.2 Energiewerte löschen (Coil 2100)

Hiermit wird der Zähler der Leistung gelöscht. Die Einstellung wird automatisch auf 0 zurückgesetzt.

4.4.6.3 Maximum Demand löschen (Coil 2101)

Initialisiert den maximalen Abnahmewert und löscht den vorherigen Wert. Alle gespeicherten Werte zur Berechnung des Maximum Demand-Wertes werden zurückgesetzt. Damit werden die Register 68 und 69 zu 0.

4.4.6.4 Maximal- und Minimalwerte löschen (Coil 2102)

Die maximalen bzw. minimalen Werte jedes Parameters werden gelöscht. Die Einstellung wird auf 0 zurückgesetzt.

4.4.6.5 Leistung (maximalen/minimalen, Abnahmewert) löschen (Coil 2103)

Diese Einstellung entspricht dem Senden der drei obenstehenden Befehle. Die Einstellung wird auf 0 zurückgesetzt.

Es werden dabei ausgeführt:

- Energiewerte löschen
- Max. Demand löschen
- Maximal- und Minimalwert löschen

4.4.6.6 Maximalwert von Maximum Demand löschen (Coil 2104)

Der Maximalwert des Maximum Demand-Wertes wird zurückgesetzt. Die Register 164 und 165 werden zu 0 gesetzt. Die laufende Berechnung wird nicht verändert.

5 Display

5.1 Einleitung

5 Display

5.1 Einleitung

Das Display NZM-XMC-DISP dient zur Anzeige der von den Grundgeräten gemessenen elektrischen Variablen. Die Datenübertragung erfolgt über eine RS485-Schnittstelle. Die Anzeige übernimmt die Master-Funktion bei der Kommunikation und fragt das Messgerät regelmäßig ab, um die elektrischen Parameter auszulesen.

5.2 Aufbau

Das Display zeigt in vier Zeilen die gemessen bzw. berechneten Werte an. Die Werte der Leitungen L1, L2 und L3 werden untereinander dargestellt. In der untersten Zeile wird der berechnete Wert angezeigt.

Das Display verfügt am unteren Rand über vier Tasten.

- Taste "reset" löscht die Anzeige.
- Die Pfeil-Taste schaltet zum nächsten Wert weiter.
- Taste "max" zeigt die maximalen Werte an.
- Taste "min" zeigt die minimalen Werte an.

5.3 Display-Anzeigen in der Abfolge

Die folgenden Grafiken zeigen exemplarisch Werte in der Abfolge, wie sie im Display angezeigt werden, wenn mittels der Pfeil-Taste "weitergeblättert" wird.

Abbildung 19: Abfolge der Display-Anzeigen (Beispiel)

- Die erste (d. h. linke) Display-Anzeige zeigt die Spannung (in V = Volt) an. Indem Sie die Pfeil-Taste drücken, gelangen Sie zur nächsten Anzeige:
- Sie erkennen jetzt die gemessenen Ströme (gemessen in A = Ampere).
- Erneutes Drücken der Taste zeigt in der dritten Anzeige von links die (Wirk-)Leistung (gemessen in kW = Kilowatt).
- Nochmaliges Drücken zeigt die Blindleistung (gemessen in kvar) an.

Abbildung 20: Fortgeführte Abfolge der obigen Display-Anzeige

- Die nächste Anzeige zeigt den phasenbezogenen Wirkfaktor (= cos φ) an.
- Es folgen die Angaben zur Leistung und zur induktiven sowie kapazitiven Blindleistung.
- Das dritte Display zeigt die entsprechenden Angaben zur Blindleistung.
- Das letzte Display zeigt f
 ür die drei Phasen die Werte PD = Power Direction (Stromflussrichtung), Frequenz, PF = Power Factor (Leistungsfaktor). Ein erneutes Dr
 ücken der Pfeil-Taste startet den Display-Zyklus von Neuem.

5.3.1 Unterschiedliche Energiearten anzeigen

Indem Sie die Pfeil-Taste zwei Sekunden lang gedrückt halten, wechselt die Anzeige der Zeile 4 zwischen den unterschiedlichen Energiearten (Wirk-, Blind- und Scheinenergie). Drücken Sie die Pfeil-Taste für zwei Sekunden, um zur nächsten Leistungsart zu gelangen.

Abbildung 21: Abfolge der angezeigten unterschiedlichen Energiearten

5.3.2 Maximal- und Minimalwerte anzeigen

Durch Drücken der Tasten "max" bzw. "min" werden die Maximal- bzw. Minimalwerte für die jeweils aktuelle Maske angezeigt. Die entsprechenden Display-Texte blinken hierbei.

5.3.3 Löschen der Maximal- und Minimalwerte

Die angezeigten Maximal- und Minimalwerte werden durch gleichzeitiges Drücken der Tasten "max" und "min" gelöscht. Durch Drücken der Taste "max" wechseln Sie zwischen den Optionen "ja" (yes) und "nein" (no) (→ Abbildung 22).

Abbildung 22: Löschen der Maximal- und Minimalwerte

Zeigt das Display in der unteren Zeile "yes" an und drücken Sie anschließend die Pfeiltaste, so wird der Wert gelöscht und Sie gelangen zur nächsten Anzeige: den Leistungswerten.

5 Display

5.3 Display-Anzeigen in der Abfolge

Indem Sie die Pfeiltaste drücken, können Sie nun auch die Leistungswerte löschen. Mit der "max"-Taste können Sie dabei wieder zwischen "ja" (yes) und "nein" (no) hin- und herwechseln.

Clr	Clr
Ener	Ener
y e s	no

Abbildung 23: Anzeige beim Löschen der Energiewerte

Sie löschen den Energiewert, indem Sie bei angezeigtem Display "yes" die Pfeil-Taste drücken. Sie sehen daraufhin folgende Display-Anzeige, in der die Default-Maske festgelegt wird.

ներ	
455	
000	
7895	
Ս೫բՏ	

Abbildung 24: Standardmäßige Anzeige nach dem Löschen der Leistungswerte

Nach Drücken der Pfeil-Taste erscheint die nachfolgende Anzeige. Hier wird der Default-Wert der Energieanzeige der Zeile 4 festgelegt.

	_
565	
485	
2283	
EnEr	

Abbildung 25: Standardmäßige Anzeige der Energiewerte in Zeile 4

Es folgt die Abschaltverzögerung der Display-Beleuchtung.

566	
41 S P	
۵FF	
0 0	

Abbildung 26: Abschaltverzögerung für Display-Beleuchtung

6 Erweiterungskarten

Die unten genannten Erweiterungskarten können bei den Typen NZM...-XMC-MB... zusätzlich bestellt werden.

Die Geräte NZM2-XMC-MB und NZM3-XMC-MB können maximal zwei, die Geräte NZM2-...-MB-250 eine Erweiterungskarte aufnehmen.

Die Erweiterungskarten können nicht nachgerüstet werden, sondern müssen direkt mitbestellt werden.

Die folgenden Grafiken zeigen nur die große Gehäuseform.

6.1 Relaiskarten

Dem Leistungsschalter werden mit den Relaiskarten wahlweise zwei oder vier Relais zur Verfügung gestellt.

Die Relais können manuell geschaltet oder mit Alarmen verknüpft werden.

Technische Daten → Seite 44.

6.1.1 Karte mit zwei Relais

Abbildung 27: +NZM-XMC-2D0-R, 2 Wechsler

6.1.2 Karte mit vier Relais

Abbildung 28: +NZM-XMC-4D0-R, 4 Schließer

6 Erweiterungskarten

6.1 Relaiskarten

6.1.3 Technische Daten

	Einheit	+NZM-XMC-2D0-R	+NZM-XMC-4D0-R		
Anschluss		Phoenix Contact MC 1.5/6-S	Phoenix Contact MC 1.5/6-ST-3.5 oder gleichwertig		
maximaler Laststrom AC	А	10	5		
maximaler Laststrom DC	А	5	5		
Isolation	V AC	3000	3000		
maximale Spannung bei geöffneten Schaltkontakten	V AC	1000	750		
maximale Schaltleistung NO	VA	2500	750		
	W	150	90		
maximale Schaltleistung NC	VA	750	-		
	W	90	-		

6.1.4 Konfiguration

Der Schreibzugriff auf die Konfigurationsregister erfolgt über Modbus.

6.1.4.1 Manuelles Schalten der Relais

Jedes Relais ist mit einem Modbus-Coil verknüpft, d. h., der gewünschte Zustand Low bzw. High wird auf ein verknüpftes Modbus-Coil geschrieben (Modbus-Befehl 05).

Coil	Ausgänge
0	NZM-XMC: Ausgang Q1
1	NZM-XMC: Ausgang 02
2	Relaiskarte 1: Ausgang RL1
3	Relaiskarte 1: Ausgang RL2
4	Relaiskarte 1: Ausgang RL3
5	Relaiskarte 1: Ausgang RL4

6.1.4.2 Schalten per Alarm

Alarme (Register 1150 - 1200) können auch auf die Ausgänge der Relaiskarten konfiguriert werden.

6.2 Analog-Erweiterungskarte

Dem Leistungsschalter wird ein isolierter analoger Ausgang zur Verfügung gestellt.

Der Ausgang kann über die Modbus-Register als Strom- oder Spannungsausgang festgelegt werden.

Abbildung 29: +NZM-XMC-1AO, 1 isolierter Analogausgang

Tabelle 15: PIN-Belegung

PIN	Belegung
1, 2, 3	V+/I _{Out}
4, 5, 6	V-/I _{In}

6.2.1 Technische Daten

Tabelle 16. Technische Daten +INZIVI-XIVIC-TAO	Tabelle 16:	Technische	Daten -	+NZM-XM	C-1AO
--	-------------	------------	---------	---------	-------

	Einheit	+NZM-XMC-1A0
Anschluss		Phoenix Contact MC 1.5/6-ST-3.5 oder gleichwertig
Maximale Belastung bei Stromausgang	Ω	470
Interne Impedanz bei Spannungsausgang	Ω	330
Trennung U _{rms}	V	2750

6.2.2 Konfiguration

Der Schreibzugriff auf die Konfigurationsregister erfolgt über Modbus. Die Analog-Erweiterungskarte ist auf Steckplatz 1 installiert.

Modbus	Beschreibung	Bereich
20000-1	unterer Grenzwert	abhängig von den Parametern
20002-3	oberer Grenzwert	abhängig von den Parametern
20004H	Ausgangsmodus	0: 0 - 20 mA 1: 4 - 20 mA 2: 0 - 10 mA
20004L	Parameter	0 - 48

Die Analog-Erweiterungskarte ist auf Steckplatz 2 installiert.

6 Erweiterungskarten

6.2 Analog-Erweiterungskarte

Modhus	Reschreihung	Bereich
Woubus	Deschienbung	Dereich
20010-1	unterer Grenzwert	abhängig von den Parametern
20012-3	oberer Grenzwert	abhängig von den Parametern
20014H	Ausgangsmodus	0: 0 - 20 mA 1: 4 - 20 mA 2: 0 - 10 V
20014L	Parameter	0 - 48

Die Änderungen werden nach einem Reset des NZM...-XMC-... übernommen.

Beispiel

Der Anwender möchte einen analogen Stromausgang, 0 - 20 mA, mit dem Parameter "Spannung Phase 1" verknüpfen. Er wünscht außerdem einen Ausgangsstrom von 0 mA bei U = 100 V und einen Ausgangspegel von 20 mA bei U = 300 V.

Die Analog-Erweiterungskarte ist auf Steckplatz 1 installiert.

20000-1 = 100000 20002-3 = 300000 20004H = 0 - 20004L = 1

Hexadezimal:

20000:0x0001; 20001:0x86A0; 20002:0x0004; 20003:0x93E0; 20004:0x0001

Der Spannungsparameter wird in mV angegeben.

6.3 Digital-Erweiterungskarte

Dem Leistungsschalter werden vier isolierte Digitalanschlüsse (Eingang oder Ausgang) mit einer Arbeitsspannung bis zu 48 V DC zur Verfügung gestellt.

Die Funktion E/A kann über die Modbus-Register festgelegt werden.

Abbildung 30: +NZM-XMC-4DI-4DO, 4 isolierte Digital-Anschlüsse

Tabelle 17: PIN-Belegung

PIN	Belegung
1	Versorgung
2	E/A 1
3	E/A 2
4	E/A 3
5	E/A 4
6	GND

6.3.1 Anschluss

Keine externe Versorgung Logikpegel: +5 V - 0 V	Externe Versorgung V DC Logikpegel: V DC - 0 V		
als Eingang konfiguriert	als Ausgang konfiguriert		
$\begin{bmatrix} 1 & \\ 2 & \\ 3 & \\ 4 & \\ 5 & \\ 6 & \\ 6 & \\ \end{bmatrix}$ Input: 5 to 0 V D(1 - 24 V DC 2 - 3 - 4 - 5 - 6 - GND		

6 Erweiterungskarten

6.3 Digital-Erweiterungskarte

6.3.2 Technische Daten

	Einheit	+NZM-XMC-4DI-4D0
Anschluss		Phoenix Contact MC 1.5/6-ST-3.5 oder gleichwertig
Maximale Ein-/Ausgangsspannung	V	48
Ausgangsspannung bei logisch high (ohne externe Spannungsversorgung)	V	5
Eingangsimpedanz	MΩ	1
Ausgangsimpedanz	Ω	100
Trennung U _{rms}	V	2750

6.3.3 Konfiguration

Die Digital-Erweiterungskarte kann auf die Steckplätze 1 oder 2 installiert werden:

Die Digital-Erweiterungskarte ist auf Steckplatz 1 installiert.

Modbus	Beschreibung	Bereich
20000	Konfiguration von Steckplatz 1	0 alle Digital-Anschlüsse als Ausgänge 1 alle Digital-Anschlüsse als Eingänge

Die Digital-Erweiterungskarte ist auf Steckplatz 2 installiert.

Modbus	Beschreibung	Bereich
20010	Konfiguration von Steckplatz 2	0 alle Digitalanschlüsse als Ausgänge 1 alle Digitalanschlüsse als Eingänge

Die Änderungen werden nach einem Reset des NZM...-XMC-... übernommen.

7 Anhang

7.1 Technische Daten

7.1.1 Grundgeräte

	Einheit	NZMXMC-S0	NZMXMC-MB(-250)	
Allgemeines				
Abmessungen (B x H x T)	mm	209 x 132 x 91 (3-polig) 251 x 132 x 91 (4-polig)	NZMXMC-MB 209 x 132 x 91 (3-polig) 251 x 132 x 91 (4-polig) NZMXMC-MB-250 125 x 132 x 87 (3-polig) 165 x 132 x 87 (4-polig)	
Gewicht	g	850 (3-polig) 975 (4-polig)	NZMXMC-MB 850 (3-polig) 975 (4-polig) NZMXMC-MB-250 750 (3-polig) 875 (4-polig)	
Spannungsversorgung				
Spannung	V DC	24 ±10 %	24 ±10 %	
maximaler Strom	mA	200	200	
Leiter		Phoenix Contact GMVSTBR 2,5-2-ST-7,62	Phoenix Contact GMVSTBR 2,5-2-ST-7,62	
Spannungsmessung				
Bemessungsbetriebsspannung	V AC	600	600	
maximale Stoßspannung 8/20 μ s	kV	8	8	
Spannungsbereich	V AC	72 - 600	72 - 600	
Scheinwiderstand (Impedanz)	kΩ	1	1	
Frequenz	Hz	45 - 65	45 - 65	
Genauigkeit		0,4 % Messwert + 0,05 % FS (Endwert)	0,4 % Messwert + 0,05 % FS (Endwert)	
Kategorie: EN 61010		CAT IV-600 V	CAT IV-600 V	
Strommessung				
Bemessungsbetriebsstrom	A AC	300 (300-A-Version) 500 (500-A-Version)	300 (300-A-Version) 500 (500-A-Version)	
Strombereich	A AC	1 - 350 (300-A-Version) 1 - 740 (500-A-Version)	1 - 350 (300-A-Version) 1 - 740 (500-A-Version)	
Maximaler Stromstoß für 1s	kA	30	30	
Frequenz	Hz	45 - 200	45 - 200	
Genauigkeit		0,4 % Messwert + 0,05 % FS (Endwert)	0,4 % Messwert + 0,05 % FS (Endwert)	
Kategorie: EN 61010		CAT IV-600 V	CAT IV-600 V	

7 Anhang

7.1 Technische Daten

	Einheit	NZMXMC-S0	NZMXMC-MB(-250)	
Leistungsmessung				
Genauigkeit		-	0,95 % Messung + 0,05 % FS	
Genauigkeit Wirkleistung		Klasse 1 (IEC 62053-21) ¹⁾	Klasse 1 (IEC 62053-21) ¹⁾	
Genauigkeit Blindarbeit		-	Klasse 2 (IEC 62053-23) ¹⁾	
Impulsausgabe				
Тур		NPN-isolierter Transistor	NPN-isolierter Transistor	
VCE max	V	80	80	
VCE sat	V	0,4	0,4	
l _c maximal	mA	50	50	
l _c empfohlen	mA	10	10	
Trennung	kV	3	3	
maximale Schaltfrequenz	Hz	2	4	
Impulsbreite	ms	120	500 (Voreinstellung) 20 (minimal)	
Impulsrate der Energie	Impulse/kWh	15 (300-A-Version) 7 (500-A-Version)	1 (Voreinstellung)	
Umgebungsbedingungen				
Arbeitstemperatur	Do	-15 - +55	-15 - +55	
Lagertemperatur	٥C	-40 - +80	-40 - +80	
Feuchtigkeit (ohne Betauung)	%	5 - 95	5 - 95	
maximale Betriebshöhe	m	2000	2000	
Schutzart		IP20	IP20	
Digitalausgang				
Тур		-	-	
maximale Spannung	V	-	350	
maximaler Strom	mA	-	120	
Digitaleingang				
maximale Spannung	V	-	50	
VIHmax	V	-	3	
Modbus-Ausgang – RS485				
Datenrate	bit/s	-	9600, 19200, 38400	
Stoppbits		-	1, 2	
Parität		-	keine, ungerade, gerade	
Modbus-Ausgang — Display				
Versorgungsspannung DC	V DC	-	5	
maximaler Strom	mA	-	180	
Arbeitstemperatur	Do		-10 - + 50	

1) Bei Verwendung des dreipoligen Moduls ist die Genauigkeit bei einer asymmetrischen Belastung beeinträchtigt.

7.1.2 Universalgerät

Größe	Einheit	NZM-XMC-TC-MB
Allgemeines		
Abmessungen (B x H x T)	mm	52 x 85 x 70
Gewicht	g	210
		Kategorie III - 300 V AC / 520 V AC EN-61010
Standards		IEC 664, VDE 0110, UL 94, IEC 801, IEC 348, IEC 571-1, EN 61000-6-3, EN 61000-6-1, EN 61010-1, EN 61000-4-11, EN 61000-4-2, EN 61000-4-3, EN 61000-4-4, EN 61000-4-5, EN 55011, CE
Montage		DIN 46277 (Schiene) (EN 50022)
Versorgung		
Bemessungsbetriebsspannung	V AC	230 (einphasig)
Spannungstoleranz	%	-15 / +10
Frequenz	Hz	50/60
Maximaler Verbrauch	VA	3
Absicherung	A	0,5 - 2 (Typ gL oder M)
min. Anschlussquerschnitt	mm ²	1
Genauigkeit		
Spannung		0,5 % ±1 digit
Strom		0,5 % ±1 digit
Leistung/Energie		0,5 % ±1 digit
Sensoren Strom/Spannung		
Leistungsfaktor		0,5 - 1
Messbereichsbegrenzung: ITF/Shunt		0,2 - 120 % / 2 - 120 %
Messkreis		
Spannung: Phase — Neutralleiter / Phase — Phase	V AC	300 / 520
Frequenz	Hz	45 - 65
Nennstrom	A	5
dauerhafte Überlast		1,2 x l _n
Leistungsaufnahme für Spannungs- messung	VA	0,7
Leistungsaufnahme für Strommessung: ITF / Shunt	VA	0,9 / 0,75
min. Anschlussquerschnitt (Spannungsmessung)	mm ²	1
min. Anschlussquerschnitt (Strommessung)	mm ²	2,5

7 Anhang

7.1 Technische Daten

Größe	Einheit	NZM-XMC-TC-MB	
Ausgänge			
optoentkoppelte Transistorausgänge		NPN	
maximale Schaltspannung	V DC	24	
maximaler Schaltstrom	mA	50	
maximale Frequenz	Pulse/s	5	
Pulsdauer	ms	100	
Umgebungsbedingungen			
Arbeitstemperatur	٥C	-10 - +50	
Feuchtigkeit (nicht kondensierend)	%	5 - 95	
maximale Betriebshöhe	m	2000	
Schutzart		IP30	

Stichwortverzeichnis

A
Alarm
D Datenbits
E Einstellungen allgemeine27
G Geräteadresse
L LED-Anzeigen12
M Modbus-Register
P Parameter elektrische
R Relaiskarten
S S0-Schnittstelle
U Universalmessmodul6
Z Zusatzversorgung19