Kommunikations-System Leistungsschalter

Alle Marken- und Produktnamen sind Warenzeichen oder eingetragene Warenzeichen der jeweiligen Titelhalter.

Störfallservice

Bitte rufen Sie Ihre lokale Vertretung an: http://www.eaton.com/moeller/aftersales oder Hotline After Sales Service: +49 (0) 180 5 223822 (de, en) AfterSalesEGBonn@eaton.com

Originalhandbuch

Die deutsche Ausführung dieses Dokuments ist das Originalhandbuch.

Übersetzung des Originalhandbuchs

Alle nicht deutschen Sprachausgaben dieses Dokuments sind Übersetzungen des Originalhandbuchs.

- 1. Auflage 2002, Redaktionsdatum 02/02
- 2. Auflage 2002, Redaktionsdatum 11/02
- 3. Auflage 2003, Redaktionsdatum 04/03
- 4. Auflage 2003, Redaktionsdatum 08/03
- 5. Auflage 2004, Redaktionsdatum 08/04
- 6. Auflage 2004, Redaktionsdatum 11/04 siehe Änderungsprotokoll im Kapitel "Zu diesem Handbuch"
- © 2002 by Eaton Industries GmbH, 53105 Bonn

Autor: Lothar Jagusch, Peter Thiessmeier

Redaktion: Heidrun Riege

Alle Rechte, auch die der Übersetzung, vorbehalten.

Kein Teil dieses Handbuches darf in irgendeiner Form (Druck, Fotokopie, Mikrofilm oder einem anderen Verfahren) ohne schriftliche Zustimmung der Firma Eaton Industries GmbH, Bonn, reproduziert oder unter Verwendung elektronischer Systeme verarbeitet, vervielfältigt oder verbreitet werden.

Änderungen vorbehalten.

Warnung! Gefährliche elektrische Spannung!

Vor Beginn der Installationsarbeiten

- Gerät spannungsfrei schalten
- Gegen Wiedereinschalten sichern
- Spannungsfreiheit feststellen
- Erden und kurzschließen
- Benachbarte, unter Spannung stehende Teile abdecken oder abschranken.
- Die für das Gerät angegebenen Montagehinweise (IL/AWA) sind zu beachten.
- Nur entsprechend qualifiziertes Personal gemäß EN 50110-1/-2 (VDE 0105 Teil 100) darf Eingriffe an diesem Gerät/System vornehmen.
- Achten Sie bei Installationsarbeiten darauf, dass Sie sich statisch entladen, bevor Sie das Gerät berühren
- Die Funktionserde (FE) muss an die Schutzerde (PE) oder den Potentialausgleich angeschlossen werden. Die Ausführung dieser Verbindung liegt in der Verantwortung des Errichters.
- Anschluss- und Signalleitungen sind so zu installieren, dass induktive und kapazitive Einstreuungen keine Beeinträchtigung der Automatisierungsfunktionen verursachen.
- Einrichtungen der Automatisierungstechnik und deren Bedienelemente sind so einzubauen, dass sie gegen unbeabsichtigte Betätigung geschützt sind
- Damit ein Leitungs- oder Aderbruch auf der Signalseite nicht zu undefinierten Zuständen in der Automatisierungseinrichtung führen kann, sind bei der E/A-Kopplung hard- und softwareseitig entsprechende Sicherheitsvorkehrungen zu treffen.
- Bei 24-Volt-Versorgung ist auf eine sichere elektrische Trennung der Kleinspannung zu achten. Es dürfen nur Netzgeräte verwendet werden, die die Forderungen der IEC 60364-4-41 bzw. HD 384.4.41 S2 (VDE 0100 Teil 410) erfüllen.

- Schwankungen bzw. Abweichungen der Netzspannung vom Nennwert dürfen die in den technischen Daten angegebenen Toleranzgrenzen nicht überschreiten, andernfalls sind Funktionsausfälle und Gefahrenzustände nicht auszuschließen.
- NOT-AUS-Einrichtungen nach IEC/EN 60204-1 müssen in allen Betriebsarten der Automatisierungseinrichtung wirksam bleiben.
 Entriegeln der NOT-AUS-Einrichtungen darf keinen Wiederanlauf bewirken.
- Einbaugeräte für Gehäuse oder Schränke dürfen nur im eingebauten Zustand, Tischgeräte oder Portables nur bei geschlossenem Gehäuse betrieben und bedient werden.
- Es sind Vorkehrungen zu treffen, dass nach Spannungseinbrüchen und -ausfällen ein unterbrochenes Programm ordnungsgemäß wieder aufgenommen werden kann. Dabei dürfen auch kurzzeitig keine gefährlichen Betriebszustände auftreten. Ggf. ist NOT-AUS zu erzwingen.
- An Orten, an denen in der Automatisierungseinrichtung auftretende Fehler Personen- oder Sachschäden verursachen können, müssen externe Vorkehrungen getroffen werden, die auch im Fehler- oder Störfall einen sicheren Betriebszustand gewährleisten beziehungsweise erzwingen (z. B. durch unabhängige Grenzwertschalter, mechanische Verriegelungen usw.).

Eaton Industries GmbH Sicherheitshinweise

Inhalt

1	Benutzerhinweise	5
	Zielgruppe	5
	Bestimmungsgemäßer Einsatz	5
	 Sachwidriger Einsatz 	6
	Änderungsprotokoll	6
	Lesekonventionen	8
	Gerätebezeichnung	10
	Systemübersicht	10
2	DMI	11
	Systemkonzept	11
	Geräteübersicht	12
	DMI-Systematik	13
	Tastenfeld	13
	 Bedienkonzept 	13
	Menüstruktur	14
	Projektierung und Installation	16
	– Montage	17
	 Feldbusmodule anschließen 	18
	Anschlussklemmen	20
	 Aufbauvorschriften, EMV 	20
	 Versorgungsspannung anschließen 	21
	 Eingänge anschließen 	22
	 – Ausgänge anschließen 	23
	 Leistungsschalter anschließen 	23
	Inbetriebnahme	26
	Einschalten	26
	 Menüsprache einstellen 	27
	Datenabfrage	28
	– Das Anzeigemenü	28
	 Die Standardanzeige 	33
	Parametrierung	35
	 Das Eingabemenü 	35

	Diagnose	59
	Status NZM	59
	Status DMI	62
	– Diagnose	62
	Alarmmeldungen	66
	Anbindung an Bus-Systeme	67
	Was ist, wenn?	67
	Technische Daten	68
	– Allgemein	68
	 Umgebungsbedingungen 	69
	Stromversorgung	71
	 Digitale Eingänge (24 V DC) 	71
	 – Digitale Ausgänge (Relais) 	72
3	NZM-XDMI-DPV1 (PROFIBUS-DPV1	
,	Interface für DMI)	75
	Systemübersicht	75
	Aufbau des Gerätes	77
	Betriebssystemvoraussetzungen	77
	PROFIBUS-Zertifizierung	77
	Funktionsumfang	78
	Installation	78
	 Versorgungsspannung anschließen 	78
	 PROFIBUS-DP anschließen 	79
	Gerät betreiben	81
	 PROFIBUS-DPV1-Interface in Betrieb nehmen 	81
	LED-Statusanzeigen	82
	PROFIBUS-DP-Strang mit NZM-XDMI-DPV1	
	in Betrieb nehmen	83
	PROFIBUS-DPV0-Funktionen	85
	 Zyklischer Datenaustausch 	
	mit Klasse 1 DP-Master	85
	 Diagnose mit Klasse 1 DP-Master 	106
	PROFIBUS-DPV1-Funktionen	113
	 Funktionsübersicht 	113
	 Objektübersicht 	115
	 Zugriff auf Objekte 	117
	 Process Data Objekte 	118
	 DPV1 Fehlermeldungen 	190

Inhalt

Was ist, wenn?	192
Technische Daten	193
 Allgemeines 	193
 Klimatische Umgebungstemperaturen 	193
 Mechanische Umgebungsbedingungen 	194
 – Elektromagnetische Verträglichkeit (EMV) 	194
 Isolationsfestigkeit 	195
 Werkzeug und Anschlussquerschnitte 	195
Stromversorgung	195
– LED-Anzeigen	195
PROFIBUS-DP	196
Abmessungen	196

Stichwortverzeichnis

197

1 Benutzerhinweise

Das vorliegende Handbuch beschreibt die Komunikationsanbindung der Leistungsschalter NZM2, 3, und 4 an

- ein lokales Data Management Interface (DMI) und
- ein Feldbus-System.

Das Kommunikations-System ermöglicht die Abfrage von Diagnose- und Betriebsdaten, die Erfassung von Stromwerten sowie das Parametrieren und Steuern der Leistungsschalter vor Ort oder über ein Netzwerk.

Zielgruppe

Das DMI darf nur von einer Elektrofachkraft oder einer Person, die mit elektrotechnischer Installation vertraut ist, montiert und angeschlossen werden.

Für die Inbetriebnahme werden elektrotechnische Fachkenntnisse vorausgesetzt. Werden aktive Komponenten wie Motoren oder Druckzylinder angesteuert, können Anlagenteile beschädigt und Personen gefährdet werden, wenn falsch angeschlossen wurde.

Bestimmungsgemäßer Einsatz

Das DMI ist eine Kommunikationskomponente für die Kompaktleistungsschalter NZM. Der Bertieb darf nur nach sachgerechter Installation erfolgen.

- Das DMI ist ein Einbaugerät und muss in ein Gehäuse, einen Schaltschrank oder einen Installationsverteiler eingebaut werden. Spannungsversorgung und Signalanschlüsse müssen berührungssicher verlegt und abgedeckt werden.
- Die Installation muss den Regeln der elektromagnetischen Verträglichkeit EMV entsprechen.
- Wird das DMI eingeschaltet, dürfen keine Gefahren durch angesteuerte Geräte wie z. B. unvorhergesehener Motoranlauf oder unerwartetes Aufschalten von Spannungen entstehen.

Sachwidriger Einsatz

Das DMI darf nicht eingesetzt werden als Ersatz für Komponenten aus sicherheitsrelevanten Steuerungen wie Brenner-, Kran-, NOT-AUS- oder Zweihand-Sicherheitssteuerungen.

Änderungsprotokoll Das Handbuch AWB1230-1441 ist ab der Ausgabe mit Redaktionsdatum 11/04 umbenannt in MN01219002Z-DE.

Redaktions- datum	Seite	Stichwort	neu	Ände- rung	ent- fällt
11/04	10	Abschnitt "Kompatibilität DMI mit Feldbus-Modulen:"		√	
	54	Abschnitt "COM"	√		
	75ff.	Im gesamten Kapitel 3 Lastwarnung und Lastvorwarnung durch Überlastvorwarnung ersetzt		√	
	75ff.	Im gesamten Kapitel 3 Datentypen erweitert		√	
08/04	33	Abschnitt "Die Standardanzeige"	_	√	
	41	Abschnitt "Q-Zuordnung"		√	
08/03	10	Kompatibilität mit Feldbus-Modulen	✓		
	14ff.	Hauptmenü		<u> </u>	-
	29ff.	Anzeigemenü		<u> </u>	-
	31ff.	Parameter, Motorstarter, Zeit		<u> </u>	-
	35	"Passwort einrichten/ändern"	_	√	
	36ff.	Übersicht Eingabemenü	=	√	-
	41ff.	"Kommandos"	=	√	-
		"Fernantrieb"	√		-
		"Q-Zuordnung"	=	√	-
	45ff.	Funktion Feldbus-Ankopplung		√	-

Redaktions- datum	Seite	Stichwort	neu	Ände- rung	ent- fällt
08/03	54	"COM"		√	
	60ff.	"Trip", "Alarm"		<u> </u>	-
	62ff.	"Diagnose"		√	
	67	"Anbindung an Bus-Systeme"		√	_
		PROFIBUS-DP			✓
	75ff.	gesamtes Kapitel 3 "NZM-XDMI-DPV1 (PROFIBUS-DPV1 Interface für DMI)"	√		
04/03	25, 68	Hilfsschalter am NZM anschließen	✓		
	44	Der Leistungsschalter übernimmt die Kurzschluss- und Überlastabschaltung.	√		
	47, 47	Umschaltung von Stern- in Dreieckbetrieb	√		-
	67	Dateneingänge lesen, Byte 2		<u> </u>	-
	71ff.	Motorstarter-Funktionen über PROFIBUS-DP	√		
	80	Dateninhalte/Adresslage		√	
	81	Datenart Temperatur			✓
	89	Tabelle 11		√	
	90	Tabelle 12	√		
	90	Tabelle 13	✓		
	91	Tabelle 14		√	
	91	Tabelle 15	√		
	92	Tabelle 16		√	
	93	Tabelle 17		√	

Redaktions- datum	Seite	Stichwort	neu	Ände- rung	ent- fällt
11/02	10, 11	Hauptmenü		√	
	24, 25	Anzeigemenü		√	
	26	I/O-Zustand		√	
		Motorstarter	√		-
	31ff.	Eingabemenü		√	-
	36	Reset			✓
	36, 37	Tabelle		√	
	37ff.	H-Selekt, Reset H-Sel			✓
		Motorstarter	√		
	39	Anlaufverhalten		√	
	50	Menü Diagnose		√	
	52	Kommandos		√	
	64, 65	Input		√	-
	67, 68	Output		√	
	74ff	Tabelle 3		√	-
	78	Tabelle 4		√	-
	79	Tabelle 6	√		-

Lesekonventionen

Für eine gute Übersichtlichkeit finden Sie auf den linken Seiten im Kopf die Kapitelüberschrift und auf den rechten Seiten den aktuellen Abschnitt, Ausnahmen sind Kapitelanfangsseiten und leere Seiten am Kapitelende. In diesem Handbuch werden Abkürzungen und Symbole eingesetzt, die folgende Bedeutung haben:

DMI Data Management Interface
NZM Leistungsschalter allgemein
AE Anlagenschutz Elektronisch
ME Motorschutz Elektronisch
VE Vollschutz Elektronisch

► zeigt Handlungsanweisungen an.

macht Sie aufmerksam auf interessante Tipps und Zusatzinformationen

Achtung!

warnt vor leichten Sachschäden.

Vorsicht!

warnt vor schweren Sachschäden und leichten Verletzungen.

Warnung!

warnt vor schweren Sachschäden und schweren Verletzungen oder Tod.

Lebensgefahr durch Stromschlag!

Führen Sie bei eingeschalteter Stromversorgung keine elektrischen Arbeiten am Gerät aus.

Halten Sie die Sicherheitsregeln ein:

- Freischalten der Anlage
- Sichern gegen Wiedereinschalten
- Spannungsfreiheit feststellen
- Benachbarte spannungsführende Teile abdecken

Gerätebezeichnung

Im Handbuch wird folgende Kurzbezeichnung verwendet: DMI für NZM-XDMI612.

Systemübersicht

Die nachfolgend beschriebenen Kommunikationskomponenten bilden das Zubehör, das die Kommunikation mit den Leistungsschaltern NZM2, 3 und 4 ermöglicht.

- DMI zur Ankopplung an den Leistungsschalter; handelt die NZM-Daten und leitet Sie gegebenenfalls an ein Feldbus-Interface weiter (-> Kapitel 2, Seite 11).
- NZM-XPC-Soft ist eine PC-Oberfläche für das DMI und den NZM. Sie ermöglicht die komfortable Parametrierung und das Firmware-Update des DMI sowie die Datenabfrage, Parametrierung und Diagnose des Leistungsschalters.
 - (→ http://www.eaton.com/moeller → Support Suchbegriff: MN01219003Z)

Kompatibilität DMI mit Feldbus-Modulen:

NZM-XDMI612	easy-204-DP	NZM-XDMI-DPV1 ¹⁾ V1.10
V1.1.x	√	_
V1.2.1, V1.2.2	_	√

¹⁾ PROFIBUS-Interface für DMI

2 DMI

Systemkonzept

Das DMI ist das **D**ata **M**anagement Interface für Leistungsschalter NZM der Baugrößen 2, 3 und 4. Es bietet vor Ort eine komfortable

- Parametrierung,
- · Bedienung und
- Beobachtung der Leistungsschalter, sowie die
- Abfrage und
- Steuerung weiterer Komponenten in deren Umfeld, wie z. B. Hilfsschalter oder Motorantriebe.

Darüber hinaus ermöglicht es in Kombination mit Leistungsschalter-Typen für den Motorschutz (NZMx-**ME**...) die einfache Realisierung von Motorstarter-Funktionalitäten. Über zusteckbare Interfacemodule ermöglicht das DMI den Zugang zu verschiedenen Feldbus-Systemen. Alle lokal verfügbaren Daten können Sie auch an anderen Orten abrufen (SPS, Leitwarte).

In Aufbau und Bedienung ist das DMI an das Steuerrelais easy angelehnt, so dass Sie mit entsprechenden Vorkenntnissen sich leicht zurechtfinden. Aber auch ohne easy-Kenntnisse ist die Bedienung durch das klar gegliederte Menükonzept sehr einfach.

Im Unterschied zu Steuerrelais oder SPS können Sie im DMI keine logischen Verknüpfungen oder Abläufe programmieren. Es dient im Wesentlichen zur Kommunikationsanbindung an die Leistungsschalter NZM. Deshalb besitzt es auch keine Programmieroberfläche sondern lediglich einen Konfigurator.

Weiterhin besitzt das DMI im Gegensatz zu Steuerungsgeräten nicht die Beriebszustände "Run" und "Stop". Sobald die Versorgungsspannung anliegt, nimmt das DMI die Arbeit auf.

Geräteübersicht

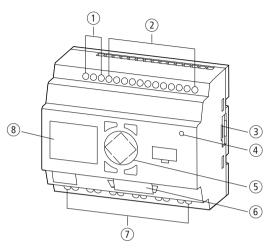


Abbildung 1: Aufbau des DMI

- 1 Versorgungsspannung
- (2) 6 digitale Eingänge
- (3) Schnittstelle für Interfacemodule
- (4) Parameter-LED
- (5) Tastenfeld
- 6 Schnittstelle für Leistungsschalter- oder PC-Anschluss
- 7 6 digitale Ausgänge
- 8 Display

DMI-Systematik

DEL + ALT: Wechsel aus jedem beliebigen Menü ins Sondermenü

ALT + ESC: Wechsel aus jedem beliebigen Untermenü ins Hauptmenü

Cursortasten:

íú Menüpunkt wechseln, Wert ändern

ú í Stelle wechseln

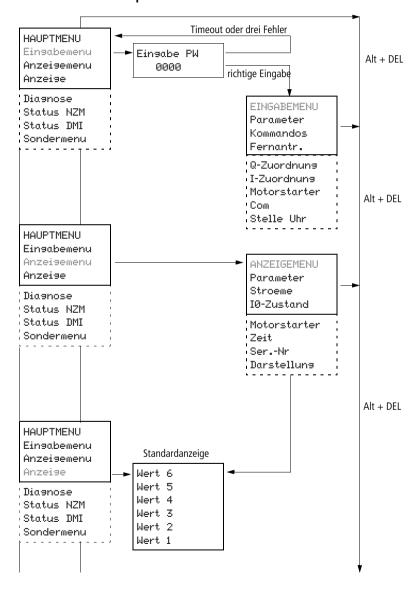
OK: Weiterschalten, Auswahl bestätigen

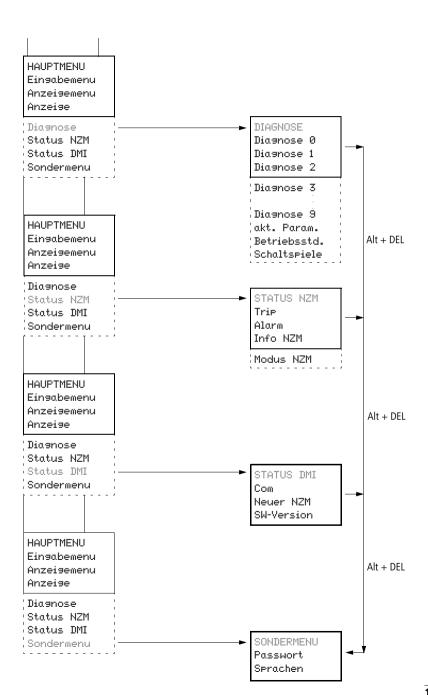
ESC: Zurück wechseln, Abbrechen

Cursor-Anzeige: Der Cursor blinkt im Wechsel. Blinkende Menüs und Werte werden im Handbuch grau dargestellt.

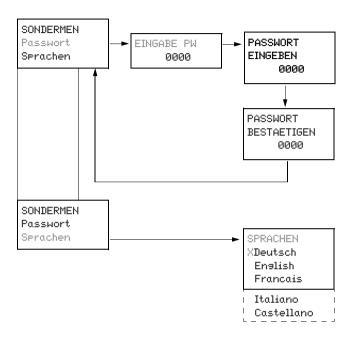
Bedienkonzept

Die Bedienung des DMI erfolgt menügeführt über das Tastenfeld.


Ausgangspunkt des Menüsystems ist das **Hauptmenü**, von dem aus in alle weiteren Untermenüs sowie in die Standardanzeige verzweigt werden kann (—> Abschnitt "Menüstruktur", Seite 14).


Die **Standardanzeige** erscheint automatisch im Display, wenn länger als 30 Sekunden keine Taste am DMI betätigt wird. Sie kann frei konfiguriert werden. Die Standardanzeige wird automatisch von Alarmbildschirmen überschrieben (—> Abschnitt "Die Standardanzeige", Seite 33).

Der **Alarmbildschirm** erscheint jedes Mal im Display, wenn der Leistungsschalter eine Alarmbedingung oder Auslösung erkannt hat. Der Alarmbildschirm bleibt so lange sichtbar, bis er durch einen Benutzereingriff bestätigt wird (—> Abschnitt "Alarmmeldungen", Seite 66).


Im **Display** werden nur maximal vier Zeilen gleichzeitig dargestellt. Umfasst ein Menü mehr Zeilen, können sie durch Betätigen der Cursortasten ∧ oder ∨ erreicht werden.

Menüstruktur Hauptmenü

Sondermenü

Projektierung und Installation

Das DMI darf nur von einer Elektrofachkraft oder einer Person, die mit elektrotechnischer Montage vertraut ist, montiert und angeschlossen werden.

Lebensgefahr durch Stromschlag!

Führen Sie bei eingeschalteter Stromversorgung keine elektrischen Arbeiten am Gerät aus.

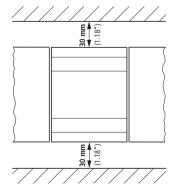
Halten Sie die Sicherheitsregeln ein:

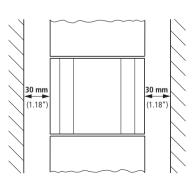
- Freischalten der Anlage
- Sichern gegen Wiedereinschalten
- Spannungsfreiheit feststellen
- Benachbarte spannungsführende Teile abdecken

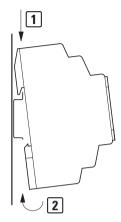
Die Installation des DMI führen Sie in folgender Reihenfolge durch:

- Montage,
- Eingänge verdrahten,
- Ausgänge verdrahten,
- Versorgungsspannung anschließen.

Montage




Falls Sie das DMI mit Erweiterungen (z. B. Feldbusmodule, PROFIBUS-DP) einsetzen, schließen Sie vor der Montage erst die Erweiterung an.


Bauen Sie das DMI in einen Schaltschrank, einen Installationsverteiler oder in ein Gehäuse ein, so dass die Anschlüsse der Versorgungsspannung und die Klemmenanschlüsse im Betrieb gegen direktes Berühren geschützt sind.

Schnappen Sie das DMI auf eine Hutschiene nach IEC/ EN 60715. Sie können das DMI senkrecht oder waagerecht montieren.

Um das DMI problemlos verdrahten zu können, halten Sie auf den Klemmenseiten einen Abstand von mindestens 30 mm zur Wand oder zu benachbarten Geräten ein.

Montage auf Hutschiene

- ▶ 1 Setzen Sie das DMI schräg auf die Oberkante der Hutschiene auf. Drücken Sie das Gerät leicht nach unten und an die Hutschiene, bis es über die Unterkante der Hutschiene schnappt.
 - Durch den Federmechanismus rastet das DMI automatisch ein.
- ▶ 2 Prüfen Sie das Gerät kurz auf festen Halt.

Die senkrechte Montage auf einer Hutschiene wird in gleicher Weise ausgeführt.

Feldbusmodule anschließen

Die Feldbusmodule verbinden Sie einfach über eine Steckbrücke "EASY-LINK-DS" mit dem DMI (→ Abb. 2, Seite 19).

Sie benötigen eine eigene Stromversorgung. Angaben dazu finden Sie → Kapitel "NZM-XDMI-DPV1 (PROFIBUS-DPV1 Interface für DMI)", Seite 75.

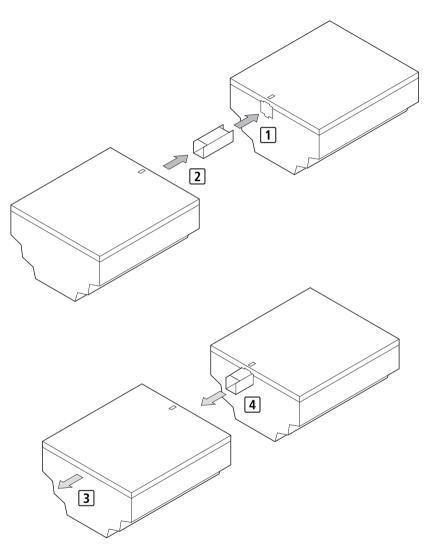


Abbildung 2: Feldbusmodule verbinden

Anschlussklemmen

Werkzeuge

• Schlitz-Schraubendreher, Klingenbreite 3,5 mm, Anzugsmoment 0,6 Nm.

Anschlussquerschnitte der Leitungen

- eindrähtig: 0,2 bis 4 mm²
- feindrähtig mit Aderendhülse: 0,2 bis 2,5 mm²

Aufbauvorschriften, EMV

Beim Einbau eines DMI in ein Gerät oder eine Anlage beachten Sie folgende Vorschriften:

- Montieren Sie das DMI grundsätzlich auf einer geerdeten Hutschiene.
- Der Abstand zwischen DMI und Leistungsschalter sowie zwischen DMI und Hauptstrombahnen muss mindestens 0,5 m betragen.
- Alle mit dem DMI verbundenen Kabel und Leitungen dürfen nicht parallel zu den Hauptstrombahnen verlegt werden. Zulässig ist lediglich das Kreuzen der Bahnen auf kürzestmöglichem Weg und mit einem Abstand von mindestens 10 cm.
- Minimaler Biegeradius des Kommunikationskabels zwischen NZM und DMI ist 130 mm.
- Montieren Sie am Kabel (NZM-XDMI-CAB) zum Leistungsschalter die beiliegende Ferrithülse ca. 5 bis 10 cm vom Stecker auf der Leistungsschalter-Seite entfernt.

Die Beachtung dieser Vorschriften ist zur Erreichung der → Abschnitt "Elektromagnetische Verträglichkeit (EMV)", Seite 70 aufgeführten EMV-Eigenschaften erforderlich.

Versorgungsspannung anschließen

Die erforderlichen Anschlussdaten für das DMI finden Sie

→ Abschnitt "Technische Daten", Seite 68.

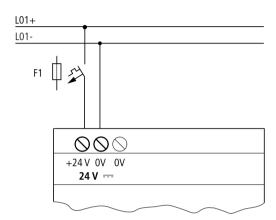


Abbildung 3: Anschließen der Versorgungsspannung

DMI ist verpolungsgeschützt. Damit das DMI funktioniert, achten Sie auf die richtige Polarität der Anschlüsse.

Leitungsschutz

Schließen Sie bei DMI einen Leitungsschutz (F1) von mindestens 1 A (T) an.

Beim ersten Einschalten verhält sich die DMI-Spannungsversorgung kapazitiv. Das Schaltgerät zum Einschalten der Versorgungsspannung muss dafür vorgesehen sein, d. h. keine Reedrelaiskontakte, keine Näherungsinitiatoren.

Eingänge anschließen

Die Eingänge des DMI schalten elektronisch und sind über Optokoppler galvanisch gegeneinander und gegen die sonstige Elektronik getrennt.

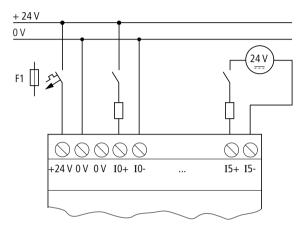


Abbildung 4: Anschließen der Eingänge beim DMI

Schließen Sie an die Eingangsklemmen (10+/10- bis 15+/15-) z. B. Hilfskontakte oder andere relevante Kontaktelemente aus der Umgebung des Leistungsschalters an.

Zwei-Draht Näherungsschalter können wegen des hohen Reststroms nicht eingesetzt werden.

Die Eingänge sind polarisiert, d. h. an IO+ muss der Pol mit dem positiven Potential angeschlossen werden, an IO- der Pol mit dem jeweiligen Bezugspunkt.

Das Vertauschen der Polarität führt nicht zu Beschädigungen am DMI, verhindert allerdings Anzeige und Auswertung der entsprechenden Schaltzustände.

Die Strom- und Spannungsbereiche für die digitalen Eingänge finden Sie → Abschnitt "Digitale Eingänge (24 V DC)", Seite 71.

Ausgänge anschließen

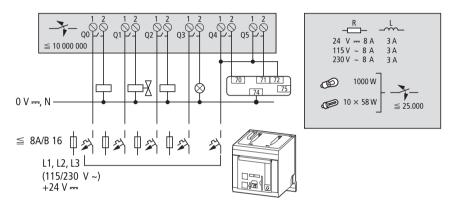


Abbildung 5: Anschließen der Ausgänge beim DMI

Die Ausgänge Q0 bis Q5 arbeiten als potentialfreie Kontakte (Schließer). Ihre Ansteuerung können Sie im "Eingabemenü" über "Q-Zuordnung" festglegen (—> Abschnitt "Q-Zuordnung", Seite 41). Schaltbar sind z. B. Lasten wie Leuchtstoffröhren, Glühlampen, Schütze, Relais oder Motoren.

Leistungsschalter anschließen

Vorsicht!

Stellen sie vor Verbinden des Leistungsschalters mit dem DMI sicher, dass im DMI keine Parameter hinterlegt sind, die die Leistungsschalterfunktionalität beeinträchtigen. Es ist z. B. denkbar, dass im DMI geringere Auslöseschwellen parametriert sind als im Leistungsschalter. Diese können als gültige Werte übernommen werden, wenn beide Geräte miteinander verbunden sind. Die Folge können verfrühte Auslösungen des Leistungsschalters sein. Ausführliche Hinweise zum Parametrierung und Datenübernahme finden Sie —> Abschnitt "Parametrierung", Seite 35.

Der Leistungsschalter wird über ein Kabel vom Typ NZM-XDMI-CAB mit dem DMI verbunden. Dieses Kabel übernimmt zum einen die Anpassung der Signale um eine störungsfreie Übertragung zu gewährleisten, zum anderen erhält der Leistungsschalter darüber die Stromversorgung.

Er ist nicht mehr vom Strom in seinem Kontaktsystem abhängig, sondern kann jederzeit aktuelle Prozessinformationen liefern, selbst wenn er gerade ausgelöst hat und seine Selbstversorgung damit ausgefallen ist.

- ► Entfernen Sie die Abdeckung vom DMI.
- ➤ Stecken Sie das Kabel in die Schnittstelle für Leistungsschalter- oder PC-Anschluss ⑥ am DMI (→ Abb. 1, Seite 12).

Durch seine Konstruktion ist das Kabel verdrehsicher und kann nur in der richtigen Lage gesteckt werden.

- ▶ Öffnen Sie am NZM die Frontklappe.
- ► Entfernen Sie die Abdeckung der COM-Schnittstelle.
- ► Schieben Sie den Stecker unter der Frontklappe durch.
- Stecken Sie den Stecker auf die COM-Schnittstelle bis er bündig sitzt.
- ► Schließen Sie die Frontklappe am NZM.

- ➤ Montieren Sie am Kabel die beiliegende Ferrithülse ca. 5 bis 10 cm vom Stecker auf der Leistungsschalter-Seite entfernt.
- ► Fixieren Sie das Kabel zusätzlich an einer vorhandenen Lasche des Leistungsschalters.
- ► Schließen Sie beide Hilfschalter am NZM an:
 - Input 4 des DMI wird an den Hilfsschalter zur Auslöseerkennung angeschlossen (ausgelöst = L, nicht ausgelöst = H),
 - Input 5 des DMI wird an den Hilfsschalter für die "EIN"/ "AUS"-Erfassung angeschlossen (EIN = H, AUS = L).

Weitere Hinweise entnehmen Sie bitte den Dokumentationen zu den einzelnen NZM-Typen, da sich die konkrete Ausführung je nach Modell unterscheiden kann.

Innerhalb von 5 s nach Anschließen der Kabel auf beiden Seiten tauschen Leistungsschalter und DMI Daten aus. Ab diesem Zeitpunkt können Sie alle zur Verfügung stehenden Parameter und Daten abfragen oder ändern.

Inbetriebnahme

Einschalten

➤ Prüfen Sie vor dem Einschalten ob die Anschlüsse der Stromversorgung und der Eingänge richtig angeschlossen sind:

Klemme +24 V: Versorgungsspannung 24 V Klemme 0 V: Versorgungsspannung 0 V

Klemme lx+: positives Eingangspotential Eingang x

(x = 0 bis 5)

Klemme Ix—: Bezugspegel Eingang x

(x = 0 bis 5)

Achtung!

Die Übertragung der Parameter erfolgt sofort nach dem Einschalten, wenn beide Geräte miteinander verbunden sind.

Wenn Sie das DMI einschalten, erscheinen im Display kurz Firmwareversion und Erstellungsdatum. Danach versucht das Gerät an den Leistungsschalter anzukoppeln. Gelingt dies nicht oder nicht sofort, erscheint die Meldung "Starte Com". Ansonsten wird zunächst das Hauptmenü eingeblendet und dann nach 30 s von der Standardanzeige abgelöst. Wenn keine Standardanzeige gewählt wurde (→ Abschnitt "Die Standardanzeige", Seite 33), erscheint nur das Hauptmenü, allerdings flackert die Anzeige alle 30 Sekunden kurz, um diesen Zustand anzuzeigen.

Alle Ausgangsrelais sind beim Einschalten des Gerätes geöffnet und können erst nach der vollständiger Initialisierung des Geräts gesetzt werden.

Beim Ausschalten des DMI werden alle Parameter dauerhaft im internen EEPROM abgelegt, so dass sie beim nächsten Start wieder geladen werden können. Alle Ausgangsrelais öffnen.

Menüsprache einstellen

Über das Sondermenü (→ Abschnitt "Sondermenü", Seite 16) kann die Benutzersprache ausgewählt werden.

Das Sondermenü ist erreichbar:

- über das Hauptmenü durch Anwahl des Untermenüs "Sondermenü",
- oder aus jedem anderen Menü durch die Tastenkombination ALT + DEL.

SPRACHEN XDeutsch English Francais

- Italiano Castellano
- ► Wechseln Sie im Menü "Sondermenü" mit den Cursortasten İ oder Ü auf "Sprachen".
- ► Wählen Sie mit den Cursortasten i oder Ú ihre Sprache. Deutsch

Englisch

Französisch

Italienisch

Spanisch

► Bestätigen Sie Ihre Wahl mit **OK**.

Die gewählte Sprache wird mit X gekennzeichnet.

Nach 30 s wechselt die Anzeige im Display automatisch zur Standardanzeige.

Mit **ESC** gelangen Sie zurück in das Sondermenü.

Die Spracheinstellung können Sie auch nachträglich ändern.

Ausführliche Hinweise zur Bedienung und Menüsteuerung → Abschnitt "DMI-Systematik", Seite 13.

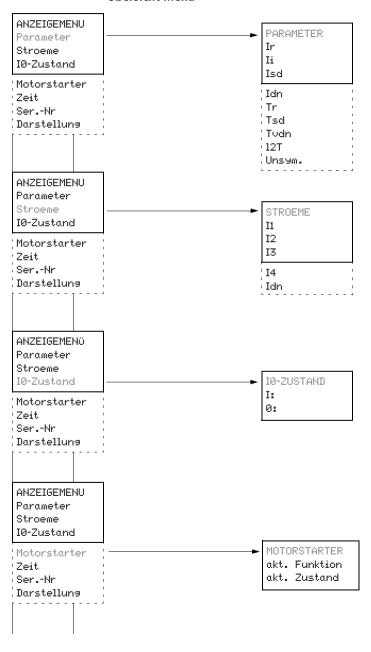
Datenabfrage

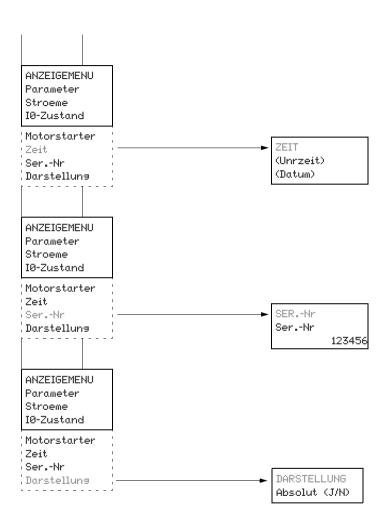
Im DMI abrufbar sind folgende Datenarten:

- vom Leistungsschalter gelieferte Prozessdaten,
- Parameter-Einstellungen,
- Identifikationsdaten des Leistungsschalters und ggf. gesteckter Module,
- Statusmeldungen des Leistungsschalters,
- Statusmeldungen des DMI.

Zur Abfrage der Daten stehen Ihnen zwei unterschiedliche Wege zur Verfügung:

- Ständig benötigte wichtige Daten können Sie in die Standardanzeige übernehmen und dort permanent abrufbar halten.
- Weniger häufig benötigten Daten können Sie bei Bedarf im Anzeigemenü oder in den Status-Menüs abrufen.


Das Anzeigemenü


Über das Anzeigemenü können Sie wichtige Daten in die Standardanzeige übernehmen (→ Abschnitt "Die Standardanzeige", Seite 33).

Nicht ständig benötigte Daten können Sie bei Bedarf über das Anzeigemenü abfragen.

- ► Wechseln Sie im Hauptmenü mit den Cursortasten i oder Ü auf "Anzeigemenü".
- ► Bestätigen Sie Ihre Wahl mit **OK**.
- ► Wählen Sie mit den Cursortasten í oder Ú das gewünschte Untermenü.
- ► Bestätigen Sie Ihre Wahl mit **OK**.

Übersicht Menü

Parameter

PARAMETER
Ir
Ii
Isd

150	
Idn	
Tr	
Tsd	
Tydr	1
12T	

Stellt die Parameter des NZM dar. Zu beachten ist, dass die tatsächlich verwendeten Parameter angezeigt werden und nicht die am NZM direkt an den Schaltern eingestellten Werte. Dieser Unterschied wird wichtig, wenn über das DMI oder über ein Bus-System Parametereinstellungen an den NZM übergeben wurden. Diese können sich dann von den Geräteeinstellungen unterscheiden. Eine derartige Abweichung der Parameter wird durch das Blinken der Parameter-LED ④ (—) Abb. 1, Seite 12) am DMI signalisiert.

Angezeigt werden nur diejenigen Parameter, die der angeschlossene Schalter auch tatsächlich zur Verfügung stellt. So ist es z. B. nicht möglich, bei einem Leistungsschalter der Baugröße 2 den Parameter $I_{\rm dn}$ anzuzeigen, da er bei dieser Baugröße nicht existiert.

Ströme

STROEME
I1
I2
13

I4 Idn In diesem Untermenü können die Momentanwerte der einzelnen Ströme abgerufen werden. Zur Verfügung stehen die einzelnen Phasen- und der Nullleiterstrom (I_1 bis I_4) und (falls vorhanden) der Differenzstrom I_{dn} .

Die Anzeige erfolgt in Abhängigkeit von der gewählten Einstellung entweder relativ, also auf I_r [%] bezogen, oder absolut in Ampere.

I/O-Zustand

I0-ZUSTAND I: 0: Den Zustand der Ein- und Ausgänge am DMI können Sie durch diese Option abgefragen. Die Ein- und Ausgänge werden jeweils in einer Zeile dargestellt, wobei "0" für "AUS" und "1" für "EIN" steht.

Bei der Interpretation der Anzeige ist zu beachten, dass die Ein- und Ausgänge entsprechend ihrer räumlichen Anordnung im Gerät angezeigt werden, z. B. ist IO ganz links, I5 ganz rechts in der Anzeige.

Motorstarter

MOTORSTARTER akt. Funktion akt. Zustand

Hiermit können Sie die Motorstarter-Funktion und den augenblicklichen Zustand des Motors abrufen. Als Motorstarterfunktion stehen folgende Möglichkeiten zur Verfügung:

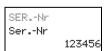
- Aus: keine Motorstarter-Funktion sondern reine DMI-Funktion, d. h. beobachten, parametrieren und bedienen des Leistungsschalters,
- Direktstarter: Steuerung eines Motors mit einer Laufrich-
- Wendestarter: Steuerung eines Motors mit zwei Laufrichtungen,
- S/D-Starter: Steuerung eines Motors mit einer Laufrichtung mit Stern-/Dreieck-Umschaltung beim Anlauf,
- S/D-Wendestarter: Steuerung eines Motors mit zwei Laufrichtungen mit Stern-/Dreieck-Umschaltung beim Anlauf.

Genauere Erläuterungen zur Motorschutz-Funktionalität finden Sie → Kapitel "Motorstarter", Seite 44.

7eit

Über dieses Untermenü können Sie Uhrzeit und Datum abrufen oder in die Standardanzeige übernehmen.

Zur Einstellung von Uhrzeit und Datum → Abschnitt "Stelle Uhr", Seite 58.


Ser.-Nr

In diesem Untermenü kann die Seriennummer für den Anlaufstopp abgefragt werden. Die Einstellung der Seriennummer ist nur über die PC-Oberfläche oder durch die Übernahme der Seriennummer eines angeschlossenen Schalters möglich.

Eine Übernahme der Seriennummer in die Standardanzeige ist nicht möglich.

ZFIT. (Uhrzeit) (Datum)

Darstellung

DARSTELLUNG Absolut (J/N) Das DMI stellt im Auslieferungszustand alle Ströme als Relativwerte dar, also in % bezogen auf $I_{\rm r}$. Damit entspricht es in seiner Grundeinstellung der Beschriftung des NZM. Es ist aber auch möglich, Absolutwerte in Ampere anzuzeigen.

- ► Wählen Sie im Anzeigemenü "Darstellung". Im folgenden Bildschirm erscheint "Absolut" und der Wert "J" (= Ja) oder "N" (= Nein).
- ► Schalten Sie mit den Cursortasten < oder > zwischen J und N um.
- ► Bestätigen Sie die Einstellung **OK**.

Werte in Standardanzeige übernehmen

Beispielsweise können wichtige Parmeter, der Zustand der digitalen Eingänge und die aktuelle Uhrzeit im Display erscheinen.

- ▶ Wählen Sie im Anzeigemenü ein Umtermenü z. B. "Ströme".
- ► Wählen Sie mit den Cursortasten i oder Ú den gewünschten Parameter, z. B. I₁.
- ► Bestätigen Sie die Auswahl mit **OK**.

Der Wert für I_1 wird in die Standardanzeige übernommen. (\rightarrow) nachfolgenden Abschnitt "Die Standardanzeige")

Die Standardanzeige

- ► Bestätigen Sie Ihre Wahl mit **OK**.

Die Standardanzeige erscheint automatisch im Display, wenn länger als 30 s keine Taste am DMI betätigt wird. Sie wird lediglich durch Alarmmeldungen des NZM überschrieben (

Abschnitt "Alarmmeldungen", Seite 66).

Die Standardanzeige können Sie über das Anzeigemenü mit den dort auswählbaren Daten frei belegen (Abschnitt "Das Anzeigemenü", Seite 28). So ist es möglich, die Standardanzeige im Display entsprechend den jeweiligen Anforderungen der Anlage zu gestalten.

Die Standardanzeige umfasst maximal 6 Zeilen. Die nicht sichtbaren Zeilen können Sie mit den Cursortasten $\dot{\mathbf{I}}$ oder $\dot{\mathbf{U}}$ angewählen.

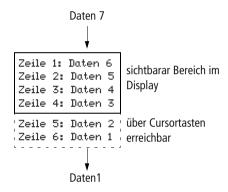


Abbildung 6: Prinzip der Standardanzeige

Neue Daten 7 in der Anzeige werden grundsätzlich in der Zeile 1 eingefügt. Erfolgen mehr als 6 Einträge, werden die Daten 1 gelöscht.

Wird die Verbindung zwischen DMI und NZM unterbrochen, zeigt das DMI bis zum Aufbau einer neuen Verbindung die zuletzt gültigen Werte für alle Daten des Leistungsschalters (Ströme, Parameter, Status, Typkennung) an.

Parametrierung

Das Eingabemenü

Die Parametrierung von Leistungsschalter und DMI nehmen Sie über das Eingabemenü vor. Dieses Menü ist aufgrund der vielfältigen Einstell- und Parametriermöglichkeiten eines der komplexesten innerhalb des DMI.

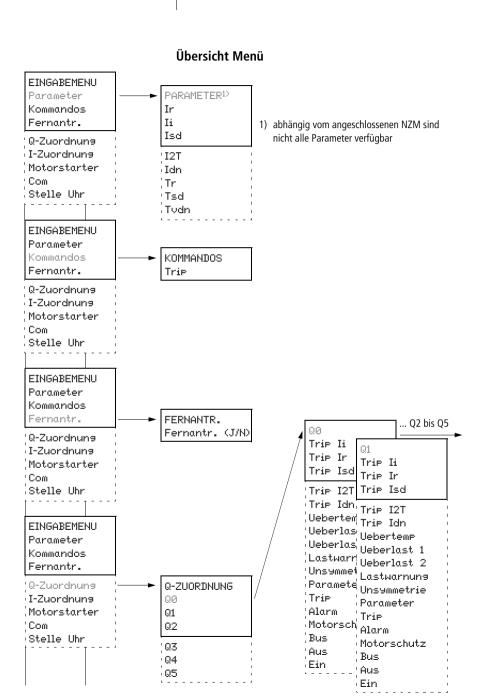
Vorsicht!

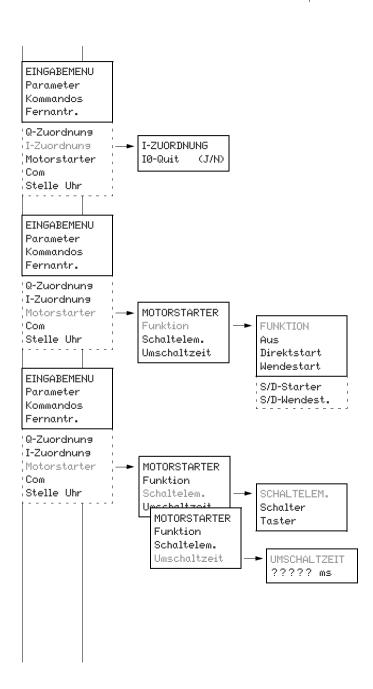
Da Änderungen der Parametrierung sich auf die gesamte Anlage auswirken können und im Fehlerfall Material- oder Personenschäden nicht ausgeschlossen werden können, ist das Eingabemenü durch eine Passwortabfrage geschützt.

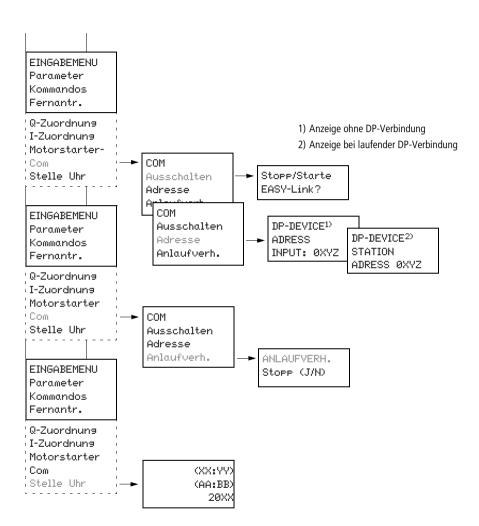
Passwort einrichten/ändern

Erst nach korrekter Eingabe des Passworts können Sie Eingaben vornehmen. Als Passwort wird ein Wert zwischen 0000 und 9999 eingegeben.

Ein Passwort können Sie über das Sondermenü einrichten oder ändern (→ Abschnitt "Sondermenü", Seite 16).


- ▶ Rufen Sie mit **ALT** und **DEL** das Sondermenü auf.
- ► Wechseln Sie mit den Cursortasten i oder i auf "Passwort".
- ► Bestätigen Sie Ihre Wahl mit **OK**.




Um unbefugte Änderungen auszuschließen, erfolgt nach 30 s ohne Eingabe ein Rücksprung ins Hauptmenü. Die Eingabeebene ist dann erst wieder nach erneuter Eingabe des Passworts erreichbar.

Passwort vergessen. Jetzt müssen Sie über die PC-Oberfläche einen neuen Parametersatz mit dem gewünschten Passwort ins DMI schreiben. Um die bisherige Einstellung zu erhalten, übernehmen Sie mit "DMI auslesen" die aktuelle Konfiguration in die PC-Oberfläche und speichern bei Bedarf. Dann kann das Passwort geändert und die neue Einstellung mit "DMI schreiben" wieder zurück ins DMI übertragen werden.

Parameter

Über das Menü "Parameter" können Sie die Parameter des Leistungsschalters verändern. Dabei stehen alle Stellgrößen zur Verfügung, die der angeschlossene NZM unterstützt. Nicht unterstützte Parameter können selbstverständlich nicht verändert werden. Das gilt auch für Parameter, die der Leistungsschalter zwar unterstützt, die aber fest vorgegeben sind. Das kann z. B. in einigen Leistungsschalter-Varianten für $t_{\rm r}$ der Fall sein.

Das DMI begrenzt in jedem Fall die Wertebereiche für alle Parameter auf diejenigen Werte, die am Leistungsschalter selbst über die Bedienelemente auf der Front vorgegeben sind.

Warnung!

Die Grenzwerte am Leistungsschalter müssen entsprechend den Erfordernissen der Anlage eingestellt wurden.

Zur Parametrierung gehen Sie wie folgt vor:

PARAMETER	
Ir	
Ii	
Isd	

I2T Idn

Tr

ır Tsd

Tydn

- ► Wechseln Sie im Eingabemenü mit den Cursortasten İ oder Ü auf "Parameter".
- ► Bestätigen Sie Ihre Wahl mit **OK**.
- ▶ Wählen Sie mit den Cursortasten Í oder Ú den zu aktualisierenden Parameter.
- ➤ Stellen Sie mit den Cursortasten < oder > den gewünschten Wert zwischen oberer und unterer Einstellgrenze ein.

Die Einstellgrenzen bewegen sich in den Stufen, die der Leistungsschalter selbst benutzt.

Es ist möglich, z. B. über den unteren Grenzwert hinweg zu gehen, um bestimmte Werte schnell zu erreichen. Nach dem Minimalwert erscheint der obere Grenzwert.

- ► Bestätigen Sie Ihre Wahl mit **OK**.
- ► Wählen Sie mit den Cursortasten f oder Ú einen neuen Parameter.

Vorsicht!

Wird ohne Bestätigung mit **0K** ein neuer Parameter ausgewählt, so geht die vorherige Änderung verloren.

Vorsicht!

Bei Anwahl des Untermenüs "Parameter" speichert das DMI die zu diesem Zeitpunkt am Leistungsschalter eingestellten Werte. Sollte die Schalterstellung des Leistungsschalters geändert werden solange das Menü Parameter geöffnet ist, werden diese Änderungen **nicht** während der Parametrierung erkannt.

Die eingestellten Parameter werden vom DMI dauerhaft gespeichert und bei jedem Neustart während des Verbindungsaufbaus sowie zyklisch im normalen Datenaustausch übergeben.

Warnung!

Parameter, die mittels DMI oder über einen Feldbus geändert werden, werden im Leistungsschalter nicht dauerhaft gespeichert. Sie gehen verloren, wenn der Leistungsschalter nicht ausreichend versorgt wird. Zur Permanentspeicherung ist immer ein DMI erforderlich.

Parameterabweichung

Durch die Möglichkeit, Parameter sowohl am Leistungsschalter als auch am DMI oder über einen Feldbus einzustellen, kann der Fall auftreten, dass sich diese Parametersätze unterscheiden.

Bei unterschiedlichen Parametersätzen blinkt am DMI die Parameter-LED ③ (→ Abb. 1, Seite 12).

Kommandos

KOMMANDOS Trip Über das Untermenü Kommandos können Sie das Verhalten des Leistungsschalters direkt beeinflussen. Momentan steht das Kommando Trip zur Verfügung.

Trip veranlasst den Leistungsschalter zu einer Auslösung, unabhängig von den eingestellten Parametern. Ein Strom von $\ge 40 \% I_r$ auf mindestens einer Phase ist zur Ausführung dieses Kommandos erforderlich.

Fernantrieb

FERNANTR. Fernantr. (J/N) Über dieses Untermenü kann die Belegung der Ausgänge Q4 und Q5 für den Fernantrieb des NZM gewählt werden.

Ist der Fernantrieb aktiviert, schalten beide Ausgänge gegenläufig, d. h. bei Q4 "EIN" ist Q5 "AUS" und umgekehrt. Im Ruhezustand ist Q4 "EIN" und Q5 "AUS".

Nach Aktivierung des Fernantriebs über das Menü sowie nach jedem Einschalten des DMI stehen beide Ausgänge auf "AUS". Dadurch behält der Fernantrieb seine Stellung bei, bis ein Steuerkommando über den Feldbus gegeben wird.

Q-Zuordnung

Das Untermenü "Q-Zuordnung" ermöglicht es, den sechs digitalen Ausgängen Q0 bis Q5 des DMI bestimmte Funktionen zuzuordnen.

- ► Wechseln Sie im Menü "Q-Zuordnung" mit den Cursortasten Í oder Ú auf Q0 bis Q5.
- ► Bestätigen Sie Ihre Wahl mit **OK**.
- ► Wählen Sie mit den Cursortasten i oder i die gewünschte Funktion (→ nachfolgende Tabelle).
- ► Bestätigen Sie Ihre Wahl mit **OK**.

Alle Ausgänge sind unabhängig voneinander mit folgenden Funktionen belegbar (→ nachfolgende Tabelle 1):

Q-ZUORDNUNG Q0

Q1 Q2

|Q3 |Q4

05

Tabelle 1: Ausgangsfunktionen

Funktion	Ausgang schaltet, wenn
Trip $I_i^{1)}$	eine Kurzschlussauslösung erfolgt ist
$\frac{TripI_{r}^{1}}{TripI_{r}^{1}}$	eine Überlastauslösung erfolgt ist (langzeitverzögert)
$\frac{\text{Trip } I_{\text{sd}}^{1)}}{\text{Trip } I_{\text{sd}}^{1)}}$	kurzzeitverzögerte Auslösung erfolgt ist (ohne aktivierte P t-Überwachung)
Trip I ² t ¹⁾	eine kurzzeitverzögerte Auslösung aufgrund P t-Charakteristik erfolgt ist (mit aktivierter P t-Funktion)
Trip $I_{dn}^{1)}$	der zugelassene Fehlerstroms überschritten wurde und dadurch eine Auslösung erfolgte
Uebertemp ¹⁾	die zulässige Betriebstemperatur der NZM-Elektronik überschritten wurde und dadurch eine Auslösung erfolgte
Ueberlast 1	der Strom in mindestens einem Pol 100 % des zugelassenen Wertes überschreitet (Hysterese ca. 5 %)
Ueberlast 2	der Strom in mindestens einem Pol 120 % des zugelassenen Wertes überschreitet (Hysterese ca. 5 %)
Lastwarnung	der Strom in mindestens einem Pol 70 % des zugelassenen Wertes überschreitet (Hysterese ca. 5 %)
Unsymmetrie	ein Leistungsschalter für Motorschutz eine Unsymmetrie der Phasenströme von > 50 % erkennt; die Meldung wird bei einer Unsymmetrie von 75 % wieder zurückgesetzt.
Parameter	die Parametersätze im DMi und NZM sich unterscheiden
Trip ¹⁾	eine Auslösung vorliegt; unabhängig vom Auslösegrund
Alarm	der Leistungsschalter einen Alarmzustand meldet; unabhängig von der Alarmursache
Motorschutz	der Leistungsschalter (-ME-Typ) einen Überlastfall erkennt und das DMI auffordert, den Motor abzuschalten. Sollte die Überlast bestehen bleiben, löst der Leistungsschalter aus.
Bus	der Ausgang vom Feldbus aus angesteuert werden soll (Feldbusmodul erforderlich)
AUS	der Ausgang dauerhaft ausgeschaltet ist
EIN	der Ausgang dauerhaft eingeschaltet ist

¹⁾ Im Fall einer Auslösung werden die entsprechenden Ausgänge zurückgesetzt, wenn eine Quittierung erfolgt (—> Abschnitt "Alarmmeldungen", Seite 66).

Alle Ausgänge sind galvanisch voneinander getrennte Relaisausgänge und können somit auch unterschiedliche Kreise und Lasten schalten. Technische Daten -> Abschnitt "Technische Daten", Seite 68.

Bei Verwendung eines Motorantriebs für den Leistungsschalter werden die Ausgänge Q4 und Q5 zum Schalten des Motors verwendet.

Ist eine Motorstarter-Funktionalität für das DMI gewählt, werden einige oder alle der Ausgänge Q0 bis Q3 zur Steuerung der Schütze verwendet.

Ausgänge des DMI bleiben bei einem Abbruch der Verbindung zum NZM gesetzt, wenn sie zum Melden von Alarmbedingungen (Trip, Lastwarnung, Überlast usw.) parametriert sind. Dadurch wird das Halten einer Alternativ-Schaltung möglich, die von diesen Ausgängen gesteuert wird.

Durch das Trennen der Verbindung zwischen DMI und NZM wird das Auslesen der Diagnosedaten des NZM mit einem PC und der NZM-XPC-Soft ermöglicht.

Ausgänge, die nicht direkt vom NZM gesteuert werden, sind davon nicht betroffen. Dazu zählen die dauerhaft auf "EIN" oder "AUS" gesetzten Ausgänge, über den Bus gesteuerte Ausgänge und ein "Parameter"-Ausgang.

I-Zuordnung

In diesem Menü wird festgelegt, ob der Eingang IO zur Quittierung von Auslösungen oder des Motorschutz-Alarms verwendet wird.

, In

MOTORSTARTER Funktion Schaltelem. Umschaltzeit

Motorstarter

In diesem Menü wird festgelegt, ob und mit welchen Parametern eine Motorstarter-Funktionalität vom DMI übernommen wird, oder ob es reine DMI-Funktionen ausführt (beobachten, parametrieren und bedienen des Leistungsschalters).

Gemeinsam mit den für den Motorschutz vorgesehenen Leistungsschaltern NZM2/3/4-ME ermöglicht das DMI verschiede Motorstarter-Funktionalitäten:

- Direktstarter
- Wendestarter
- Stern-/Dreieck-Starter
- Stern-/Dreieck-Wendestarter

Die Ansteuerung der einzelnen Funktionen (Ein/Aus, Rechts-/Linkslauf) erfolgt wahlweise über Taster oder Schalter an den Eingängen I1 bis I3 des DMI oder über den Feldbus (Voraussetzung: angeschlossenes Feldbusmodul, z. B. NZM-XDMI-DPV1).

Über die Ausgänge Q0 bis Q3 steuert das DMI die Schütze und realisiert dadurch die jeweilige Starter-Funktionalität.

Die prinzipielle Motorschutz-Anordnung mit DMI zeigt Abb. 7, Seite 45.

Bei allen Startervarianten liegt der Leistungsschalter in Reihe vor dem Schütz bzw. den Schützen.

Der Leistungsschalter übernimmt die Kurzschlussabschaltung und steuert die Abschaltung der Schütze bei Überlast über das DMI.

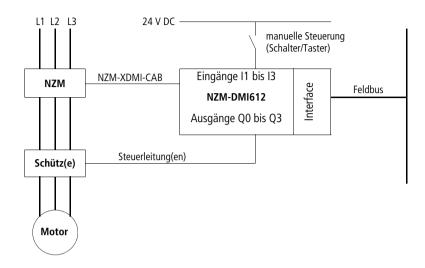


Abbildung 7: Prinzipanordnung für Motorstarter

Funktion

Sie bestimmt die grundsätzliche Funktionsweise, also reine DMI-Funktion oder Motorstarter-Funktionen in einer der nachfolgend genannten Ausprägungen:

Direktstarter

Im Menüpunkt "**Direktstart**" wird der Motor direkt gestartet, also ohne weitere Umschaltung, es steht nur eine Laufrichtung zur Verfügung.

Die Eingänge werden in Abhängigkeit von der gewählten Art der Befehlsgeräte genutzt.

Eingänge:	Schalter	11	EIN/AUS
	Taster	I1	EIN
		12	AUS
Ausgänge:		Q0	Netzschütz

FUNKTION Aus Direktstart Wendestart

|S/D-Starter |S/D-Wendest. Zum Schutz der Anlage realisiert das DMI nach dem Abschalten eine Wiedereinschaltsperre, die 100 ms bestehen bleibt. Erst danach ist ein erneutes Einschalten möglich, frühere Einschaltbefehle werden ignoriert.

Wendestarter

Im Menüpunkt "Wendestart" kann der Motor direkt in eine von beiden Laufrichtungen gestartet werden. Eine weitere Umschaltung während des Anlaufs erfolgt nicht.

Die Eingänge werden in Abhängigkeit von der gewählten Art der Befehlsgeräte genutzt.

Eingänge	Schalter	11	Linkslauf
		13	Rechtslauf
	Taster	I1	Linkslauf
		12	AUS
		13	Rechtslauf
Ausgänge		Q0	Netzschütz Linkslauf
		Q1	Netzschütz Rechtslauf

Zum Schutz der Anlage realisiert das DMI nach dem Abschalten oder bei Richtungswechsel eine Wiedereinschaltsperre, die 100 ms bestehen bleibt. Erst danach ist ein erneutes Einschalten bzw. ein Richtungswechsel möglich, frühere Eingaben werden ignoriert. Gleichzeitiges Betätigen beider Schalter oder Taster "EIN" wird ignoriert, d. h. der Motor behält seinen Zustand bei.

Stern-/Dreieck-Starter

Im Menüpunkt "S/D-Starter" wird der Motor mit Stern-/ Dreieckumschaltung gestartet. Es steht nur eine Laufrichtung zur Verfügung.

Die Eingänge werden in Abhängigkeit von der gewählten Art der Befehlsgeräte genutzt.

Eingänge	Schalter	11	EIN/AUS
	Taster	I1	EIN
		12	AUS
Ausgänge		Q0	Netzschütz
		Q2	Sternschütz
		Q3	Dreieckschütz

Beim Einschalten wird das Netzschütz erst 100 ms nach dem Sternschütz geschaltet, um eine günstigere Dimensionierung des Sternschützes zu ermöglichen. Die Umschaltzeit von Stern- nach Dreieckbetrieb kann über den Parameter "Umschaltzeit" im Motorstartermenü zwischen 100 und 99900 ms, in Schritten von 100 ms, eingestellt werden.

Bei der Umschaltung von Stern- in Dreieckbetrieb wird das Dreieckschütz erst ca. 100 ms nach Absteuern des Sternschützes geschaltet.

Zum Schutz der Anlage realisiert das DMI nach dem Abschalten eine Wiedereinschaltsperre, die 100 ms bestehen bleibt. Erst danach ist erneutes Einschalten möglich, frühere Einschaltbefehle werden ignoriert.

Stern-/Dreieck-Wendestarter

Im Menüpunkt "**S/D-Wendest.**" kann der Motor mit Stern-/ Dreieckumschaltung in beide Laufrichtungen gestartet werden.

Die Eingänge werden in Abhängigkeit von der gewählten Art der Befehlsgeräte genutzt:

Eingänge	Schalter	11	Linkslauf
		13	Rechtslauf
	Taster	I1	Linkslauf
		12	AUS
		13	Rechtslauf
Ausgänge		Q0	Netzschütz Linkslauf
		Q1	Netzschütz Rechtslauf
		Q2	Sternschütz
		Q3	Dreieckschütz

Beim Einschalten wird das Netzschütz erst 100 ms nach dem Sternschütz geschaltet, um eine günstigere Dimensionierung des Sternschützes zu ermöglichen. Die Umschaltzeit von Stern- nach Dreieckbetrieb kann über den Parameter "Umschaltzeit" im Motorstartermenü zwischen 100 und 99900 ms, in Schritten von 100 ms, eingestellt werden.

Bei der Umschaltung von Stern- in Dreieckbetrieb wird das Dreieckschütz erst ca. 100 ms nach Absteuern des Sternschützes geschaltet.

Zum Schutz der Anlage realisiert das DMI nach dem Abschalten oder bei Richtungswechsel eine Wiedereinschaltsperre, die 100 ms bestehen bleibt. Erst danach ist ein erneutes Einschalten bzw. ein Richtungswechsel möglich, frühere Eingaben werden ignoriert. Gleichzeitiges Betätigen beider Schalter oder Taster "EIN" wird ignoriert, d. h. der Motor behält seinen Zustand bei.

Detaillierte Pläne zur Motorstarter-Verdahtung finden Sie auch im Eaton Schaltungsbuch FB0200-004 im Kapitel "Rund um den Motor".

• Feldbus-Ankopplung

Die Funktionsweise des DMI (DMI oder Motorstarter, Starter-Typ), verwendete Befehlsgeräte (Schalter bzw. Taster) und Umschaltzeit können wie andere Parameter auch über einen angeschlossenen Feldbus, z. B. PROFIBUS-DP, geändert bzw. rückgelesen werden. Weiterhin kann die Steuerung des Motorstarters ebenfalls über den Feldbus, anstelle der direkt am DMI angeschlossenen Schalter oder Taster, erfolgen.

Eine genauere Aufschlüsselung der Daten für PROFIBUS-DP finden Sie → Kapitel 3, Seite 75.

Die Steuerung des Motorstarters kann vom DMI aus über Schalter oder Taster und vom Feldbus aus über Kommandocodes oder pegelgesteuert über die Nutzung der Ausgangsdaten erfolgen. Das Verhalten in den vier möglichen Kombinationen zwischen Feldbus- und DMI-Steuerung soll anhand der nachfolgenden Diagramme verdeutlicht werden:

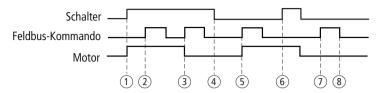


Abbildung 8: Schaltelemente am DMI: Schalter Feldbus steuert über Kommandocodes

- Der Motor wird vor Ort durch den Schalter am DMI eingeschaltet.
- ② Das Einschaltkommando am Feldbus zeigt nach außen keine Wirkung, da der Motor bereits eingeschaltet ist.
- ③ Der Feldbus schaltet den Motor aus, obwohl der Schalter noch auf "EIN" steht. Hier setzt sich aus Sicherheitsgründen das Ausschaltkommando durch.
- ④ Der Motor ist bereits ausgeschaltet, deshalb hat das Ausschaltsignal vor Ort keine Wirkung.
- (5) Der Feldbus schaltet den Motor über ein Kommando wieder ein.
- (6) Vor Ort wird ebenfalls der Schalter auf "EIN" gestellt. Dieser Schritt hat nach außen hin keine Wirkung, da der Motor bereits eingeschaltet ist. Er ist aber aufgrund der Verwendung eines Schalters (statt eines Tasters) notwendig, um den Motor in ? auch vor Ort wieder ausschalten zu können.
- Der Motor wird durch das Öffnen des Schalters vor Ort wieder ausgeschaltet. Auch in diesem Fall setzt sich der Ausschaltbefehl durch, obwohl der Motor ursprünglich nicht per Schalter sondern über den Feldbus eingeschaltet wurde.
- (8) Der Ausschaltbefehl über den Bus hat keine Wirkung, da der Motor bereits ausgeschaltet ist.

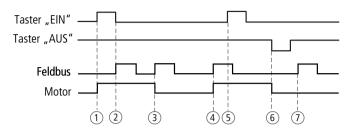


Abbildung 9: Schaltelemente am DMI: Taster Feldbus steuert über Kommandocode

- (1) Der Impuls am Taster "EIN" vor Ort schaltet den Motor ein.
- ② Das Einschaltkommando über den Feldbus bewirkt keine Veränderung, da der Motor bereits eingeschaltet ist.
- ③ Das Ausschaltkommando bewirkt das Ausschalten des Motors über den Feldbus.
- (4) Das Einschaltkommando bewirkt das Einschalten des Motors über den Feldbus.
- (5) Das Betätigen des Tasters "EIN" vor Ort hat keine Auswirkungen, da der Motor bereits eingeschaltet ist.
- (6) Die Betätigung des Tasters "AUS" (L-aktiv) schaltet den Motor wieder ab.
- 7) Das Ausschaltkommando am Feldbus hat keine Wirkung.

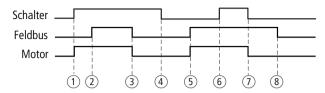


Abbildung 10: Schaltelemente am DMI: Schalter Feldbus steuert über Pegel der Ausgangsdaten

- Der Motor wird vor Ort durch den Schalter am DMI eingeschaltet.
- ② Das Einschalten über den Feldbus zeigt nach außen keine Wirkung, da der Motor bereits eingeschaltet ist.
- ③ Durch das Rücksetzen des Steuerbits am Feldbus wird der Motor wieder ausgeschaltet, obwohl der Schalter noch auf "EIN" steht. Hier setzt sich aus Sicherheitsgründen das Ausschalten durch.
- ④ Der Motor ist bereits ausgeschaltet, deshalb hat das Ausschaltsignal vor Ort keine Wirkung.
- (5) Der Feldbus schaltet den Motor wieder ein.
- (6) Vor Ort wird ebenfalls der Schalter auf "EIN" gestellt. Dieser Schritt hat nach außen keine Wirkung, da der Motor bereits eingeschaltet ist. Er ist aber aufgrund der Verwendung eines Schalters (statt eines Tasters) notwendig, um den Motor in ? wieder ausschalten zu können.
- Der Motor wird durch das Öffnen des Schalters vor Ort wieder ausgeschaltet. Auch in diesem Fall setzt sich aus Sicherheitsgründen der Ausschaltbefehl durch, obwohl am Feldbus noch das Signal "EIN" ansteht.
- (8) Das Ausschalten über den Bus hat keine Wirkung , da der Motor bereits ausgeschaltet ist.

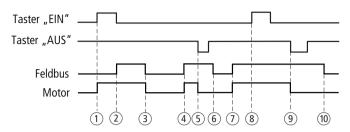


Abbildung 11: Schaltelemente am DMI: Taster Feldbus steuert über Pegel der Ausgangsdaten

- (1) Der Impuls am Taster "EIN" vor Ort schaltet den Motor ein.
- ② Das Einschalten über den Feldbus bewirkt keine äußerlich sichtbare Veränderung, da der Motor bereits eingeschaltet ist.
- ③ Das Ausschalten über den Feldbus bewirkt das Ausschalten des Motors.
- (4) Das Einschaltsignal am Feldbus bewirkt das Einschalten des Motors.
- ⑤ Der Ausschalttaster bewirkt wieder das Ausschalten des Motors.
- ⑥ Das Ausschalten über den Feldbus hat keine Wirkung, da der Motor bereits ausgeschaltet ist. Es ist aber Voraussetzung, um den Motor über den Feldbus wieder Einschalten zu können.
- (7) Über den Feldbus wird der Motor wieder eingeschaltet.
- (8) Der Impuls "EIN" am DMI hat keine Wirkung, da der Motor bereits eingeschaltet ist.
- ① Der Impuls des Tasters "AUS" bewirkt das Ausschalten des Motors, obwohl am Feldbus noch der High-Pegel ansteht. Hier setzt sich aus Sicherheitsgründen das Ausschalten durch.
- ① Das Ausschalten über den Feldbus hat keine Wirkung, da der Motor bereits abgeschaltet ist.

Schaltelemente

SCHALTELEM. Schalter Taster Sie ermöglichen die Auswahl von Schaltern oder Tastern als Befehlsgeräte an den Eingängen. Entsprechend werden die Eingänge pegel- oder flankenabhängig ausgewertet.

Aus Sicherheitsgründen arbeitet der Taster "AUS" L-aktiv.

Umschaltzeit

UMSCHALTZEIT 99999 ms Sie gibt bei Stern-/Dreieckstartern die Umschaltzeit von Stern nach Dreieck vor.

COM

COM Ausschalten Adresse Anlaufverh. Über das Untermenü "COM" regeln Sie das Kommunikationsverhalten des DMI in Verbindung mit dem Leistungsschalter sowie mit einem Feldbusmodul.

Das Verhalten des DMI am Feldbus können Sie wie folgt steuern:

- ► Wechseln Sie im Menü "COM" mit den Cursortasten i oder Ü auf "Ausschalten".
- Bestätigen Sie Ihre Wahl mit OK.
 Ausschalten ermöglicht das Trennen der Kommunikation zwischen DMI und Feldbus-Interface zu Inbetriebnahmezwecken. Durch das Trennen der Verbindung wird es ermöglicht, vor Ort Parameter zu ändern ohne dass sie vom Busmaster aus wieder überschrieben werden. Ein Anhalten des Busmasters ist dafür ebenfalls nicht notwendig. Der Feldbus kann wie im Normalbetrieb weiterlaufen, er hat aber keinen Einfluss mehr auf DMI und NZM.

COM Ausschalten Adresse Anlaufverh.

- ► Wechseln Sie im Menü "COM" mit den Cursortasten i oder Ü auf "Adresse".
- Bestätigen Sie Ihre Wahl mit OK.
 Adresse ermöglicht das Eingeben bzw. Kontrollieren der Busadresse.

In Abhängigkeit der Versionsstände von DMI und Kommunikationsmodul kommen drei verschiedene Verfahren zum Finsatz:

DMI mit beliebiger Firmware-Version und DP-Modul mit Firmware-Stand < V1.10

DP-DEVICE STATION ADRESS ØXYZ

- ► Kontrollieren Sie, dass keine Buskommunikation besteht. Nur dann ist das Eingeben der Adresse möglich.
- ► Wechseln Sie mit den Cursortasten < oder > auf "OXYZ".
- ▶ Ändern Sie mit den Cursortasten Í oder Ú die einzelnen Werte.

Ist der Feldbus aktiv, ist eine Adressänderung nicht mehr möglich. Die Adresse kann nur noch zu Kontrollzwecken angezeigt werden.

▶ Bestätigen Sie Ihre Wahl mit **OK**.

Vorsicht!

Wenn Sie bei einer Kommunikation die Adresse überprüfen, sind die Ausgänge des DMI für die Dauer dieses Vorgangs nicht vom Busmaster steuerbar. Geschaltete Ausgänge gehen auf "AUS" und wechseln erst nach 3 bis 5 Sekunden oder nach Verlassen der Adressanzeige wieder auf "EIN". Die Eingangswerte werden in dieser Zeit nicht aktualisiert.

DMI Firmware-Version < V1.2.1 und DP-Modul mit Firmware-Stand \ge V1.10

Pls. Update DMI Software to V1.2.1 or higher Sie werden durch diese Meldung darauf aufmerksam gemacht, dass DMI und Kommunikationsmodul Firmware-Versionen haben, die zueinander nicht kompatibel sind.

► Installieren Sie mit Hilfe der NZM-XPC-Soft eine Firmware-Version ≥ V1.2.1 auf dem DMI.

Die jeweils aktuelle Version finden Sie im Internet unter http://www.eaton.com/moeller **Support** Suchbegriff: DMI.

DMI Firmware-Version \geq V1.2.1 und DP-Modul mit Firmware-Stand \geq V1.10

Modul Profibus-DP Adresse 0XYZ Nach der Auswahl des Menüpunktes "Adresse" erhalten Sie die nebenstehende Anzeige auf dem Display. Die Anzeige erscheint auch, wenn Sie ein neues (noch nicht adressiertes) Kommunikationsmodul anschließen.

Zeile 4 enthält ein 4-stelliges numerisches Eingabe-/Anzeigefeld für die Adresse. Hat das DMI zuvor die DP-Adresse erhalten, wird die aktuelle Adresse angezeigt. Sind beide Geräte noch im Auslieferungszustand, wird die Adresse 0126 angezeigt. In beiden Fällen blinkt der Cursor auf der Tausender-Stelle.

Vergeben einer gültigen Adresse:

- ► Wechseln Sie mit den Cursortasten < oder > auf die einzelnen Positionen.
- ► Ändern Sie mit den Cursortasten Í oder Ú die einzelnen Werte
- ▶ Bestätigen Sie Ihre Wahl mit **OK**. Der eingestellte Wert wird an das Modul übergeben.

War die Adresseingabe erfolgreich, erscheint folgende Meldung:

Modul Wert Adresse übernommen Die Meldung erscheint für maximal 5 s oder bis zur Betätigung der Tasten **ESC** oder **OK**. Danach wird in die vorherige Menüauswahl zurückgesprungen.

Folgende Fehler können bei der Eingabe der Adresse auftreten:

Kein Netzwerk-Modul vorhanden Ist am DMI beim Aufruf des Menüpunktes "Adresse" kein Kommunikationsmodul oder Modul mit dem Typ-Code "Point-to-Point" angeschlossen, wird nebenstehende Fehlermeldung auf dem Display angezeigt. Modul Änderuna Adresse unzulässia Versuchen Sie die Adresse zu ändern, während die Netzwerk-Kommunikation aktiv ist, erhalten Sie diese Fehlermeldung.

Modul Wert Adresse unzulässia Versuchen Sie eine ungültige Adresse einzugeben, erhalten Sie diese Fehlermeldung.

Diese Fehlermeldungen erscheinen für maximal 5 s oder bis zur Betätigung der Tasten **ESC** oder **OK**. Danach springt das DMI in die vorherige Menüauswahl zurück.

Anlaufverhalten

Das Anlaufen des DMI in der Kommunikation mit dem Leistungsschalter können Sie wie folgt beeinflussen:

- ► Wechseln Sie im Menü "Com" mit den Cursortasten İ oder Ü auf "Anlaufverh.".
- ► Bestätigen Sie Ihre Wahl mit **OK**.

ANLAUFVERH. Stopp (J/N) Das DMI prüft im Verbindungsaufbau anhand der Seriennummer ob es zuvor bereits mit diesem Leistungsschalter kommuniziert hat. Ist das der Fall, läuft die Kommunikation in jedem Fall weiter. Handelt es sich um einen "unbekannten" Leistungsschalter, wird das weitere Verhalten des DMI durch den Parameter "Stopp" bestimmt.

- Wechseln Sie mit den Cursortasten < oder > auf "J" oder "N".
- Bei "N" läuft die Kommunikation zwischen DMI und NZM ungehindert weiter.
- Bei "J" ist der Anlaufstopp aktiv. Das DMI bricht den weiteren Verbindungsaufbau zum Leistungsschalter ab. Es fragt, ob die neue Seriennummer übernommen werden soll. Dabei haben Sie zwei Möglichkeiten:
 - Bestätigen der Übernahme der neuen Seriennummer mit **OK**. Damit werden gleichzeitig auch die im DMI gespeicherten Parameter für die neue Verbindung

- gültig. Das DMI prüft künftig bei Verbindungsaufbau die eben übernommene Seriennummer.
- Trennen der Verbindung zum DMI durch Ziehen des Kommunikationskabels und Entfernen des DMI, da es offensichtlich nicht an dieser Stelle eingebaut werden sollte.

Die Abfrage ist im Auslieferungszustand deaktiviert.

Warnung!

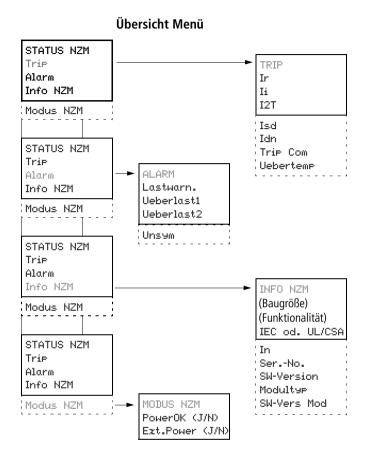
Soll das DMI nacheinander an mehrere Leistungsschalter angeschlossen werden, müssen zuvor alle Parameter auf den jeweiligen Maximalwert gesetzt werden. Nur so kann gewährleistet werden, dass die Parameter des Leistungsschalter nicht vom DMI überschrieben werden.

Stelle Uhr

(XX:YY) (AA:BB) 20XX Über das Untermenü können Sie die Echtzeituhr im DMI stellen.

- ► Wechseln Sie im Eingabemenü mit den Cursortasten Í oder Ú auf "Stelle Uhr".
- ► Bestätigen Sie Ihre Wahl mit **OK**.
- ► Wechseln Sie mit den Cursortasten < oder > auf den zu aktualisierenden Parameter (Zeit, Datum oder Jahr).
- ► Stellen Sie mit den Cursortasten Í oder Ú die gewünschten Werte zwischen oberer und unterer Einstellgrenze ein.
- ► Bestätigen Sie Ihre Wahl mit **OK**.

Diagnose


Diagnose

Die Diagnose umfasst sowohl die Darstellung des aktuellen Zustands von Leistungsschalter und DMI als auch die Abfrage der letzten zehn kritischen Lastsituationen des Leistungsschalters (Historienspeicher).

Die Untermenüs zur Diagnose erreichen Sie über Hauptmenü (→ Abschnitt "Hauptmenü", Seite 14).

Status NZM

Über dieses Untermenü können Sie abfragen, ob aktuell am Leistungsschalter eine Auslösung oder ein Alarmzustand vorliegt, wie die Stromversorgung erfolgt und welcher Leistungsschalter angeschlossen ist.

Trip Der l

Der Menüpunkt "Trip" zeigt Ihnen anhand der aufgelisteten Parameter (I_r , I_i , I_{sd} , ...) die Ursache für eine aktuell vorliegende Auslösung des Leistungsschalters an.

Zur Bedeutung der jeweiligen Ausgangsfunktionen

→ Tabelle 1, Seite 42.

Alarm

ALARM Lastwarn. Ueberlast1 Ueberlast2

Unsym

INFO NZM

(Baugröße) (Funktionalität)

SW-Version Modultyp

SW-Vers Mod

In Ser.-No.

IEC od. UL/CSA

Der Menüpunkt "Alarm"zeigt Ihnen über die aufgelisteten Parameter die Ursache für einen aktuell vorliegenden Alarm des Leistungsschalters an.

Zur Bedeutung der jeweiligen Ausgangsfunktionen

→ Tabelle 1, Seite 42.

Info NZM

Über den Menüpunkt "Info NZM" erhalten Sie Angaben zur Identifikation des Leistungsschalters.

Zeile 1: Baugröße (NZM2,3,4)

Zeile 2: Funktionalität (AE, ME, VE etc.)

Zeile 3: Nennstrom (Angabe in Amperé)

Zeile 4/5: Seriennummer (Fortlaufende Nummer)

Zeile 6: Softwareversion

Zeile 7: Modultyp (Modulkennung falls NZM4-Modul

gesteckt)

Zeile 8: Softwareversion Modul

Modus N7M

MODUS NZM Power OK (J/N) Ext.Power (J/N) Der Menüpunkt "Modus NZM" zeigt Ihnen an, ob die Spannungsversorgung des Leistungsschalters ausreicht (Power OK [J/N]) und ob er extern versorgt wird oder selbstversorgt arbeitet. (Ext. Power [J/N]).

Die externe Versorgung wird im Normalfall vom DMI zur Verfügung gestellt. Ohne DMI oder anderen Kommunikationspartner arbeitet der Leistungsschalter selbstversorgt.

Beim Betrieb des Leistungsschalters mit DMI müssen "Power OK" und "Ext. Power" mit "J" gekennzeichnet sein.

Status DMI

STATUS DMI Com SW-Version Über dieses Untermenü können Sie den aktuellen Zustand des DMI abfragen.

COM

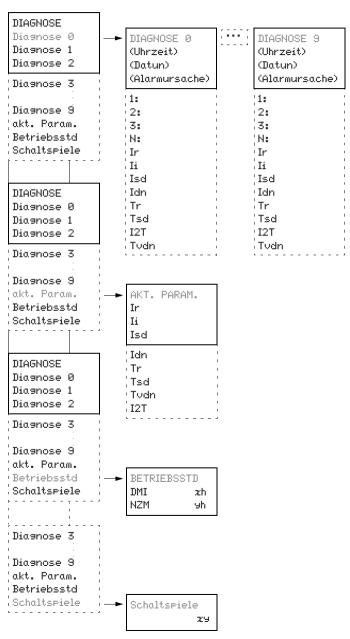
OK/Err gibt an, ob die Kommunikation mit dem Leistungsschalter läuft oder fehlerhaft ist.

SW-Version

Der Parameter zeigt die Version der DMI-Firmware an.

Aktuelle Firmware-Versionen können Sie mit Hilfe der PC-Software für das DMI installieren. Die jeweils neueste finden Sie im Internet unter:

http://www.eaton.com/moeller → Support


Diagnose

Durch Auswahl des Untermenüs "Diagnose" versetzen Sie den Leistungsschalter in den Diagnosemodus.

In diesem Modus stehen Ihnen keine aktuellen Prozessdaten des Leistungsschalters zur Verfügung. Sie können aber den Zustand des Leistungsschalters bei zurückliegenden Ereignissen abfragen. Bis zu zehn Ereignisse sind abrufbar. Darüber hinaus sind die aktuell eingestellten Parameter zum Vergleich darstellbar.

Statistische Daten können Sie in den Untermenüs "Betriebsstd" und "Schaltspiele" abrufen.

Übersicht Menü

DIAGNOSE 0 (Uhrzeit) (Datun) (Alarmursache)

1: 2: 3: N: Ir Iisd Idn Tr Tsd IZT

Diagnose 0 bis 9

Die Menüpunkte "Diagnose 0" bis "Diagnose 9"zeigen den Zustand des Leistungsschalters zu einem Ereigniszeitpunkt an.

Ein Ereignis ist jede Statusänderung des Leistungsschalters hinsichtlich Alarm- oder Auslösemeldungen, z. B. das Überoder Unterschreiten von Grenzwerten oder das Auslösen des Schalters.

Angezeigt werden in den ersten drei Zeilen unter dem Titel Uhrzeit, Datum und Alarmursache. Danach werden die Zustände der einzelnen Phasen (1 bis 3) sowie des Nullleiters angezeigt (OK/Lastwarnung/Überlast1/Überlast2/Trip).

Da bei einem Kurzschluss (Trip I_i) die auslösende(n) Phase(n) nicht zweifelsfrei ermittelt werden können, werden in diesem Fall die Phasenzustände mit "—" angegeben.

Anhand dieser Angaben können Sie die Fehlerursache am Leistungsschalter diagnostizieren. Es folgen die zum Ereigniszeitpunkt gültigen Parametereinstellungen.

Der Ereigniszeitpunkt "Diagnose 0" gibt das letzte aufgetretene Ereignis wieder, "Diagnose 1" das vorletzte usw. Durch Abruf und Vergleich aufeinanderfolgender Ereignisse kann sich ggf. der zeitliche Verlauf bis hin zu einer Auslösung rekonstruieren lassen. Durch den ebenfalls gespeicherten Zeitstempel ist es auch möglich, die Verbindung zu Ereignissen und Zuständen in der übrigen Anlage herzustellen. Damit sind Fehlerquellen in der Anlage leichter ausfindig zu machen.

Die Zeitinformation wird vom Leistungsschalter nur gespeichert, wenn ein DMI angeschlossen ist. Ansonsten wird in die entsprechenden Datenfelder der Wert "00" eingetragen. Da nicht nur Auslösungen sondern auch Vorwarnstufen gespeichert werden, können Sie mit Hilfe der Diagnosedaten die Anlage auch präventiv auf Schwachstellen untersuchen, ohne dass es zu einer Auslösung kommt. Beispielsweise ließe sich ein regelmäßiges Überschreiten von Alarmschwellen anhand des Diagnosespeichers feststellen.

Aktuelle Parameter

In diesem Untermenü werden die aktuell verwendeten Parameter am Leistungsschalter dargestellt. Ein schneller Vergleich zwischen den zum Ereigniszeitpunkt verwendeten und den momentan eingestellten Parametern ist möglich.

AKT.	PARAM.
Ir	
Ιi	
Isd	

Idn Tr Tsd Tvdn I2T

Betriebsstunden

Im Untermenü Betriebsstd können die Betriebsstunden von DMI und NZM abgelesen werden. Die Auflösung beträgt eine Stunde. Für das DMI wird die gesamte Betriebszeit festgehalten. Für den NZM wird die Zeit angezeigt, die er mit dem betreffenden DMI kommuniziert hat. Bei einem Kommunikationsabbruch wird der Wert wieder auf 0 gesetzt.

BETRIEBSSTD DMI zh NZM 9h

Schaltspiele

In diesem Untermenü werden die Schaltspiele des angeschlossenen NZM gezeigt, wobei ein Schaltspiel jeder Zustandswechsel "EIN" → "AUS", "EIN"→ "Trip", "AUS" → "EIN" ist.

Analog zum Betriebsstundenzähler geht auch dieser Wert beim Unterbrechen der Verbindung verloren.

Alarmmeldungen

Bei jedem Überschreiten einer Lastschwelle (Überlast1/ Überlast2) oder bei einer Auslösung des Leistungsschalters erscheint die Alarmmeldung automatisch als Alarmbildschirm im Display des DMI (—> Abschnitt "Bedienkonzept", Seite 13).

Die Standardanzeige oder ältere Alarmmeldungen werden überschrieben, so dass immer die letzte Alarmmeldung im Display erscheint und auf einen Ausnahmezustand hinweist.

Jede Alarmmeldung wird so lange angezeigt, bis sie entweder von einem neuen Alarm überschrieben oder von Ihnen quittiert wird. Dadurch werden Sie vor Ort immer auf in der Vergangenheit erkannte Alarmzustände hingeweisen, auch wenn diese momentan nicht mehr vorliegen.

Alarme, die auf eine Trennung der Strompfade hinweisen, also alle Trip- und die Motorschutz-Meldung, müssen vom Anwender quittiert werden. Andernfalls stehen die Statusmeldungen über den Feldbus weiter an, ein entsprechend konfigurierter Ausgang bleibt gesetzt und das Display zeigt den jeweiligen Alarm an.

Zur Quittierung stehen dem Anwender vier Möglichkeiten zur Verfügung:

- per Taste ESC,
- über den Eingang I0,
 (Voraussetzung: entsprechende Konfigurierung,
 Abschnitt "I-Zuordnung", Seite 43)
- über den Feldbus mittels eines Kommandos,
- durch Ausschalten des NZM.

Alle anderen Alarme (Überlast1, Überlast2, Asymmetrie) können mit **ESC** aus dem Display gelöscht werden. Ausgänge und Statusmeldungen bleiben aber weiterhin aktiv, so lange der entsprechende Zustand anhält.

Die genaue Ursache der Alarmmeldung und ggf. den Ablauf der Störung können Sie über das Menü "Diagnose" ermitteln (—> Abschnitt "Übersicht Menü", Seite 63).

Anbindung an Bus-Systeme

Die Anbindung des DMI und damit des Leistungsschalters an Bus-Systeme wird über Interfacemodule realisiert. Zur Zeit

unterstützt wird das PROFIBUS-DP Modul

NZM-XDMI-DPV1, das eine

PROFIBUS-DP V1-Kommunikation ermöglicht.

Zur Installation, Inbetriebnahme und Funktion der Bus-Interfacemodule beachten Sie bitte deren jeweilige Dokumenta-

tion.

Weitere Informationen zur Ankopplung an PROFIBUS-DP

Systeme finden Sie → Kapitel 3, Seite 75.

Was ist, wenn ...?

Es kann vorkommen, dass sich das DMI anders verhält als erwartet. Sehen Sie die folgenden Hinweise durch. Sie sollten Ihnen helfen, mögliche Probleme zu beheben.

Problem	Vorgehen und Rand- bedingungen	Abhilfe
Keine Anzeige	Parameter-LED beobachten	LED dunkel, Stromversorgung kontrollieren LED leuchtet oder blinkt, DMI auswechseln
Anzeige "Starte Com"	Mit Leistungsschalter verbunden	Kabel NZM-XDMI-CAB zwischen DMI und NZM abziehen und erneut aufstecken Kabel NZM-XDMI-CAB auswechseln
	Mit PC verbunden (→ Online-Hilfe der NZM-XPC-Soft)	Die Anzeige "Starte Com" erlischt nur, wenn auch tatsächlich ein Datenaustausch zwischen DMI und PC stattfindet. Da die Datenübergabe nach wenigen Sekunden abgeschlossen ist, erscheint danach wieder "Starte Com"

	he Daten	

Allgemein

Abmessungen B \times H \times T	
[mm]	107,5 × 90 × 53
[inches]	4,23 × 3,54 × 2,08
Teilungseinheiten (TE)	6 TE breit
Gewicht	
[g]	300
[lb]	0,661
Montage	Hutschiene IEC/EN 60715, 35 mm

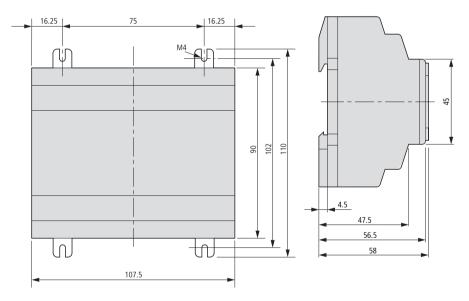


Abbildung 12: Abmessungen DMI (Angaben in inches → Tabelle 2)

Tabelle 2: Abmessungen in inches

mm	inches
4,5	0,177
7,5	0,295
10,75	4,23
16,25	0,64
35,5	1,4
35,75	1,41
45	1,77
47,5	1,87
50	1,97

inches
2,22
2,28
2,81
2,95
3,54
4,01
4,23
4,33

Umgebungsbedingungen

Klimatische Umgebungsbedingungen (Kälte nach IEC 60068-2-1, Wärme nach IEC 60068-2-2)	
Betriebsumgebungstemperatur waagerechter/senkrechter Einbau	0 bis 55 °C, −32 bis 131 °F
Betauung	Betauung durch geeignete Maßnahmen verhindern
LCD-Anzeige (Sicher lesbar)	0 bis 55 °C, 32 bis 131 °F
Lager-/Transporttemperatur	–40 bis +70 °C, –40 bis 158 °F
Relative Luftfeuchte (IEC 60 068-2-30)	5 bis 95 %, keine Betauung
Luftdruck (Betrieb)	795 bis 1080 hPa
Korrosionsunempfindlichkeit	
IEC 60 068-2-42	SO ₂ 10 cm ³ /m ³ , 4 Tage
IEC 60068-2-43	H ₂ S 1 cm ³ /m ³ , 4 Tage
Mechanische Umgebungsbedingungen	
Verschmutzungsgrad	2
Schutzart (EN 50178, IEC 60529, VBG4)	IP20

C-1	401:- 5711-
Schwingungen (IEC 60068-2-6)	10 bis 57 Hz (konstante Amplitude 0,15 mm)
	57 bis 150 Hz (konstante Beschleunigung 2 g)
Schocken (IEC 60068-2-27)	18 Schocks (Halbsinus 15 g/11 ms)
Kippfallen (IEC 60068-2-31)	Fallhöhe 50 mm
Freier Fall, verpackt (IEC 60068-2-32)	1 m
Elektromagnetische Verträglichkeit (EMV)	
Elektrostatische Entladung (ESD), (IEC/EN 61000-4-2, Schärfegrad 3)	8 kV Luftentladung, 6 kV Kontaktentladung
Elektromagnetische Felder (RFI), (IEC/EN 61000-4-3)	Feldstärke 10 V/m
Funkentstörung (EN 55011, EN 55022)	Grenzwertklasse B
Burst Impulse (IEC/EN 61000-4-4, Schärfegrad 3)	2 kV Versorgungsleitungen, 2 kV Signalleitungen
Einströmung (IEC/EN 61000-4-6)	10 V
Isolationsfestigkeit	
Bemessung der Luft- und Kriechstrecken	EN 50178, UL 508, CSA C22.2, No 142
Isolationsfestigkeit	EN 50178
Werkzeug und Anschlussquerschnitte	
eindrähtig	min. 0,2 mm ² , max. 4 mm ² / AWG: 22 – 12
feindrähtig mit Aderendhülse	min. 0,2 mm ² , max. 2,5 mm ² / AWG: 22 – 12 factory wiring: bis AWG 30
Schlitzschraubendreherbreite	3,5 × 0,8 mm; 0,14 × 0,03"
Anzugsdrehmoment	0,6 Nm
Pufferung/Genauigkeit der Echtzeituhr	
Pufferung der Uhr	
bei 25 °C/77 °F	typ. 64 h
bei 40 °C/104 °F	typ. 24 h
Genauigkeit der Echtzeituhr	typ. \pm 5 s/Tag, \sim \pm 0,5 h/Jahr

Stromversorgung

Bemessungssspannung		
Nennwert	24 V DC, +20 %, -15 %	
Zulässiger Bereich	20,4 bis 28,8 V DC	
Restwelligkeit	≦ 5 %	
Eingangsstrom bei 24 V DC	210 mA	
Spannungseinbrüche	10 ms, IEC/EN 61131-2	
Verlustleistung bei 24 V DC	typ. 5 W	

Digitale Eingänge (24 V DC)

Anzahl	6
Anzeige des Zustandes	LCD, wählbar über Anzeigemenü
Potentialtrennung	
zur Stromversorgung, CPU	ja, Prüfspannung 3,5 kV
gegeneinander	ja, Prüfspannung 3,5 kV
zu den Ausgängen	ja, Prüfspannung 3,5 kV
Bemessungsspannung	
Nennwert	24 V DC
bei Zustand "0"	< 5 V DC
bei Zustand "1"	> 15 V DC
Eingangsstrom bei Zustand "1"	3,2 mA
Verzögerungszeit von "0" nach "1"	20 ms
Verzögerungszeit von "1" nach "0"	20 ms

Digitale Ausgänge (Relais)

	-
Anzahl	6
Typ der Ausgänge	Relais
In Gruppen zu	1
Parallelschaltung von Ausgängen zur Leistungserhöhung	nicht zulässig
Absicherung eines Ausgangsrelais	Leitungsschutzschalter B16 oder Sicherung 8 A (T)
Potentialtrennung zur Netzstromversorgung, Eingänge	ja 300 V AC (sichere Trennung) 600 V AC (Basisisolierung)
Mechanische Lebensdauer (Schaltspiele)	10×10^{6}
Strombahnen Relais	
Konventioneller therm. Strom	8 A (10 A UL)
Empfohlen für Last	. 500 mA, 12 V AC/DC
Kurzschlussfest cos $\phi = 1$	16 A Charakteristik B (B16) bei 600 A
Kurzschlussfest cos $\varphi = 0.5$ bis 0.7	16 A Charakteristik B (B16) bei 900 A
Bemessungsstoßspannungsfestigkeit $U_{\rm imp}$ Kontakt- Spule	6 kV
Bemessungsisolationsspannung $U_{\rm i}$	
Bemessungsbetriebsspannung $U_{\rm e}$	250 V AC
Sicherer Trennung nach EN 50178 zwischen Spule und Kontakt	300 V AC
Sichere Trennung nach EN 50178 zwischen zwei Kontakten	300 V AC
Einschaltvermögen	
AC-15 250 V AC, 3 A (600 S/h)	300000 Schaltspiele
DC-13 L/R \leq 150 ms 24 V DC, 1 A (500 S/h)	200000 Schaltspiele
Ausschaltvermögen	
AC-15 250 V AC, 3 A (600 S/h)	300000 Schaltspiele
DC-13 L/R \leq 150 ms 24 V DC, 1 A (500 S/h)	200000 Schaltspiele

Glühlampenlast	1000 W bei 230/240 V AC/ 25000 Schaltspiele 500 W bei 115/120 V AC/ 25000 Schaltspiele
Leuchtstoffröhren mit elektrischen Vorschaltgerät	10 × 58 W bei 230/240 V AC/25000 Schaltspiele
Leuchtstoffröhre konventionell kompensiert	1 × 58 W bei 230/240 V AC/ 25000 Schaltspiele
Leuchtstoffröhre unkompensiert	10 × 58 W bei 230/240 V AC/25000 Schaltspiele
Schaltfrequenzen Relais	
Mechanische Schaltspiele	10 Mio (10 ⁷)
mechanische Schaltfrequenz	10 Hz
ohmsche/Lampenlast	2 Hz
induktive Last	0,5 Hz

UL/CSA

Daue	erstrom bei 24 V DC	8 A
DC	Control Circuit Rating Codes (Gebrauchskategorie)	R300 Light Pilot Duty
	max. Bemessungsbetriebsspannung	300 V DC
max. thermischer Dauerstrom bei R300		1 A
	Maximum Ein-/Ausschaltscheinleistung bei R300	28 VA

3 NZM-XDMI-DPV1 (PROFIBUS-DPV1 Interface für DMI)

Dieses Kapitel beschreibt den Datenaustausch zwischen Leistungsschalter, DMI und einem übergeordneten Master über PROFIBUS-DPV1. Als Interface wird hierbei das NZM-XDMI-DPV1 verwendet.

Systemübersicht

Das NZM-XDMI-DPV1 kommuniziert als Slave innerhalb eines PROFIBUS-DPV1-Systems mit den folgenden übergeordneten Mastern:

- einem Klasse 1 DPV0-Master oder einem Klasse 1 DPV1-Master, z. B. Speicherprogrammierbare Steuerung (SPS) und/oder
- bis zu zwei Klasse 2 DPV1-Master, z. B. Leitsystem, PC mit FDT-basierender Parametriersoftware, Visualisierung.

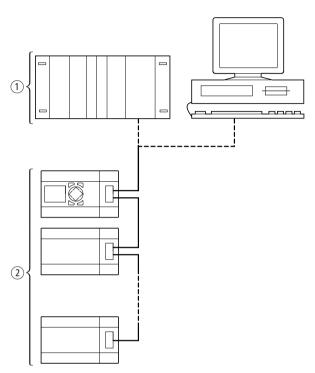


Abbildung 13: Einbindung NZM-XDMI-DPV1 im DP-Netzwerk

- (1) Masterbereich: Klasse1 und/oder Klasse2 DP-Master
- ② Slavebereich: DMI mit DPV1-Anschaltung

Aufbau des Gerätes

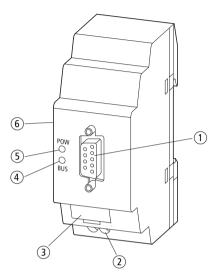


Abbildung 14: Geräteansicht

- (1) PROFIBUS-DP-Anschluss, 9-polige SUB-D-Buchse
- (2) Versorgungsspannung 24 V DC
- (3) Gerätekennzeichnungsschild
- (4) BUS-Kommunikations-LED
- ⑤ POW-Betriebsanzeige-LED
- (6) EASY-LINK-Buchse

Betriebssystemvoraussetzungen

Für den Betrieb des NZM-XDMI-DPV1 benötigen Sie ein DMI mit Betriebssystemversion 1.2 oder höher.

PROFIBUS-Zertifizierung

Das NZM-XDMI-DPV1 wurde von der PROFIBUS-Nutzer-Organisation als DPV1-Slave zertifiziert. Das NZM-XDMI-DPV1 beinhaltet die PROFIBUS-Anschaltung SPC 3.

Funktionsumfang

Mit dem Interface NZM-XDMI-DPV1 lässt sich das angeschlossene DMI und der damit verbundene Leistungsschalter über den PROFIBUS-DP von einem übergeordneten Master vollständig:

- Identifizieren.
- Parametrieren,
- Steuern,
- Beobachten,
- Diagnostizieren.

Installation

Versorgungsspannung anschließen

Das NZM-XDI-DPV1 wird mit einer 24 V DC Versorgungsspannung betrieben (→ Abschnitt "Technische Daten", Seite 68).

Warnung!

Bei der 24 V Versorgung ist auf eine sichere elektrische Trennung der Kleinspannung (SELV) zu achten.

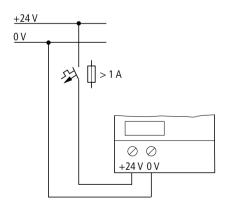


Abbildung 15: Standardanschluss

PROFIBUS-DP anschließen

Ein 9-poliger SUB-D-Stecker verbindet den PROFIBUS-DP-Anschluss mit dem PROFIBUS-DP-Bus.

Zum Anschluss nehmen Sie bitte die speziellen PROFIBUS-DP-Stecker und die spezielle PROFIBUS-DP-Leitung aus dem Zubehörangebot von Eaton.

- RxD/TxD-P (B/B') - RxD/TxD-N (A/A')

- DGND

Anschlussbelegung PROFIBUS-DP

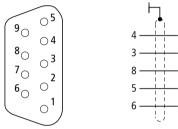


Abbildung 16: DP-Anschluss

Tabelle 3: Anschlussbelegung

Pin	Signalname
1	nicht belegt
2	nicht belegt
3	RxD/TxD-P (B/B')
(4)	Control-P (RTS), optional
(5)	Data Ground, optional
(6)	VP (plus Spannung), optional
7	nicht belegt
8	RxD/TxD-N (A/A')
9	nicht belegt

Für den Datenverkehr reichen die Anschlüsse 3, 8 und Schirm.

Abschlusswiderstände

Bei dem geografisch ersten und letzten Teilnehmer in einem Bussegment muss der Bus mit einem Abschlusswiderstand abgeschlossen werden.

Der PROFIBUS-DP-Datenstecker von Eaton erlaubt am Stecker das Ein- und Ausschalten des Abschlusswiderstandes.

Potentialtrennungen

Nachfolgende Potentialtrennungen gelten:

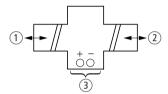


Abbildung 17: Potentialtrennung zwischen Versorgungsspannung und Ausgängen

- (1) sichere Trennung EASY-LINK 240 V AC
- ② einfache Trennung PROFIBUS-DP
- (3) Versorgungsspannung 24 V DC

Übertragungsraten

Das NZM-XDMI-DPV1 erkennt automatisch die Übertragungsrate. Nachfolgende Übertragungsraten werden unterstützt:

- 9,6 kBit/s,
- 19,2 kBit/s,
- 93,75 kBit/s,
- 187,5 kBit/s,
- 500 kBit/s,
- 1,5 Mbit/s,
- 3 Mbit/s.
- 6 Mbit/s,
- 12 Mbit/s.

Maximale Entfernungen/Busleitungslänge

Nach IEC 61158-2 beträgt die maximale Leitungslänge eines Bussegments bei Leitungstyp "A"(→ nachfolgende Tabelle 4):

Tabelle 4: Leitungslängen

Baudrate [kBit/s]	max. Leitungslänge [m]
9,6	1200
19,2	1200
93,75	1200
187,5	1000
500	400
1500	200
3000	100
6000	100
12000	100

Gerät betreiben

PROFIBUS-DPV1-Interface in Betrieb nehmen

Zur Inbetriebnahme des Interfaces sind folgende Schritte erforderlich:

- Verbinden Sie das NZM-XDMI-DPV1 über den Verbindungsstecker "EASY-Link" mit dem DMI (Basisgerät). Um den Stecker am DMI einstecken zu können, müssen Sie die Abdeckklappe an der rechten Geräteseite hochschieben.
- ➤ Schließen Sie die 24 V DC Stromversorgung für das Interface an (**Achtung!** Noch nicht einschalten!).
- ➤ Schließen Sie den Profibus-Stecker am Gerät an und schalten Sie, falls erforderlich, den Busabschlusswiderstand ein.
- ► Schalten Sie die Versorgungsspannung für DMI und Interface ein.

NZM-XDMI-DPV1 (PROFIBUS-DPV1 Interface für DMI)

- ➤ Stellen Sie die gewünschte PROFIBUS-Adresse über die Anzeige und Tastatur am DMI ein (→ Abschnitt "COM", Seite 54).
- ► Konfigurieren Sie den PROFIBUS-DP-Strang.
- ➤ Übergeben Sie die neue Konfiguration an den Master (→ Abschnitt "Konfiguration des Klasse 1 DP-Master", Seite 84).
- ► Starten Sie den PROFIBUS-DP-Master.

Nach diesen Schritten sollte die Kommunikation zwischen DMI und Interface sowie zwischen PROFIBUS-DP-Master und Interface aufgebaut sein. Kontrollieren Sie dieses an Hand der im NZM-XDMI-DPV1 eingebauten Leuchtdioden (

Abschnitt "LED-Statusanzeigen", Seite 82).

LED-Statusanzeigen

Das NZM-XDMI-DPV1 besitzt zwei Anzeige-LED.

POW-LED, Funktion

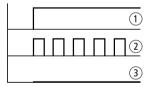


Abbildung 18: Anzeigefunktion POW-LED

- (1) LED Dauerlicht:
 - Versorgungsspannung vorhanden
 - Kommunikation zum DMI unterbrochen
- ② LED blinkt:
 - Versorgungsspannung vorhanden
 - Kommunikation mit DMI in Ordnung
- (3) LED keine Anzeige:
 - Keine Versorgungsspannung vorhanden
 - Kommunikation mit dem DMI unterbrochen

BUS-LED, Funktion



Abbildung 19: Anzeigefunktion BUS-LED

- LED Dauerlicht:
 PROFIBUS-DP-Kommunikation in Ordnung
- ② LED blinkt:

 Keine PROFIBUS-DP-Kommunikation vorhanden

PROFIBUS-DP-Strang mit NZM-XDMI-DPV1 in Betrieb nehmen

GSD-Datei

Für die Auswahl des Gerätes bei der Konfiguration des PROFIBUS-DP-Strangs und den Betrieb des Busses ist die GSD-Datei "Moel4D11.gsd" notwendig. Sie können die jeweils aktuelle Version unter der folgenden Internetadresse herunterladen:

http://www.eaton.com/moeller → Support

Folgen Sie den Links auf diesen Seiten.

Für das NZM-XDMI-DPV1 sind in der GSD für den zyklischen Datenaustausch folgende Module definiert:

- Modul 1: Circuit Breaker Profile 1: 3 Byte Eingänge/ 2 Byte Ausgänge,
- Modul 2: Circuit Breaker Profile 2: 11 Byte Eingänge/ 2 Byte Ausgänge,
- Modul 3: Circuit Breaker Profile 1 and Motorstarter:
 4 Byte Eingänge/3 Byte Ausgänge,
- Modul 4: Circuit Breaker Profile 2 and Motorstarter:
 12 Byte Eingänge/3 Byte Ausgänge,

Die Bedeutung der Daten des jeweiligen Formates

→ Abschnitt "PROFIBUS-DPVO- Funktionen", Seite 85.

Konfiguration des Klasse 1 DP-Master

Für die Konfiguration des übergeordneten DP-Masters führen Sie prinzipiell folgende Schritte durch:

- ► Fügen Sie die GSD-Datei "Moel4D11.gsd" in die GSD-Datenbasis des Konfqurationstools Ihres DP-Master ein.
- ► Fügen Sie einen Teilnehmer NZM-XDMI-DPV1 in die Topologie des zu konfigurierenden Bussegmentes ein.
- Weisen Sie diesem Teilnehmer die vorgesehene Teilnehmeradresse zu.
- ► Wählen Sie für diesen Teilnehmer eines der vier vorgeschlagenen Module für den zyklischen Datentransfer aus.
 - Modul 1: Circuit Breaker Profile 1: wenn Sie Daten gemäß dem Profil 1 des PROFIBUS-Leistungsschalterprofils übertragen wollen,
 - Modul 2: Circuit Breaker Profile 2: wenn Sie Daten gemäß dem Profil 2 des PROFIBUS-Leistungsschalterprofils übertragen wollen,
 - Modul 3: Circuit Breaker Profile 1 and Motorstarter: wenn Sie Daten gemäß dem Profil 1 des PROFIBUS-Leistungsschalterprofils und zusätzlich Daten für eine im DMI parametrierte Motorstarter-Funktion übertragen wollen.
 - Modul 4: Circuit Breaker Profile 2 and Motorstarter: wenn Sie Daten gemäß dem Profil 2 des PROFIBUS-Leistungsschalterprofils und zusätzlich Daten für eine im DMI parametrierte Motorstarter-Funktion übertragen wollen.
- ► Wiederholen Sie die Schritte 2 bis 4 für jeden in die Topologie einzufügenden NZM-XDMI-DPV1-Teilnehmer.
- ► Speichern Sie die Konfiguration ab.
- ▶ Übertragen Sie die Konfiguration in den DP-Master.

Beachten Sie die Dokumentation des DP-Masters, wenn Sie die Konfiguration vornehmen.

PROFIBUS-DPV0-Funktionen

Zyklischer Datenaustausch mit Klasse 1 DP-Master

Das NZM-XDMI-DPV1 bietet für den zyklischen Datenaustausch vier Module an, die über die Modulauswahl in der Konfiguration festgelegt werden. In den folgenden Abschnitten sind die Dateninhalte aller Module beschrieben.

Damit diese Module die beschriebenen Informationen und Steuerfunktionen bereitstellen, sind folgende Vorraussetzungen unbedingt einzuhalten:

- An die Eingänge 4 und 5 sind die Hilfsschalter anzuschließen, die den Schaltzustand des Leistungsschalters melden:
 - Schaltzustand "AUS": Eingang 4 muss Zustand "high",
 Eingang 5 muss Zustand "low" haben.
 - Schaltzustand "EIN": Eingang 4 und Eingang 5 müssen Zustand "high" haben.
 - Schaltzustand "Ausgelöst": Eingang 4 muss Zustand "low" haben.

Informationen zum Anschluss der Hilfsschalter

→ Abschnitt "Leistungsschalter anschließen", Seite 24.

- An die Ausgänge 4 und 5 ist der Fernantrieb anzuschließen, der den Schaltzustand des Leistungsschalter steuert:
 - Schaltzustand "AUS": Ausgang 4 hat Zustand "high", Ausgang 5 hat Zustand "low".
 - Schaltzustand "EIN": Ausgang 4 hat Zustand "low", Ausgang 5 hat Zustand "high".
 - In der Konfiguration des DMI ist die Fernantriebs-Funktion auszuwählen.

Informationen zu dem Anschluss des Fernantriebs

→ Abschnitt "Fernantrieb", Seite 41.

Modul 1 gemäß PROFIBUS-Leistungsschalterprofil 1 Bei Auswahl dieses Moduls lassen sich folgende Informationen aus dem Leistungsschalter und dem DMI auslesen:

- Kommunikation zum Leistungsschalter (in Ordnung, nicht vorhanden),
- Schaltzustand des Leistungsschalters ("EIN", "AUS", "Ausgelöst"),
- Überlastvorwarnung (Strom ≥ 70 %),
- Überlastbereich erreicht (Strom ≥ 100 %),
- Sammelwarnung,
- Auslösegrund (z. B. Überlast, Kurzschluss, Fehlerstrom),
- Zustand der Eingänge des DMI.

Des weiteren lassen sich folgende Funktionen steuern:

- Schaltzustand des Leistungsschalters über angeschlossenen Fernantrieb (Einschalten, Ausschalten),
- Zustand der Ausgänge des DMI (für Ausgänge, deren Schaltsignal auf "Bus" parametriert wurde).

Die ausgelesenen Informationen sind Dateneingänge des DP-Masters, die steuerbaren Funktionen werden im DP-Master als Datenausgänge angesprochen.

Ist im DMI eine Motorstarter-Funktion parametriert (nur möglich in Verbindung mit den hierfür vorgesehenen Leistungsschalter-Typen -ME), verwenden Sie bitte Modul 3 oder Modul 4 wenn Sie den Motor über den PROFIBUS-DP steuern oder sich über den Zustand der Motorsteuerung informieren möchten.

Format der Dateneingänge

Das Lesen der Dateneingänge erfolgt direkt über die DPV0-Lesebefehle oder über die bei der PROFIBUS-DP-Konfiguration definierten Eingangsbytes des DP-Masters. Beachten Sie hierzu die Dokumentation des Master-Gerätes. Es werden drei Octets als Dateneingänge eingelesen, die folgende Daten beinhalten:

Tabelle 5: Adresslage der Dateneingänge Modul 1

Datenposition	Bezeichnung
Octet 1	
Bit 0 und Bit 1	Position Leistungsschalter
Bit 2 und Bit 3	Status Leistungsschalter
Bit 4	Einschaltbereitschaft
Bit 5 und Bit 6	Nicht genutzt
Bit 7	Überlast 1
Octet 2	
Bit 0	Nicht genutzt
Bit 1	Sammelwarnung
Bit 2	Nicht genutzt
Bit 3	Eingang 0
Bit 4 bis Bit 6	Auslösegrund
Bit 7	Überlastvorwarnung
Octet 3	
Bit 0	Eingang 1
Bit 1	Eingang 2
Bit 2	Eingang 3
Bit 3	Eingang 4
Bit 4	Eingang 5
Bit 5 bis Bit 7	Nicht genutzt

NZM-XDMI-DPV1 (PROFIBUS-DPV1 Interface für DMI)

Die Eingänge 0 bis 3 des DMI sind frei mit 24 V Signalen belegbar. Eingang 4 und 5 dienen zum Anschluss der Hilfsschalter, um den Schaltzustand des Leistungsschalters zu erkennen.

Bei parametrierter Motorstarter-Funktion werden bestimmte Eingänge des DMI zur lokalen Steuerung des Motors verwendet (—> Abschnitt "Motorstarter", Seite 44). In diesem Fall enthalten die Daten "Eingang 1" und ggf. "Eingang 3" (bei parametrierten Wendestartern) nicht den physikalischen Signalzustand des jeweiligen DMI-Einganges, sondern die logische Ansteuerung des Motors:

Eingang 1: "0" entspricht Motor "AUS",

"1" entspricht Motor "EIN" oder Linkslauf,

Eingang 3: "1" entspricht Motor Rechtslauf.

Bedeutung der Dateneingänge

Die eingelesenen Dateneingänge haben die folgende Bedeutung.

Tabelle 6: Dateninhalte der Dateneingänge Modul 1

Bezeichnung	Bedeutung	
Auslösegrund	 000 keine Auslösung 001 I_r 010 I_i 011 I_{sd} 100 I_{dn} 101 Selektivität, Kommunikationsfehler, Übertemperatur, Hardwarefehler 110 Überstrom N-Leiter 	
Einschalt- bereitschaft	Der Leistungsschalter ist ausgeschaltet (nicht ausgelöst)	
Eingang 0 bis 5	Zustand der digitalen Eingänge des DMI	
Überlastvorwar- nung	Mindestens ein Phasenstrom liegt über der Lastwarngrenze ($I_r = 70 \%$)	
Nicht genutzt	Keine auszuwertende Information	
Position Leistungs- schalter	 Normaler Betrieb des Leistungsschalters (Kommunikation in Ordnung) Leistungsschalter defekt oder nicht vorhanden (Kommunikation nicht vorhanden) 	
Sammelwarnung	Wird gesetzt, wenn entweder eine Warnung oder eine Auslösung vom Leistungsschalter vorliegt	
Status Leistungs- schalter	 Initialisierung läuft Leistungsschalter ist im Schaltzustand "AUS" Leistungsschalter ist im Schaltzustand "EIN" Leistungsschalter ist im Schaltzustand "Ausgelöst" 	
Überlast 1	Mindestens ein Phasenstrom liegt über der Überlast 1 Grenze ($I_{\rm f} = 100$ %)	

Format der Datenausgänge

Das Schreiben der Datenausgänge erfolgt direkt über die DPVO-Schreibbefehle oder über die bei der PROFIBUS-DP-Konfiguration definierten Ausgangsbytes des DP-Masters. Beachten Sie hierzu die Dokumentation des Master-Gerätes. Es werden zwei Octets als Datenausgänge ausgegeben, die folgende Steuerinformationen beinhalten:

Tabelle 7: Adresslage der Datenausgänge Modul 1

3 3		
Datenposition	Bezeichnung	
Octet 1		
Bit 0 und Bit 1	Leistungsschalter betätigen	
Bit 2	Nicht genutzt	
Bit 3	Ausgang 0	
Bit 4	Ausgang 1	
Bit 5	Ausgang 2	
Bit 6	Ausgang 3	
Bit 7	Ausgang 4	
Octet 2		
Bit 0 bis Bit 4	Nicht genutzt	
Bit 5	Ausgang 5	
Bit 6 und Bit 7	Nicht genutzt	

Die Ausgänge 0 bis 5 des DMI sind nur dann über den Bus steuerbar, wenn sie im DMI in der Q-Zuordnung auf Bus parametriert wurden. Werden Ausgang 4 und 5 zum Anschluss eines Fernantriebes verwendet, um den Schaltzustand des Leistungsschalter zu steuern, stehen die Ausgänge 4 und 5 über den Bus nicht zur Verfügung. Die Steuerung des Fernantriebes erfolgt in diesem Fall über die Bits "Leistungsschalter betätigen" oder azyklisch mit Hilfe des Objektes "Leistungsschalter/DMI Kommandos".

Die Erfüllung des PNO-Leistungsschalterprofils setzt die Verwendung eines Fernantriebes mit entsprechender Parametrierung der Ausgänge 4 und 5 im DMI voraus.

Bedeutung der Datenausgänge

Die ausgegebenen Datenausgänge haben folgende Bedeutung:

Tabelle 8: Dateninhalte der Datenausgänge Modul 1

Bezeichnung	Bedeutung	Voraussetzung
Leistungsschalter betätigen per Motorantrieb	 Ou Zustand nicht ändern Ou Ausschalten Einschalten Zustand nicht ändern 	Die Ausgänge 4 und 5 wurden im DMI auf "Fernantrieb" para- metriert
Ausgang 0 bis 5	Zustand der digitalen Ausgänge des DMI	Der jeweilige Ausgang wurde im DMI auf "Bus" parametriert
Nicht genutzt	Keine auszuwertende Information	-

Modul 2 gemäß PROFIBUS Leistungsschalterprofil 2Bei Auswahl dieses Moduls lassen sich folgende Informationen zusätzlich zu den Informationen des Moduls 1 aus dem Leistungsschalter und dem DMI auslesen:

- Phasenströme I₁, I₂ und I₃,
- Maximaler Phasenstrom I_{max} .

Ist im DMI eine Motorstarter-Funktion parametriert (nur möglich in Verbindung mit den hierfür vorgesehenen Leistungsschalter-Typen -ME und), verwenden Sie bitte Modul 3 oder Modul 4 wenn Sie den Motor über den PROFIBUS-DP steuern oder sich über den Zustand der Motorsteuerung informieren möchten.

Format der Dateneingänge

Das Lesen der Dateneingänge erfolgt direkt über die DPV0-Lesebefehle oder über die bei der PROFIBUS_DP-Konfiguration definierten Eingangsbytes des DP-Masters. Beachten Sie hierzu die Dokumentation des Master-Gerätes. Es werden elf Octets als Dateneingänge eingelesen, die folgende Daten beinhalten:

Tabelle 9: Adresslage der Dateneingänge Modul 2

Datenposition	Bezeichnung	
Octet 1		
Bit 0 und Bit 1	Position Leistungsschalter	
Bit 2 und Bit 3	Status Leistungsschalter	
Bit 4	Einschaltbereitschaft	
Bit 5 und Bit 6	Nicht genutzt	
Bit 7	Überlast 1	
Octet 2		
Bit 0	Nicht genutzt	
Bit 1	Sammelwarnung	
Bit 2	Nicht genutzt	
Bit 3	Eingang 0	
Bit 4 bis Bit 6	Auslösegrund	
Bit 7	Überlastvorwarnung	
Octet 3 und 4	<i>I</i> ₁	
Octet 5 und 6	I ₂	
Octet 7 und 8	<i>I</i> ₃	
Octet 9 und 10	$I_{\sf max}$	
Octet 11		
Bit 0	Eingang 1	
Bit 1	Eingang 2	
Bit 2	Eingang 3	

Datenposition	Bezeichnung
Bit 3	Eingang 4
Bit 4	Eingang 5
Bit 5 bis Bit 7	Nicht genutzt

Die Eingänge 0 bis 3 des DMI sind frei mit 24 V Signalen belegbar. Eingang 4 und 5 dienen zum Anschluss der Hilfsschalter, um den Schaltzustand des Leistungsschalter zu erkennen.

Bei parametrierter Motorstarter-Funktion werden bestimmte Eingänge des DMI zur lokalen Steuerung des Motors verwendet (—> Abschnitt "Motorstarter", Seite 44). In diesem Fall enthalten die Daten "Eingang 1" und ggf. "Eingang 3" (bei parametrierten Wendestartern) nicht den physikalischen Signalzustand des jeweiligen DMI-Einganges, sondern die logische Ansteuerung des Motors:

Eingang 1: "0" entspricht Motor "AUS",

"1" entspricht Motor "EIN" oder Linkslauf,

Eingang 3: "1" entspricht Motor Rechtslauf.

Beachten Sie beim Zugriff auf die Phasenströme I1 bis I_3 und I_{max} das im PROFIBUS-DP verwendete Motorola-Kodierungsformat (Octet N: High-Byte, Octet N+1: Low-Byte) für Daten im WORD-Format. Sollte das Datenverarbeitungsformat in Ihrem DP-Master-System hiervon abweichen und die DP-Zugriffsbefehle keine automatische Konvertierung beinhalten, müssen Sie die notwendige Konvertierung in Ihrem Anwendungsprogramm selbst vornehmen. Beachten Sie dazu die Dokumentation Ihres DP-Master-Systems.

Bedeutung der Dateneingänge

Die eingelesenen Dateneingänge haben folgende Bedeutung:

Tabelle 10: Dateninhalte der Dateneingänge Modul 2

Bezeichnung Bedeutung		
вегентинд	Bedeutung	
Auslösegrund	 000 keine Auslösung 001 I_r 010 I_i 011 I_{sd} 100 I_{dn} 101 Selektivität, Kommunikationsfehler, Übertemperatur, Hardwarefehler 110 Überstrom N-Leiter 	
Einschaltbereit- schaft	Der Leistungsschalter ist ausgeschaltet (nicht ausgelöst)	
I_1 bis I_3	Strom der Phasen 1 bis 3 in Ampere	
I_{max}	Maximaler Phasenstrom	
Eingang 0 bis 5	Zustand der digitalen Eingänge des DMI	
Überlastvorwar- nung	Mindestens ein Phasenstrom liegt über der Lastwarngrenze ($I_r = 70 \%$)	
Nicht genutzt	Keine auszuwertende Information	
Position Leistungs- schalter	 Normaler Betrieb des Leistungsschalters (Kommunikation in Ordnung) Leistungsschalter defekt oder nicht vorhanden (Kommunikation nicht vorhanden) 	
Sammelwarnung	Wird gesetzt, wenn entweder eine Warnung oder eine Auslösung vomLeistungsschalter vorliegt	
Status Leistungs- schalter	 Initialisierung läuft Leistungsschalter ist im Schaltzustand "AUS" Leistungsschalter ist im Schaltzustand "EIN" Leistungsschalter ist im Schaltzustand "Ausgelöst" 	
Überlast 1	Mindestens ein Phasenstrom liegt über der Überlast 1 Grenze ($I_r = 100 $ %)	

Format und Bedeutung der Datenausgänge

Das Format und die Bedeutung der Datenausgänge entspricht dem Modul 1.

Modul 3 gemäß PROFIBUS-Leistungsschalterprofil 1 und Motorstarter

Bei Auswahl dieses Moduls lassen sich die folgenden Informationen zusätzlich zu den Informationen des Moduls 1 aus dem Leistungsschalter und dem DMI auslesen:

- Motor ein-/ausgeschaltet,
- Motor Linkslauf/Rechtslauf,
- Motor läuft in Sternschaltung,
- Motor läuft in Dreieckschaltung.

Des weiteren lassen sich die folgenden Funktionen zusätzlich zu den Funktionen des Moduls 1 steuern:

- Motor ein-/ausschalten,
- Motor f
 ür Linkslauf/Rechtslauf einschalten.

Die ausgelesenen Informationen sind Dateneingänge des DP-Masters, die steuerbaren Funktionen werden im DP-Master als Datenausgänge angesprochen.

Diese Informationen und Funktionen stehen nur zur Verfügung, wenn im DMI eine Motorstarter-Funktion parametriert wurde.

Format der Dateneingänge

Das Lesen der Dateneingänge erfolgt direkt über die DPV0-Lesebefehle oder über die bei der PROFIBUS-DP-Konfiguration definierten Eingangsbytes des DP-Masters. Beachten Sie hierzu die Dokumentation des Master-Gerätes. Es werden vier Octets als Dateneingänge eingelesen, die folgende Daten beinhalten:

Tabelle 11: Adresslage der Dateneingänge Modul 3

Datenposition	Bezeichnung
Octet 1	
Bit 0 und Bit 1	Position Leistungsschalter
Bit 2 und Bit 3	Status Leistungsschalter
Bit 4	Einschaltbereitschaft
Bit 5 und Bit 6	Nicht genutzt
Bit 7	Überlast 1
Octet 2	
Bit 0	Nicht genutzt
Bit 1	Sammelwarnung
Bit 2	Nicht genutzt
Bit 3	Eingang 0
Bit 4 bis Bit 6	Auslösegrund
Bit 7	Überlastvorwarnung
Octet 3	
Bit 0	Eingang 1
Bit 1	Eingang 2
Bit 2	Eingang 3
Bit 3	Eingang 4
Bit 4	Eingang 5
Bit 5 bis Bit 7	Nicht genutzt
Octet 4	
Bit 0	Nicht genutzt
Bit 1	Sammelmeldung Motor
Bit 2 und Bit 3	Nicht genutzt
Bit 4	Motor "EIN" oder Motor Linkslauf
Bit 5	Motor Rechtslauf
Bit 6	Stern-Modus
Bit 7	Dreieck-Modus

Die Eingänge 1 bis 3 des DMI sind gemäß der gewählten Motorstarter-Funktion mit Schaltern oder Tastern zur lokalen Steuerung des Motors belegbar (→ Abschnitt "Motorstarter", Seite 44).

Eingang 4 und 5 dienen zum Anschluss der Hilfsschalter, um den Schaltzustand des Leistungsschalters zu erkennen.

Bedeutung der Dateneingänge

Die eingelesenen Dateneingänge haben folgende Bedeutung:

Tabelle 12: Dateninhalte der Dateneingänge Modul 3

	Tabelle 12. Datellillialte dei Datellelligalige Woddi 3		
Bezeichnung	Bedeutung	Voraussetzung	
Auslösegrund	000 keine Auslösung 001 I_r 010 I_i 011 I_{sd} 100 I_{dn} 101 Selektivität, Kommunikationsfehler, Übertemperatur, Hardwarefehler 110 Überstrom N-Leiter	-	
Dreieck-Modus	 Der Motor wird nicht in Dreieck- schaltung betrieben Der Motor wird in Dreieckschal- tung betrieben 	Die Ausgänge 0, 2, 3 wurden auf "Stern-Dreieck-Starter" oder die Ausgänge 0, 1, 2 und 3 wurden auf "Stern-Dreieck- Wendestarter" parametriert	
Einschalt- bereitschaft	Der Leistungsschalter ist ausge- schaltet (nicht ausgelöst)	-	
Eingang 0 bis 5	Zustand der digitalen Eingänge des DMI	-	
Überlastvorwar- nung	Mindestens ein Phasenstrom liegt über der Lastwarngrenze ($I_r = 70 \%$)	-	
Motor "EIN"	0 Motor ist ausgeschaltet1 Motor ist eingeschaltet	Der Ausgang 0 wurde auf "Direkt- starter" oder die Ausgänge 0, 2 und 3 wurden auf "Stern-Dreieck- Starter" parametriert	

Bezeichnung	Bedeutung	Voraussetzung
Motor Rechtslauf, Motor Linkslauf	 Motor ist ausgeschaltet Motor ist für Linkslauf eingeschaltet Motor ist für Rechtslauf eingeschaltet 	Die Ausgänge 0 und 1 wurden auf "Wendestarter" oder die Ausgänge 0, 1, 2 und 3 wurden auf "Stern-Dreieck- Wendestarter" parametriert
Nicht genutzt	Keine auszuwertende Information	-
Position Leistungs- schalter	 Normaler Betrieb des Leistungsschalters (Kommunikation in Ordnung) Leistungsschalter defekt oder nicht vorhanden (Kommunikation nicht vorhanden) 	-
Sammelmeldung Motor	Wird gesetzt, wenn eines der Bits Motor "EIN", Motor Linkslauf oder Motor Rechtslauf gesetzt ist	Motorstarter-Funktion im DMI ist parametriert
Sammelwarnung	Wird gesetzt, wenn entweder eine Warnung oder eine Auslösung vom Leis- tungsschalter vorliegt	-
Status Leistungs- schalter	 Initialisierung läuft Leistungsschalter ist im Schaltzustand "AUS" Leistungsschalter ist im Schaltzustand "EIN" Leistungsschalter ist im Schaltzustand "Ausgelöst" 	-
Stern-Modus	 Der Motor wird nicht in Sternschaltung betrieben Der Motor wird in Sternschaltung betrieben 	Die Ausgänge 0, 2, 3 wurden auf "Stern-Dreieck-Starter" oder die Ausgänge 0, 1, 2 und 3 wurden auf "Stern-Dreieck- Starter" parametriert
Überlast 1	Mindestens ein Phasenstrom liegt über der Überlast 1 Grenze ($I_r = 100 \%$)	-

Die Dateninhalte Dreieck-Modus, Motor "EIN", Motor Linkslauf, Motor Rechtslauf, Sammelmeldung Motor und Stern-Modus werden aus der aktuellen Ansteuerung der DMI-Ausgänge, an denen die Schütze zur Motorsteuerung angeschlossen sind (—> Abschnitt "Motorstarter", Seite 44), gebildet. Sie geben somit nur bedingt den Zustand der Motoransteuerung wieder.

Format der Datenausgänge

Das Schreiben der Datenausgänge erfolgt direkt über die DPVO-Schreibbefehle oder über die bei der PROFIBUS-DP-Konfiguration definierten Ausgangsbytes des DP-Masters. Beachten Sie hierzu die Dokumentation des Master-Gerätes. Es werden drei Octets als Datenausgänge ausgegeben, die folgende Steuerinformationen beinhalten:

Tabelle 13: Adresslage der Datenausgänge Modul 3

Datenposition	Bezeichnung
Octet 1	
Bit 0 und Bit 1	Leistungsschalter betätigen
Bit 2	Nicht genutzt
Bit 3	Ausgang 0
Bit 4	Ausgang 1
Bit 5	Ausgang 2
Bit 6	Ausgang 3
Bit 7	Ausgang 4
Octet 2	
Bit 0 bis Bit 4	Nicht genutzt
Bit 5	Ausgang 5
Bit 6 und Bit 7	Nicht genutzt
Octet 3	
Bit 0	Motor "EIN" oder Motor Linkslauf
Bit 1	Motor Rechtslauf
Bit 2 bis Bit 7	Nicht genutzt

Je nach parametrierter Motorstarter-Funktion werden die Ausgänge 1 bis 3 zum Anschluss der Motor-Schütze verwendet (—> Abschnitt "Motorstarter", Seite 44). Die hierfür nicht verwendeten Ausgänge können nur dann über den Bus gesteuert werden, wenn sie im DMI in der Q-Zuordnung auf Bus parametriert wurden. Die Steuerung des Motors erfolgt über die Bits Motor "EIN", Motor Linkslauf und Motor Rechtslauf oder azyklisch mit Hilfe des Objektes "Leistungsschalter/DMI Kommandos". Werden Ausgang 4 und 5 zum Anschluss eines Fernantriebs verwendet, um den Schaltzustand des Leistungsschalter zu steuern, stehen die Ausgänge 4 und 5 über den Bus nicht zur Verfügung. Die Steuerung des Fernantriebs erfolgt in diesem Fall über die Bits "Leistungsschalter betätigen" oder azyklisch mit Hilfe des Objektes "Leistungsschalter/DMI Kommandos".

Die Erfüllung des PNO-Leistungsschalterprofils setzt die Verwendung eines Fernantriebs mit entsprechender Parametrierung der Ausgänge 4 und 5 im DMI voraus.

Bedeutung der Datenausgänge

Die ausgegebenen Datenausgänge haben folgende Bedeutung:

Tabelle 14: Dateninhalte der Datenausgänge Modul 3

Bezeichnung	Bedeutung	Voraussetzung
Leistungsschalter betätigen per Motorantrieb	 Zustand nicht ändern Ausschalten Einschalten Zustand nicht ändern 	Die Ausgänge 4 und 5 wurden im DMI auf "Fernantrieb" para- metriert
Ausgang 0 bis 5	Zustand der digitalen Ausgänge des DMI	Der jeweilige Ausgang wurde im DMI auf "Bus" parametriert
Motor "EIN"	0 Motor ausschalten1 Motor einschalten	Der Ausgang 0 wurde auf "Direkt- starter" oder die Ausgänge 0, 2 und 3 wurden auf "Stern-Dreieck- Starter" parametriert

Bezeichnung	Bedeutung	Voraussetzung
Motor Rechtalauf Motor Linkslauf	 Motor ausschalten Motor für Linkslauf einschalten Motor für Rechtslauf einschalten Nicht zulässig 	Die Ausgänge 0 und 1 wurden auf "Wendestarter" oder die Ausgänge 0, 1, 2 und 3 wurden auf "Stern-Dreieck-Wendestarter" parametriert
Nicht genutzt	Keine auszuwertende Information	-

Modul 4 gemäß PROFIBUS-Leistungsschalterprofil 2 und Motorstarter

Bei Auswahl dieses Moduls lassen sich folgende Informationen zusätzlich zu den Informationen des Moduls 2 aus dem Leistungsschalter und dem DMI auslesen:

- Motor ein-/ausgeschaltet,
- Motor Linkslauf/Rechtslauf,
- Motor läuft in Sternschaltung,
- Motor läuft in Dreieckschaltung.

Des weiteren lassen sich folgende Funktionen zusätzlich zu den Funktionen des Moduls 2 steuern:

- Motor ein-/ausschalten,
- Motor für Linkslauf/Rechtslauf einschalten.

Die ausgelesenen Informationen sind Dateneingänge des DP-Masters, die steuerbaren Funktionen werden im DP-Master als Datenausgänge angesprochen.

Diese Informationen und Funktionen stehen nur zur Verfügung, wenn im DMI eine Motorstarter-Funktion parametriert wurde.

Format der Dateneingänge

Das Lesen der Dateneingänge erfolgt direkt über die DPV0-Lesebefehle oder über die bei der PROFIBUS-DP-Konfiguration definierten Eingangsbytes des DP-Masters. Beachten Sie hierzu die Dokumentation des Master-Gerätes. Es werden zwölf Octets als Dateneingänge eingelesen, die folgende Daten beinhalten:

Tabelle 15: Adresslage der Dateneingänge Modul 4

Datenposition	Bezeichnung
Octet 1	
Bit 0 und Bit 1	Position Leistungsschalter
Bit 2 und Bit 3	Status Leistungsschalter
Bit 4	Einschaltbereitschaft
Bit 5 und Bit 6	Nicht genutzt
Bit 7	Überlast 1
Octet 2	
Bit 0	Nicht genutzt
Bit 1	Sammelwarnung
Bit 2	Nicht genutzt
Bit 3	Eingang 0
Bit 4 bis Bit 6	Auslösegrund
Bit 7	Überlastvorwarnung
Octet 3 und 4	<i>I</i> ₁
Octet 5 und 6	I ₂
Octet 7 und 8	I ₃
Octet 9 und 10	$I_{\sf max}$
Octet 11	
Bit 0	Eingang 1
Bit 1	Eingang 2
Bit 2	Eingang 3

Datenposition	Bezeichnung
Bit 3	Eingang 4
Bit 4	Eingang 5
Bit 5 bis Bit 7	Nicht genutzt
Octet12	
Bit 0	Nicht genutzt
Bit 1	Sammelmeldung Motor
Bit 2 und Bit 3	Nicht genutzt
Bit 4	Motor "EIN" oder Motor Linkslauf
Bit 5	Motor Rechtslauf
Bit 6	Stern-Modus
Bit 7	Dreieck-Modus

Die Eingänge 1 bis 3 des DMI sind gemäß der gewählten Motorstarter-Funktion mit Schaltern oder Tastern zur lokalen Steuerung des Motors belegbar (—> Abschnitt "Motorstarter", Seite 44). Eingang 4 und 5 dienen zum Anschluss der Hilfsschalter, um den Schaltzustand des Leistungsschalters zu erkennen.

Beachten Sie beim Zugriff auf die Phasenströme I1 bis I_3 und $I_{\rm max}$ das im PROFIBUS-DP verwendete Motorola-Kodierungsformat (Octet N: High-Byte, Octet N+1: Low-Byte) für Daten im WORD-Format. Sollte das Datenverarbeitungsformat in Ihrem DP-Master-System hiervon abweichen und die DP-Zugriffsbefehle keine automatische Konvertierung beinhalten, müssen Sie die notwendige Konvertierung in Ihrem Anwendungsprogramm selbst vornehmen. Beachten Sie dazu die Dokumentation Ihres DP-Master-Systems.

Bedeutung der Dateneingänge

Die eingelesenen Dateneingänge haben folgende Bedeutung:

Tabelle 16: Dateninhalte der Dateneingänge Modul 4

Tabelle 16: Dateninnalte der Dateneingange Modul 4		
Bezeichnung	Bedeutung	Voraussetzung
Auslösegrund	 keine Auslösung I_r I_i I_{sd} Selektivität, Kommunikationsfehler, Übertemperatur, Hardwarefehler Überstrom N-Leiter 	-
Dreieck-Modus	 Der Motor wird nicht in Dreieck- schaltung betrieben Der Motor wird in Dreieckschal- tung betrieben 	Die Ausgänge 0, 2, 3 wurden auf "Stern-Dreieck-Starter" oder die Ausgänge 0, 1, 2 und 3 wurden auf "Stern-Dreieck- Wendestarter" parametriert
Einschalt- bereitschaft	 Der Leistungsschalter ist ausge- schaltet (nicht ausgelöst) 	-
I_1 bis I_3	Strom der Phasen 1 bis 3	-
$I_{\sf max}$	Maximaler Phasenstrom	-
Eingang 0 bis 5	Zustand der digitalen Eingänge des DMI	-
Überlastvorwar- nung	Mindestens ein Phasenstrom liegt über der Lastwarngrenze ($I_r = 70 \%$)	-
Motor "EIN"	0 Motor ist ausgeschaltet1 Motor ist eingeschaltet	Der Ausgang 0 wurde auf "Direktstarter" oder die Ausgänge 0, 2 und 3 wurden auf "Stern-DreieckStarter" parametriert
Motor Rechtslauf, Motor Linkslauf	 Motor ist ausgeschaltet Motor ist für Linkslauf eingeschaltet Motor ist für Rechtslauf eingeschaltet 	Die Ausgänge 0 und 1 wurden auf "Wendestarter" oder die Ausgänge 0, 1, 2 und 3 wurden auf "Stern-Dreieck- Wendestarter" parametriert

Bezeichnung	Bedeutung	Voraussetzung
Nicht genutzt	Keine auszuwertende Information	-
Position Leistungs- schalter	 Normaler Betrieb des Leistungs- schalters (Kommunikation in Ordnung) Leistungsschalter defekt oder nicht vorhanden (Kommunikation nicht vorhanden) 	-
Sammelmeldung Motor	Wird gesetzt, wenn eines der Bits Motor "EIN", Motor Linkslauf oder Motor Rechtslauf gesetzt ist	Motorstarter-Funktion im DMI ist parametriert
Sammelwarnung	Wird gesetzt, wenn entweder eine Warnung oder eine Auslösung vom Leis- tungsschalter vorliegt	-
Status Leistungs- schalter	 Initialisierung läuft Leistungsschalter ist im Schaltzustand "AUS" Leistungsschalter ist im Schaltzustand "EIN" Leistungsschalter ist im Schaltzustand "Ausgelöst" 	_
Stern-Modus	 Der Motor wird nicht in Sternschaltung betrieben Der Motor wird in Sternschaltung betrieben 	Die Ausgänge 0, 2, 3 wurden auf "Stern-Dreieck-Starter" oder die Ausgänge 0, 1, 2 und 3 wurden auf "Stern-Dreieck- Wendestarter" parametriert
Überlast 1	Mindestens ein Phasenstrom liegt über der Überlast 1 Grenze ($I_r = 100 \%$)	-

Die Dateninhalte Dreieck-Modus, Motor "EIN", Motor Linkslauf, Motor Rechtslauf, Sammelmeldung Motor und Stern-Modus werden aus der aktuellen Ansteuerung der DMI-Ausgänge, an denen die Schütze zur Motorsteuerung angeschlossen sind (—> Abschnitt "Motorstarter", Seite 44), gebildet. Sie geben somit nur bedingt den Zustand der Motoransteuerung wieder.

Format der Datenausgänge

Das Format der Datenausgänge entspricht dem des Moduls 3.

Bedeutung der Datenausgänge

Die Bedeutung der Datenausgänge entspricht der des Moduls 3.

Synchrones Lesen und synchrones Ausgeben von Daten

Das NZM-XDMI-DPV1 unterstützt das synchrone Lesen von Dateneingängen (Freeze) und das synchrone Ausgeben von Datenausgängen (Sync) über mehrere Teilnehmer gemäß DP-Norm.

Das Aufrufen dieser Funktion finden Sie in der Dokumentation Ihres DP-Master-Systems.

Diagnose mit Klasse 1 DP-Master

Das NZM-XDMI-DPV1 liefert außer der genormten DP-Standard-Diagnose zusätzliche Diagnoseinformationen, welche in einem Klasse 1 DPV0-Master als "Gerätespezifische Diagnose" und in einem Klasse 1 DPV1-Master als "Statusdiagnose" erscheinen.

Format der Diagnoseinformationen

Das Lesen der Diagnose erfolgt direkt über die DPV0-Diagnosebefehle oder über die bei der PROFIBUS-DP-Konfiguration definierten Diagnosebytes des DP-Masters. Beachten Sie hierzu die Dokumentation des Master-Gerätes. Es werden dreizehn Octets als Diagnose eingelesen, die folgende Informationen beinhalten:

Tabelle 17: Adresslage der Diagnoseinformationen

Diagnose- position	Bezeichnung
Octet 1	
Bit 0	Station nicht existent
Bit 1	Station nicht bereit
Bit 2	Konfigurationsfehler
Bit 3	Zusätzliche Diagnoseinformationen
Bit 4	Funktion nicht unterstützt
Bit 5	Ungültige Antwort DP-Slave
Bit 6	Parametrierungsfehler
Bit 7	Master bereits vorhanden
Octet 2	
Bit 0	Parametrierungsanfrage
Bit 1	Statische Diagnose
Bit 2	Nicht genutzt
Bit 3	Ansprechüberwachung aktiviert
Bit 4	Freeze-Modus aktiv
Bit 5	Sync-Modus aktiv
Bit 6	Nicht genutzt
Bit 7	Slave deaktiviert
Octet 3	
Bit 0 bis Bit 6	Nicht genutzt
Bit 7	Überlauf zusätzliche Diagnoseinformation
Octet 4	Stationsadresse DP-Master
Octet 5 und 6	Ident-Nummer DP-Slave
Octet 7	Länge zusätzliche Diagnoseinformation
Octet 8	Status Type
Octet 9	Slot Number
Octet 10	Status Specifier

Diagnose- position	Bezeichnung
Octet 11	
Bit 0	Initialisierung läuft
Bit 1	Easy Link: dreifacher LRC Fehler
Bit 2	Easy Link: Timeout
Bit 3	Fehler Spannungsversorgung
Bit 4	Fehler DMI Anzeige
Bit 5	Fehler DMI Uhrzeitmodul
Bit 6	Kommunikation zum Leistungsschalter unterbrochen
Bit 7	Kommunikation zum DMI unterbrochen
Octet 12	
Bit 0	Fehler A/D Wandler
Bit 1	Fehler Signalverarbeitung
Bit 2	Fehler Wandlerblock
Bit 3	Fehler EEPROM
Bit 4	Fehler Aufsteckmodul 1
Bit 5	Fehler Aufsteckmodul 2
Bit 6	Fehler Aufsteckmodul 3
Bit 7	Fehler Aufsteckmodul 4
Octet 13	
Bit 0	Fernantrieb im DMI nicht parametriert
Bit 1	Anlauf-Stopp
Bit 2	Motorstarter-Funktion parametriert
Bit 3	Parametrierte Motorstarter-Funktion geändert oder deaktiviert
Bit 4 bis Bit 7	Nicht genutzt

Beachten Sie beim Zugriff auf die Diagnoseinformation "Ident-Nummer" das im PROFIBUS-DP verwendete Motorola-Kodierungsformat (Octet N: High-Byte, Octet N+1: Low-Byte) für Daten im WORD-Format. Sollte das Datenverarbeitungsformat in Ihrem DP-Master-System hiervon abweichen und die DP-Zugriffsbefehle keine automatische Konvertierung beinhalten, müssen Sie die notwendige Konvertierung in Ihrem Anwendungsprogramm selbst vornehmen. Beachten Sie dazu die Dokumentation Ihres DP-Master-Systems.

Bedeutung der Diagnoseinformationen

Die eingelesenen Diagnoseinformationen haben folgende Bedeutung:

Tabelle 18: Dateninhalte der Diagnoseinformationen

Tubelle 16. Datellimate del Diagnoseimoniationen				
Bezeichnung	Bedeutung	Erläuterung/Abhilfe		
Anlauf-Stopp	Ein Leistungsschalter mit neuer Seri- ennummer wurde an das DMI ange- schlossen	Stellen Sie sicher, dass es sich um den gewünschten Typ handelt. Quittieren Sie über DMI-Tastatur oder über den PROFIBUS mit Hilfe des Objektes Leistungsschalter/DMI Kommandos		
Ansprechüberwachung aktiviert	Die Ansprechüberwachung im NZM-XDMI-DPV1 wurde ordnungs- gemäß aktiviert	Sollzustand		
Easy Link: dreifacher LRC-Fehler	Das NZM-XDMI-DPV1 hat dreimal in Folge ein gestörtes Telegramm über den Easy-Link vom DMI empfangen	Überprüfen Sie die Verbindung zwischen DMI und NZM-XDMI- DPV1 Überprüfen Sie die Störsicher- heitsmaßnahmen		
Easy Link: Timeout	Die Kommunikation zum DMI über den Easy-Link ist unterbrochen	Überprüfen Sie die Verbindung zwischen DMI und NZM-XDMI-DPV1		

Bezeichnung	Bedeutung	Erläuterung/Abhilfe
Fehler	Fehler in der Hardware	Tauschen Sie die Hardware aus
A/D Wandler		
DMI Anzeige		
DMI Uhrzeitmodul		
EEPROM		
Wandlerblock		
Signalverarbeitung		
Spannungsversorgung		
Aufsteckmodul 1		
Aufsteckmodul 2		
Aufsteckmodul 3		
Aufsteckmodul 4		
Fernantrieb im DMI nicht parametriert	Der Fernantrieb im DMI ist nicht parametriert, der Schaltzustand des Leistungsschalters lässt sich nicht über den PROFIBUS steuern	Parametrieren Sie im DMI den Fernantrieb
Freeze-Modus aktiv	Der DP-Master hat das synchrone Lesen von Dateneingängen mehrerer Teilnehmer aktiviert	Gewollte Anwender-Aktion
Funktion nicht unterstützt	Der DP-Master hat eine vom NZM-XDMI-DPV1 nicht unterstützte Funktion angefordert	Überprüfen Sie die Konfiguration des DP-Masters
Ident-Nummer DP-Slave	Enthält die Ident-Nummer des NZM-XDMI-DPV1: hexadezimal 4D11	-
Initialisierung läuft	Das NZM-XDMI-DPV1 befindet sich in der Initialisierungsphase	Temporärer Zustand
Kommunikation zum DMI unterbrochen	Die Kommunikation zum DMI über den Easy-Link ist unterbrochen	Überprüfen Sie die Verbindung zwischen DMI und NZM-XDMI-DPV1

Bezeichnung	Bedeutung	Erläuterung/Abhilfe
Kommunikation zum Leistungsschalter unter- brochen	Die Kommunikation zwischen DMI und Leistungsschalter ist unterbrochen	Überprüfen Sie die Verbindung zwischen DMI und Leistungs- schalter
Konfigurationsfehler	Der DP-Master hat ein ungültiges Konfigurationstelegramm an das NZM-XDMI-DPV1 gesendet (z. B. falsche Länge der Dateneingänge und/oder Datenausgänge)	Überprüfen Sie die Konfiguration des DP-Masters
Länge zusätzliche Diag- noseinformation	Enthält die Länge der zusätzlichen Diagnoseinformationen: hexadezimal 07	-
Master bereits vorhanden	Das NZM-XDMI-DPV1 ist von einem anderen DP-Master belegt	-
Nicht genutzt	Enthält keine auszuwertende Information	-
Parametrierte Motor- starter-Funktion geän- dert oder deaktiviert	Im DMI ist eine bereits parametrierte Motorstarter-Funktion geändert oder deaktiviert worden	-
Parametrierungsanfrage	Das NZM-XDMI-DPV1 wartet auf das Parametrierungstelegramm des DP- Masters	Temporärer Zustand
Parametrierungsfehler	Der DP-Master hat ein ungültiges Parametrierungstelegramm an das NZM-XDMI-DPV1 gesendet	Überprüfen Sie die Konfiguration des DP-Masters
Slave deaktiviert	Der DP-Master hat das NZM-XDMI- DPV1 aus seiner zyklischen Bearbei- tung herausgenommen (deaktiviert)	Gewollte Anwender-Aktion
Slot Number	Enthält die Slot Number, aus der die zusätzlichen Diagnoseinformationen (Status) stammen: hexadezimal 00	-
Station nicht bereit	Das NZM-XDMI-DPV1 ist für die Kommunikation noch nicht bereit (Initialisierungsphase)	Temporärer Zustand

NZM-XDMI-DPV1 (PROFIBUS-DPV1 Interface für DMI)

Bezeichnung	Bedeutung	Erläuterung/Abhilfe
Station nicht existent	Unter der verwendeten Stations- adresse meldet sich kein Teilnehmer	Überprüfen Sie die Konfigura- tion des DP-Masters und die Adresseinstellung am DMI
Stationsadresse DP-Master	Enthält die Stationsadresse des DP-Masters	-
Statische Diagnose	Die Kommunikation zwischen NZM-XDMI-DPV1 und DMI ist unter- brochen	Überprüfen Sie die Verbindung zwischen DMI und NZM-XDMI-DPV1
Status Specifier	NZM-XDMI-DPV1 gibt keine "Kommend/Gehend" Meldung zu den gesendeten Diagnoseinformati- onen (Status): hexadezimal 00	-
Status Type	Das NZM-XDMI-DPV1 verwendet den Status Typ "Status-Meldung": hexadezimal 81	-
Sync-Modus aktiv	Der DP-Master hat das synchrone Ausgeben von Datenausgängen an mehrere Teilnehmer aktiviert	Gewollte Anwender-Aktion
Überlauf zusätzliche Diagnoseinformation	Die zusätzlichen Diagnosedaten (Status) sind größer als der dafür reservierte Speicherplatz im DP-Master	Überprüfen Sie die Konfiguration des DP-Masters
Ungültige Antwort DP-Slave	Das NZM-XDMI-DPV1 hat eine ungültige Antwort gesendet	Überprüfen Sie die Verkabelung und die Störsicherheitsmaß- nahmen
Zusätzliche Diagnose- informationen	Das NZM-XDMI-DPV1 hat zusätz- liche Diagnoseinformationen (Statusmeldung) gesendet	Sollzustand: "FALSE"

PROFIBUS-DPV1-Funktionen

Das NZM-XDMI-DPV1 bietet für die azyklische Kommunikation mit einem Klasse 1 oder einem Klasse 2 DPV1-Master verschiedene DPV1 Process Data Objekte (Datensätze) an, die logisch zusammengehörige Daten beinhalten. Diese Objekte können gelesen und/oder geschrieben werden. Manche dieser Objekte sind nur für einen Klasse 2 DPV1-Master zugänglich, da deren Dateninhalte dem Klasse 1 DPV1-Master in den zyklischen Ein-/Ausgangsdaten zur Verfügung stehen.

Die Ansprache aller Objekte erfolgt über die DPV1-Dienste Read und Write in Ihrem DP-Master-System.

Funktionsübersicht

Die vom NZM-XDMI-DPV1 bereitgestellten Process Data Objekte ermöglichen die in den folgenden Abschnitten aufgeführte Funktionalitäten.

Azyklische Daten mit Klasse 1 und Klasse 2 DPV1-Master

Es lassen sich folgende Informationen auslesen:

- Status des Leistungsschalters (Auslösegrund, Überlastvorwarnung, Überlastbereiche erreicht, Phasenzustand, Fehlermeldungen),
- Verwendete Parameter im Leistungsschalter (z. B. Ansprechwerte und Verzögerungszeiten für Überlast, Kurzschluss, Fehlerstrom),
- Lokale Parameter des Leistungsschalters (z. B. Ansprechwerte und Verzögerungszeiten für Überlast, Kurzschluss, Fehlerstrom),
- Diagnosesätze 1 bis 10 des Leistungsschalters (Datum, Uhrzeit, verwendete Parameter, Status des Leistungsschalter),
- Leistungsschalteridentifikation (z. B. Seriennummer, NZM-Typ, Wandlertyp, Hardwareversion, Softwareversion),

NZM-XDMI-DPV1 (PROFIBUS-DPV1 Interface für DMI)

- Ströme im Leistungsschalter (I_{eff} der 3 Phasen und des N-Leiters, maximaler Strom, Fehlerstrom),
- DMI-Funktionalität (Motorstarter-Funktion, Belegung der DMI-Ausgänge mit Schaltsignalen),
- DMI-Display (Belegung der einzelnen Anzeigezeilen),
- DMI-Parameter (Passwort, Sprachauswahl, Seriennummer, Anlaufverhalten),
- DMI-Uhrzeit,
- Zustand der Eingänge des DMI,
- Zustand der Ausgänge des DMI,
- DMI-Identifikation (Software-Version),
- NZM-XDMI-DPV1-Identifikation (Software-Version),
- Kommunikations-Status (Leistungsschalter, DMI, Anlauf),
- Statistikwerte (Betriebstunden Leistungsschalter und DMI, Schaltspiele Leistungsschalter).

Es lassen sich folgende Funktionen steuern bzw. parametrieren:

- Kommandos an den Leistungsschalter (Einschalten, Ausschalten, Auslösen),
- Kommandos an das DMI (Motor ausschalten, Motor einschalten, Linkslauf, Rechtslauf, Anlaufstopp quittieren, Alarme quittieren),
- Zu verwendende Parameter im Leistungsschalter
 (z. B. Ansprechwerte und Verzögerungszeiten für Überlast, Kurzschluss, Fehlerstrom),
- DMI-Funktionalität (Motorstarter-Funktion, Belegung der DMI-Ausgänge mit Schaltsignalen),
- DMI-Display (Belegung der einzelnen Anzeigezeilen),
- DMI-Parameter (Passwort, Sprachauswahl, Seriennummer, Anlaufverhalten),
- DMI-Uhrzeit.

Zusätzliche azyklische Daten nur mit Klasse 2 DPV1-Master

Es lässt sich folgende Funktion steuern:

Zustand der Ausgänge des DMI (für Ausgänge deren Schaltsignal auf "Bus" parametriert wurde, nur möglich bei Betrieb ohne Klasse 1 DP-Master).

Objektübersicht

In DPV1 werden die azyklisch angesprochenen Daten zu sogenannten Process Data Objekten zusammengestellt. Ein Process Data Objekt enthält konsistente Dateninhalte (Datensätze), die über die DPV1-Dienste Read und/oder Write angesprochen werden können.

Die folgende Übersicht enthält alle im NZM-XDMI-DPV1 enthaltene Objekte.

Tabelle 19: Process Data Objekte im NZM-XDMI-DPV1

Objektname	API	Slot Number	Index	Daten- länge (Octets)	lesbar (R) schreibbar (W)	Seite
Leistungsschalter						
Diagnosesatz 1	0	0	1	27	R	→ 118
Diagnosesatz 2	0	0	2	27	R	
Diagnosesatz 3	0	0	3	27	R	
Diagnosesatz 4	0	0	4	27	R	
Diagnosesatz 5	0	0	5	27	R	
Diagnosesatz 6	0	0	6	27	R	
Diagnosesatz 7	0	0	7	27	R	
Diagnosesatz 8	0	0	8	27	R	
Diagnosesatz 9	0	0	9	27	R	
Diagnosesatz 10	0	0	10	27	R	

Objektname	API	Slot Number	Index	Daten- länge	lesbar (R) schreibbar	Seite
		Number		(Octets)	(W)	
Leistungsschalter						
Status	0	0	11	7	R	→ 129
Verwendete Parameter	0	0	12	9	R	→ 134
Lokal eingestellte Parameter	0	0	13	9	R	→ 136
Neue Parameter	0	0	14	9	W	→ 139
Geräte- identifikation	0	0	15	86	R	→ 142
Ströme	0	0	17	12	R	→ 148
DMI						
Ausgangs- belegung	0	0	21	9	R,W	→ 152
Standard- anzeigebelegung	0	0	22	6	R,W	→ 158
Grundeinstellung	0	0	23	9	R,W	→ 162
Uhr	0	0	24	8	R,W	→ 166
Eingänge	0	0	25	1	R	→ 169
Ausgänge	0	0	26	1	R	→ 170
Bus-Ausgänge	0	0	27	1	W	→ 172
Geräte- identifikation	0	0	28	12	R	→ 174
Leistungsschalter/ DMI						
Kommandos	0	0	16	1	W	→ 145
Kommunikations- status	0	0	20	2	R	→ 150
Statistikwerte	0	0	30	10	R	→ 177

Objektname	API	Slot Number	Index	Daten- länge (Octets)	lesbar (R) schreibbar (W)	Seite
NZM-XDMI-DPV1 Geräteidentifikation	0	0	29	8	R	→ 176
Objektzusammen- stellung A	0	0	50	31	R	→ 179
Objektzusammen- stellung B	0	0	51	19	R	→ 185

Zugriff auf Objekte

Der Zugriff auf die Process Data Objekte im NZM-XDMI-DPV1 mittels der DPV1-Dienste Read und Write erfolgt mit Hilfe der vom DP-Master-System hierfür bereitgestellten Funktionen. Beachten Sie diesbezüglich die Dokumentation des Herstellers. In der Regel werden für den Zugriff Funktionsbausteine bereitgestellt. In IEC 61131-3 basierten Systemen werden oft die von der Profibus-Nutzerorganisation in der Richtlinie 2.182 definierten Funktionsbausteine "RDREC" (Read) und "WRREC" (Write) angeboten, die einen optimalen Zugriff auch auf komplexe Datenstrukturen ermöglichen.

Für die Ansprache der Objekte benötigen Sie folgende Angaben:

- Die Adresse der lokalen DPV1-Master-Anschaltung,
- Die Teilnehmeradresse des anzusprechenden NZM-XDMI-DPV1,
- Den Identifier der Applikation (API) im NZM-XDMI-DPV1 (Angabe nur bei Klasse 2 DPV1-Master erforderlich),
- Das zu adressierende Modul des NZM-XDMI-DPV1 (Slot Number).

- Die Adresse (Index) des gewünschten Process Data Objektes im adressierten Modul des NZM-XDMI-DPV1,
- Die Datenlänge des gewünschten Process Data Objektes,
- Eine definierte Variable (Speicherbereich) in der lokalen Anwendung, der die ausgelesenen Daten zugewiesen werden sollen oder die die zu schreibenden Daten enthält.

Die Adresse der lokalen DPV1-Master-Anschaltung entnehmen Sie der Topologie Ihres Master-Systems. Die Teilnehmeradresse des anzusprechenden NZM-XDMI-DPV1 entnehmen Sie der Profibus-Topologie.

Für das NZM-XDMI-DPV1 ist für alle Process Data Objekte der API (Angabe nur bei Klasse 2 DPV1-Master erforderlich) und die Slot Number mit 0 anzugeben.

Den Index, die Datenlänge und eine beispielhafte Variablendefinition (Deklaration) für ein IEC 61131-3 basierendes System und für jedes im NZM-XDMI-DPV1 vorhandene Process Data Objekt finden Sie in den folgenden Abschnitten.

Process Data Objekte

Objekt Leistungsschalter Diagnosedatensatz 1 bis 10

Diagnosedatensatz 1 bis Diagnosedatensatz 10 enthalten die zuletzt gespeicherten Diagnosedaten des Leistungsschalters. Der Diagnosendatensatz 1 enthält die aktuellsten (letzten) Diagnoseereignisse, der Diagnosedatensatz 10 die ältesten gespeicherten.

Dieses Objekt ist nur lesbar (Read). Es kann von einem Klasse 1 und/oder einem Klasse 2 DPV1-Master angesprochen werden.

Verwendungszweck

Verwenden Sie dieses Objekt um sich nach einem im Leistungsschalter eingetretenen Ereignis (z. B. Auslösung) bezüglich

- Alarmen,
- Auslösebedingungen,
- Phasenzuständen,
- Fehlerzuständen,

zu informieren. Durch die Speicherung von 10 Diagnosedatensätzen kann auch die Vorgeschichte einer erfolgten Auslösung diagnostiziert werden.

Adressierung und Länge des Objektes

Für die Adressierung des Objektes verwenden Sie die folgenden Informationen:

- API ist gleich 0 (nur für Klasse 2 DPV1-Master erforderlich),
- Slot Number ist gleich 0,
- Index ist gleich:
 - 1 für Diagnosedatensatz 1,
 - 2 für Diagnosedatensatz 2,
 - 3 für Diagnosedatensatz 3 bis
 - 10 für Diagnosedatensatz 10.

Sollten für einen adressierten Diagnosedatensatz noch keine Daten im Leistungsschalter vorliegen, weil die Anzahl der abgespeicherten Ereignisse kleiner ist als die gewählte Nummer, wird die Fehlermeldung "resource unavailable" (Fehlercode C3 hexadezimal) als Antwort erzeugt.

Die Länge der auszulesenden Daten beträgt 27 Octets. Beachten Sie, dass sie keine kleinere Länge beim Aufruf des Dienstes Read eintragen, da Sie ansonsten eine Fehlermeldung erhalten.

Variablendefinition (Beispiel) für das Objekt Nach IEC 61131-3 definieren Sie folgende Variable (Datenbaustein):

	5
Name	Datentyp
LS_Diagnosesatz	STRUCT
Nummer	WORD oder UINT
Uhrzeit	DATE_AND_TIME
Optionen	ARRAY [116] OF BOOL oder ARRAY [12] OF BYTE
$\overline{I_{r}}$	BYTE oder USINT
<u>I</u> i	
T _r	
I_{Sd}	
$T_{\sf sd}$	
$I_{\sf dn}$	
$T_{ m vdn}$	
Reserved	
Status	ARRAY [156] OF BOOL oder ARRAY [17] OF BYTE

Format und Bedeutung der Dateninhalte des Objektes

Die folgende Tabelle zeigt die Adresslage und die Bedeutung der Dateninhalte des Objektes. Des weiteren gibt sie beispielhaft an, wie auf diese Dateninhalte mit Hilfe der beispielhaft definierten Variable seitens der Anwendung zugegriffen werden kann.

Tabelle 20: Adresslage und Bedeutung der Dateninhalte des Objektes

Variablenzugriff (Beispiel)	Datenposition	Bedeutung
LS_Diagnosesatz.		
Nummer	Octet 1 und 2	Kennung des Diagnosesatzes (Wert: 1 bis 10)
Uhrzeit	Octet 3 bis 10	Ereigniszeitpunkt → Tabelle 21
	Octet 11	
Optionen[1]	Bit 0	Verwendeter Parameter: $I^2t^{1)}$ \rightarrow Tabelle 26
	Bit 1 bis Bit 7	Nicht genutzt
	Octet 12	
	Bit 0 bis Bit 7	Nicht genutzt
$\overline{I_{r}}$	Octet 13	Verwendeter Parameter: $I_r^{1)}$ \rightarrow Tabelle 22
I _i	Octet 14	Verwendeter Parameter: $I_i^{1)}$ \rightarrow Tabelle 23
T_{r}	Octet 15	Verwendeter Parameter: $T_r^{(1)}$ \rightarrow Tabelle 25
$\overline{I_{sd}}$	Octet 16	Verwendeter Parameter: <i>I</i> _{sd} 1) → Tabelle 24
$T_{\sf sd}$	Octet 17	Verwendeter Parameter: T _{sd} ¹) → Tabelle 25
$I_{\sf dn}$	Octet 18	Verwendeter Parameter: I _{dn} 1) → Tabelle 22
$T_{ m vdn}$	Octet 19	Verwendeter Parameter: T _{vdn} ¹) → Tabelle 25
Reserved	Octet 20	Nicht genutzt
	Octet 21 ²⁾	Auslösebedingungen
Status[1]	Bit 0	Trip <i>I</i> _i : Kurzschluss

Variablenzugriff (Beispiel)	Datenposition	Bedeutung
Status[2]	Bit 1	Trip I^2t (wenn I^2t Option gewählt): Überlast variabel kurzzeitverzögert
		Trip I_{mv} (wenn I^2t Option nicht gewählt): Überlast konstant kurzzeitverzögert
Status[3]	Bit 2	Trip $I_{\rm r}$: Überlast variabel langzeitverzögert
Status[4]	Bit 3	Trip I_{dn} : Fehlerstrom konstant kurz- zeitverzögert
Status[5]	Bit 4	Trip Select: Zeitlimit bei H-Selektivität überschritten (noch nicht unterstützt)
Status[6]	Bit 5	Trip Com: Auslösung über PROFIBUS-DP erfolgt
Status[7]	Bit 6	Trip Temp: Auslösung aufgrund Geräte-Übertemperatur (NZM)
Status[8]	Bit 7	Trip Error: Auslösung aufgrund Gerätefehler (NZM)
	Octet 22 ²⁾	Alarm-Bedingungen
Status[9]	Bit 0	Überlastvorwarnung
Status[10]	Bit 1	Überlastbereich 1
Status[11]	Bit 2	Überlastbereich 2
Status[12]	Bit 3	Motorschutz (nur bei -ME Typen von Bedeutung, ansonsten konstant "0"): der Leistungsschalter hat einen Überlastfall erkannt und fordert das DMI auf, den Motor abzuschalten. Sollte die Überlast bestehen bleiben, löst der Leistungsschalter aus.
Status[13]	Bit 4	Asymmetrie
	Bit 5	Nicht genutzt

Variablenzugriff (Beispiel)	Datenposition	Bedeutung
Status[15]	Bit 6	Nicht genutzt
Status[16]	Bit 7	Nicht genutzt
	Octet 23 ²⁾	Phasenzustände L1 und L2 ³⁾
Status[17]	Bit 0	Phase L1: Normalbereich
Status[18]	Bit 1	Phase L1: Überlastvorwarnung
Status[19]	Bit 2	Phase L1: Überlastbereich 1
Status[20]	Bit 3	Phase L1: Überlastbereich 2
Status[21]	Bit 4	Phase L2: Normalbereich
Status[22]	Bit 5	Phase L2: Überlastvorwarnung
Status[23]	Bit 6	Phase L2: Überlastbereich 1
Status[24]	Bit 7	Phase L2: Überlastbereich 2
	Octet 24 ²⁾	Phasenzustände L3 und N-Leiter ³⁾
Status[25]	Bit 0	Phase L3: Normalbereich
Status[26]	Bit 1	Phase L3: Überlastvorwarnung
Status[27]	Bit 2	Phase L3: Überlastbereich 1
Status[28]	Bit 3	Phase L3: Überlastbereich 2
Status[29]	Bit 4	N-Leiter: Normalbereich
Status[30]	Bit 5	N-Leiter: Überlastvorwarnung
Status[31]	Bit 6	N-Leiter: Überlastbereich 1
Status[32]	Bit 7	N-Leiter: Überlastbereich 2
	Octet 25 ²⁾	Auslösende Phase ³⁾
Status[33]	Bit 0	Auslösung durch L1
Status[34]	Bit 1	Auslösung durch L2
Status[35]	Bit 2	Auslösung durch L3

Variablenzugriff (Beispiel)	Datenposition	Bedeutung
Status[36]	Bit 3	Auslösung durch N-Leiter
	Bit 4 bis Bit 7	Nicht genutzt
	Octet 26 ²⁾	Alarmgebende Phase
	Bit 0 bis Bit 3	Nicht genutzt
Status[45]	Bit 4	Alarm durch L1
Status[46]	Bit 5	Alarm durch L2
Status[47]	Bit 6	Alarm durch L3
Status[48]	Bit 7	Alarm durch N-Leiter
	Octet 27 ¹⁾	Fehlerzustände
Status[49]	Bit 0	Fehler NZM: A/D Wandler
Status[50]	Bit 1	Fehler NZM: Signalverarbeitung
Status[51]	Bit 2	Fehler NZM: Wandlerblock
Status[52]	Bit 3	Fehler NZM: EEPROM
Status[53]	Bit 4	Fehler NZM-Aufsteckmodul 1
Status[54]	Bit 5	Fehler NZM-Aufsteckmodul 2
Status[55]	Bit 6	Fehler NZM-Aufsteckmodul 3
Status[56]	Bit 7	Fehler NZM-Aufsteckmodul 4

¹⁾ Voraussetzung: Parameter wird vom angeschlossenen Leistungsschalter unterstützt, ansonsten "Nicht genutzt".

- 2) Die Bedeutung ist gegeben, wenn das entsprechende Bit gesetzt ist.
- 3) Bei einem Kurzschluss (Trip *I*_i) kann die auslösende Phase und der Phasenzustand nicht zweifeldfrei ermittelt werden.

Beachten Sie beim Zugriff auf den Dateninhalt "Kennung des Diagnosedatensatzes" das im PROFIBUS-DP verwendete Motorola-Kodierungsformat (Octet N: High-Byte, Octet N+1: Low-Byte). Sollte das Datenverarbeitungsformat in Ihrem DP-Master-System hiervon abweichen und die DPV1-Zugriffsbefehle keine automatische Konvertierung beinhalten, müssen Sie die notwendige Konvertierung in Ihrem Anwendungsprogramm selbst vornehmen. Beachten Sie diesbezüglich die Dokumentation Ihres DP-Master-Systems.

Tabelle 21: Format (BCD-Kodierung) des Dateninhalts Ereigniszeitpunkt

Daten- position	Bedeutung	Erläuterung
Octet 3		
Bit 4 bis Bit 7	Jahreszahl, 10er Stelle	Wert 90 entspricht 1990 Wert 99 entspricht 1999 Wert 00 entspricht 2000 Wert 89 entspricht 2089
Bit 0 bis Bit 3	Jahreszahl, 1er Stelle	-
Octet 4		
Bit 4 bis Bit 7	Monatszahl, 10er Stelle	
Bit 0 bis Bit 3	Monatszahl, 1er Stelle	
Octet 5		
Bit 4 bis Bit 7	Tageszahl, 10er Stelle	
Bit 0 bis Bit 3	Tageszahl, 1er Stelle	
Octet 6		
Bit 4 bis Bit 7	Stundenzahl, 10er Stelle	
Bit 0 bis Bit 3	Stundenzahl, 1er Stelle	
Octet 7		
Bit 4 bis Bit 7	Minutenzahl, 10er Stelle	
Bit 0 bis Bit 3	Minutenzahl, 1er Stelle	

Daten- position	Bedeutung	Erläuterung
Octet 8		
Bit 4 bis Bit 7	Sekundenzahl, 10er Stelle	_
Bit 0 bis Bit 3	Sekundenzahl, 1er Stelle	
Octet 9		
Bit 4 bis Bit 7	Millisekundenzahl, 100er Stelle	
Bit 0 bis Bit 3	Millisekundenzahl, 10er Stelle	
Octet 10		
Bit 4 bis Bit 7	Millisekundenzahl, 1er Stelle	
Bit 0 bis Bit 3	Wochentag	Wert 0 entspricht nicht verwendet Wert 1 entspricht Sonntag Wert 2 entspricht Montag Wert 7 entspricht Samstag

Ein Diagnosedatensatz kann auch ohne Ereigniszeitpunkt im Leistungsschalter abgespeichert sein. Dies ist immer dann der Fall, wenn zum Ereigniszeitpunkt kein DMI am Leistungsschalter angeschlossen war. In diesem Fall sind alle 8 Octets des Dateninhalts Ereigniszeitpunkt mit dem Wert "0" belegt.

Die abgespeicherte Uhrzeit einer Diagnose enthält in den Octets 9 und 10 immer den Wert "0", da die interne Uhr des DMI keine Millisekunden und keinen Wochentag verwendet.

Kodierung der Dateninhalte der verwendeten Parameter

Tabelle 22: Parameter-Einstellungen I_r und I_{dn}

Wert	<i>I</i> _r [A]	I _{dn} [A]
0	$0.5 \times I_n$	$0.2 \times I_n$
1	0,55 × <i>I</i> _n	0,3 × I _n
2	0,6 × I _n	$0.4 \times I_{n}$
3	0,65 × I _n	$0.5 \times I_n$
4	$0.7 \times I_{n}$	$0.6 \times I_{n}$
5	$0.75 \times I_{\rm n}$	$0.7 \times I_{n}$
6	0,8 × I _n	0,8 × I _n
7	0,85 × <i>I</i> _n	$0.9 \times I_{n}$
8	0,9 × I _n	1,0 × <i>I</i> _n
9	0,925 × <i>I</i> _n	$0.2 \times I_n$
10	0,95 × I _n	_
11	0,975 × <i>I</i> _n	_
12	1,0 × I _n	_
13	$0.5 \times I_{n}$	-
14	$0.5 \times I_{n}$	-
15	$0.5 \times I_{\text{n}}$	-

Tabelle 23: Parameter-Einstellungen *I*_i

Wert	<i>I</i> _i [A]			
	NZM2-VE NZM4-AE NZM4-VE	NZM3-AE-250 NZM3-AE-400 NZM3-VE-250 NZM3-AE-400	NZM3-AE-630 NZM3-VE-630	NZM2-ME NZM3-ME-220 NZM3-ME-350 NZM4-ME
0	$2 \times I_n$	$2 \times I_n$	$2 \times I_n$	$2 \times I_r$
1	$3 \times I_n$	$3 \times I_n$	$2.5 \times I_{\text{n}}$	$3 \times I_r$
2	$4 \times I_{n}$	$4 \times I_n$	$3 \times I_n$	$4 \times I_r$
3	$5 \times I_{n}$	$5 \times I_n$	$3.5 \times I_{\text{n}}$	$5 \times I_r$
4	$6 \times I_{n}$	$6 \times I_n$	$4 \times I_n$	$6 \times I_r$
5	$7 \times I_{n}$	$7 \times I_n$	$5 \times I_n$	$8 \times I_r$
6	$8 \times I_{n}$	$8 \times I_n$	$6 \times I_n$	10 × I _r
7	$10 \times I_{n}$	$9 \times I_n$	$7 \times I_n$	12 × <i>I</i> _r
8	$12 \times I_n$	$11 \times I_{n}$	$8 \times I_n$	$14 \times I_{\rm r}$
9	$2 \times I_n$	$2 \times I_n$	$2 \times I_n$	$2 \times I_r$

Tabelle 24: Parameter-Einstellung Isd

Wert	I _{sd} [A]	
	NZM3-VE-630 NZM3-VE(F)-NA	alle anderen
0	$1.5 \times I_{\rm r}$	$2 \times I_r$
1	$2 \times I_r$	$3 \times I_r$
2	$2.5 \times I_r$	$4 \times I_r$
3	$3 \times I_r$	$5 \times I_{\rm r}$
4	$3,5 \times I_{\Gamma}$	$6 \times I_r$
5	$4 \times I_r$	$7 \times I_r$
6	$5 \times I_r$	$8 \times I_r$
7	6 × <i>I</i> _r	$9 \times I_r$
8	$7 \times I_r$	$10 \times I_{\rm r}$
9	$1.5 \times I_{\rm r}$	$2 \times I_r$

Tabelle 25: Parameter-Einstellungen T_r, T_{sd}, T_{vdn}

Wert	$T_{r}[s]$	$T_{sd}[s]$	T _{vdn} [s]
0	2	0,00	0,00
1	4	0,02	0,02
2	6	0,06	0,06
3	8	0,1	0,10
4	10	0,2	0,20
5	14	0,3	0,30
6	17	0,5	0,50
7	20	0,75	0,75
8	∞	1,00	1.00
9	2	0,0	0,00

Tabelle 26: Parameter-Einstellungen I²t

Wert	I ² t [A]
0	Funktion deaktiviert
1	Funktion aktiviert

Objekt Leistungsschalter Status

Dieses Objekt enthält den aktuellen Status des Leistungsschalters.

Dieses Objekt ist nur lesbar (Read). Es kann von einem Klasse 1 und/oder einem Klasse 2 DPV1-Master angesprochen werden.

Verwendungszweck

Verwenden Sie dieses Objekt um den Leistungsschalter bezüglich

- Alarmen,
- Auslösebedingungen,
- Phasenzustände.
- Fehlerzustände,

zu überwachen.

Nach einem Auslösen des Leistungsschalters bleiben die Auslösebedingungen bis zur Quittierung mit Hilfe des Objektes "Leistungsschalter/DMI-Kommandos" erhalten..

Adressierung und Länge des Objektes

Für die Adressierung des Objektes verwenden Sie die folgenden Informationen:

- API ist gleich 0 (nur f
 ür Klasse 2 DPV1-Master erforderlich),
- Slot Number ist gleich 0,
- Index ist gleich 11.

Die Länge der auszulesenden Daten beträgt 7 Octets. Beachten Sie, dass sie keine kleinere Länge beim Aufruf des Dienstes Read eintragen, da sie ansonsten eine Fehlermeldung erhalten.

Variablendefinition (Beispiel) für das Objekt

Nach IEC 61131-3 definieren Sie folgende Variable (Datenbaustein):

Name	Datentyp
LS_Status	ARRAY [156] OF BOOL oder ARRAY [17] OF BYTE

Format und Bedeutung der Dateninhalte des Objektes

Die folgende Tabelle zeigt die Adresslage und Bedeutung der Dateninhalte des Objektes. Des weiteren gibt sie beispielhaft an, wie auf diese Dateninhalte mit Hilfe der beispielhaft definierten Variable seitens der Anwendung zugegriffen werden kann

Tabelle 27: Adresslage und Bedeutung der Dateninhalte des Objektes

Variablenzugriff (Beispiel)	Datenposition	Bedeutung
	Octet 1 ¹⁾	Auslösebedingungen
LS_Status[1]	Bit 0	Trip I _i : Kurzschluss
LS_Status[2]	Bit 1	Trip I^2t (wenn I^2t Option gewählt): Überlast variabel kurzzeitverzögert- Trip $I_{\rm mv}$ (wenn I^2t Option nicht gewählt): Überlast konstant kurzzeitverzögert
LS_Status[3]	Bit 2	Trip I_{r} : Überlast, variabel langzeitverzögert
LS_Status[4]	Bit 3	Trip <i>I</i> d _n : Fehlerstrom, konstant kurz- zeitverzögert
LS_Status[5]	Bit 4	Trip Select: Zeitlimit bei H-Selektivität überschritten (noch nicht unterstützt)
LS_Status[6]	Bit 5	Trip Com: Auslösung über PROFIBUS-DP erfolgt
LS_Status[7]	Bit 6	Trip Temp: Auslösung aufgrund Geräte-Übertemperatur (NZM)
LS_Status[8]	Bit 7	Nicht genutzt
	Octet 2 ¹⁾	Alarm-Bedingungen
LS_Status[9]	Bit 0	Überlastvorwarnung
LS_Status[10]	Bit 1	Überlastbereich 1
LS_Status[11]	Bit 2	Überlastbereich 2
LS_Status[12]	Bit 3	Motorschutz (nur bei -ME Typen von Bedeutung, ansonsten konstant "0"): der Leistungsschalter hat einen Überlastfall erkannt und fordert das DMI auf, den Motor abzuschalten. Sollte die Überlast bestehen bleiben, löst der Leistungsschalter aus.

Variablenzugriff (Beispiel)	Datenposition	Bedeutung
LS_Status[13]	Bit 4	Asymmetrie
	Bit 5	Nicht genutzt
LS_Status[15]	Bit 6	Externe Versorgung des NZM (durch DMI oder PC)
LS_Status[16]	Bit 7	Versorgungsspannung in Ordnung
	Octet 3 ¹⁾	Phasenzustände L1 und L2 ²⁾
LS_Status[17]	Bit 0	Phase L1: Normalbereich
LS_Status[18]	Bit 1	Phase L1: Überlastvorwarnung
LS_Status[19]	Bit 2	Phase L1: Überlastbereich 1
LS_Status[20]	Bit 3	Phase L1: Überlastbereich 2
LS_Status[21]	Bit 4	Phase L2: Normalbereich
LS_Status[22]	Bit 5	Phase L2: Überlastvorwarnung
LS_Status[23]	Bit 6	Phase L2: Überlastbereich 1
LS_Status[24]	Bit 7	Phase L2: Überlastbereich 2
	Octet 4 ¹⁾	Phasenzustände L3 und N-Leiter ²⁾
LS_Status[25]	Bit 0	Phase L3: Normalbereich
LS_Status[26]	Bit 1	Phase L3: Überlastvorwarnung
LS_Status[27]	Bit 2	Phase L3: Überlastbereich 1
LS_Status[28]	Bit 3	Phase L3: Überlastbereich 2
LS_Status[29]	Bit 4	N-Leiter: Normalbereich
LS_Status[30]	Bit 5	N-Leiter: Überlastvorwarnung
LS_Status[31]	Bit 6	N-Leiter: Überlastbereich 1
LS_Status[32]	Bit 7	N-Leiter: Überlastbereich 2
	Octet 5 ¹⁾	Auslösende Phase ²⁾
LS_Status[33]	Bit 0	Auslösung durch L1
LS_Status[34]	Bit 1	Auslösung durch L2
LS_Status[35]	Bit 2	Auslösung durch L3

Variablenzugriff (Beispiel)	Datenposition	Bedeutung
LS_Status[36]	Bit 3	Auslösung durch N-Leiter
LS_Status[37]	Bit 4	Leistungsschalter ist im Schaltzustand "EIN"
LS_Status[38]	Bit 5	Leistungsschalter ist im Schaltzustand "AUS"
LS_Status[39]	Bit 6	Leistungsschalter "st im Schaltzustand "Ausgelöst"
LS_Status[40]	Bit 7	Normaler Betrieb des Leistungs- schalter (Kommunikation in Ordnung)
	Octet 6 ¹⁾	Alarmgebende Phase
	Bit 0 bis Bit 3	Nicht genutzt
LS_Status[45]	Bit 4	Alarm durch L1
LS_Status[46]	Bit 5	Alarm durch L2
LS_Status[47]	Bit 6	Alarm durch L3
LS_Status[48]	Bit 7	Alarm durch N-Leiter
	Octet 7 ¹⁾	Fehlerzustände
LS_Status[49]	Bit 0	Fehler NZM: A/D Wandler
LS_Status[50]	Bit 1	Fehler NZM: Signalverarbeitung
LS_Status[51]	Bit 2	Fehler NZM: Wandlerblock
LS_Status[52]	Bit 3	Fehler NZM: EEPROM
LS_Status[53]	Bit 4	Fehler NZM-Aufsteckmodul 1
LS_Status[54]	Bit 5	Fehler NZM-Aufsteckmodul 2
LS_Status[55]	Bit 6	Fehler NZM-Aufsteckmodul 3
LS_Status[56]	Bit 7	Fehler NZM-Aufsteckmodul 4

- 1) Die Bedeutung ist gegeben, wenn das entsprechende Bit gesetzt ist.
- 2) Bei einem Kurzschluss (Trip *I*_i) kann die auslösende Phase und der Phasenzustand nicht zweifelsfrei ermittelt werden.

Objekt Leistungsschalter verwendete Parameter

Dieses Objekt enthält die vom Leistungsschalter aktuell verwendeten Parameter.

Dieses Objekt ist nur lesbar (Read). Es kann von einem Klasse 1 und/oder einem Klasse 2 DPV1-Master angesprochen werden.

Verwendungszweck

Verwenden Sie dieses Objekt um sich über die aktuell verwendeten Parameter bezüglich

- Ansprechwert und Verzögerungszeit des Überlastauslösers,
- Ansprechwert und Verzögerungszeit des kurzzeitverzögerten Kurzschlussauslösers,
- Ansprechwert des unverzögerten Kurzschlussauslösers,
- Ansprechwert und Verzögerungszeit des Fehlerstromschutzmoduls,
- Verwendete Kennlinie für den Kurzschlussschutz (I²t) zu informieren.

Es hängt vom Typ der elektronischen Auslöseeinheit ab, welche Parameter vorhanden sind.

Adressierung und Länge des Objektes

Für die Adressierung des Objektes verwenden Sie die folgenden Informationen:

- API ist gleich 0 (nur für Klasse 2 DPV1-Master erforderlich),
- Slot Number ist gleich 0,
- Index ist gleich 12.

Die Länge der auszulesenden Daten beträgt 9 Octets. Beachten Sie, dass sie keine kleinere Länge beim Aufruf des Dienstes Read eintragen, da sie ansonsten eine Fehlermeldung erhalten.

Variablen-Definition (Beispiel) für das Objekt Nach IEC 61131-3 definieren Sie folgende Variable (Datenbaustein):

Name	Datentyp
LS_Verwendete Parameter	STRUCT
Optionen	ARRAY [116] OF BOOL oder ARRAY [12] OF BYTE
I_{f}	BYTE oder USINT
I _i	
T _r	
I_{sd}	
$T_{\sf sd}$	
$I_{\sf dn}$	
T_{vdn}	

Tabelle 28: Adresslage und Bedeutung der Dateninhalte des Objektes

Variablenzugriff (Beispiel)	Datenposition	Bedeutung
LS_Verwendete Parameter.		
	Octet 1	
Optionen[1]	Bit 0	Verwendeter Parameter: $I^2t^{1)}$ \longrightarrow Tabelle 26
	Bit 1 bis Bit 7	Nicht genutzt
	Octet 2	
	Bit 0 bis Bit 7	Nicht genutzt
$\overline{I_{f}}$	Octet 3	Verwendeter Parameter: $I_r^{1)}$ \rightarrow Tabelle 22
$\overline{I_{i}}$	Octet 4	Verwendeter Parameter: $I_i^{(1)}$ \longrightarrow Tabelle 23
Tr	Octet 5	Verwendeter Parameter: $T_r^{(1)}$ \longrightarrow Tabelle 25

Variablenzugriff (Beispiel)	Datenposition	Bedeutung
I_{sd}	Octet 6	Verwendeter Parameter: <i>I</i> _{sd} ¹¹ → Tabelle 24
T_{sd}	Octet 7	Verwendeter Parameter: T _{sd} ¹¹) → Tabelle 25
$I_{\sf dn}$	Octet 8	Verwendeter Parameter: I _{dn} 1) → Tabelle 22
$T_{ m vdn}$	Octet 9	Verwendeter Parameter: T _{vdn} ¹) → Tabelle 25

¹⁾ Voraussetzung: Parameter wird vom angeschlossenen Leistungsschalter unterstützt, ansonsten "Nicht genutzt".

Die Tabelle 21 bis Tabelle 25 befinden sich mit Abschnitt "Objekt Leistungsschalter Diagnosedatensatz 1 bis 10", Seite 118.

Objekt Leistungsschalter lokal eingestellte Parameter

Dieses Objekt enthält die an der elektronischen Auslöseeinheit lokal eingestellten Parameter.

Dieses Objekt ist nur lesbar (Read). Es kann von einem Klasse 1 und/oder einem Klasse 2 DPV1-Master angesprochen werden.

Verwendungszweck

Verwenden Sie dieses Objekt um sich über die lokal eingestellten Parameter bezüglich

- Ansprechwert und Verzögerungszeit des Überlastauslösers,
- Ansprechwert und Verzögerungszeit des kurzzeitverzögerten Kurzschlussauslösers,
- Ansprechwert des unverzögerten Kurzschlussauslösers,

- Ansprechwert und Verzögerungszeit des Fehlerstromschutzmoduls.
- Verwendete Kennlinie für den Kurzschlussschutz (I^2t) zu informieren.

Es hängt vom Typ der elektronischen Auslöseeinheit ab, welche Parameter vorhanden sind.

Adressierung und Länge des Objektes

Für die Adressierung des Objektes verwenden Sie die folgenden Informationen:

- API ist gleich 0 (nur für Klasse 2 DPV1-Master erforderlich),
- Slot Number ist gleich 0,
- Index ist gleich 13.

Die Länge der auszulesenden Daten beträgt 9 Octets. Beachten Sie, dass sie keine kleinere Länge beim Aufruf des Dienstes Read eintragen, da sie ansonsten eine Fehlermeldung erhalten.

Variablendefinition (Beispiel) für das Objekt

Nach IEC 61131-3 definieren Sie folgende Variable (Datenbaustein):

Name	Datentyp
LS_Lokale_Parameter	STRUCT
Optionen	ARRAY [116] OF BOOL oder ARRAY [12] OF BYTE
$\overline{I_{r}}$	BYTE oder USINT
<u>I</u> i	
T _r	
$\overline{I_{Sd}}$	
T_{sd}	
I_{dn}	
$T_{ m vdn}$	

Format und Bedeutung der Dateninhalte des Objektes

Die folgende Tabelle zeigt die Adresslage und Bedeutung der Dateninhalte des Objektes. Des weiteren gibt sie beispielhaft an, wie auf diese Dateninhalte mit Hilfe der beispielhaft definierten Variable seitens der Anwendung zugegriffen werden kann.

Tabelle 29: Adresslage und Bedeutung der Dateninhalte des Objektes

Objektes		
Variablenzugriff (Beispiel)	Datenposition	Bedeutung
LS_Lokale_Parameter.		
	Octet 1	
Optionen[1]	Bit 0	Lokaler Parameter: <i>I</i> ² <i>t</i> ¹⁾ → Tabelle 26
	Bit 1 bis Bit 7	Nicht genutzt
	Octet 2	
	Bit 0 bis Bit 7	Nicht genutzt
$\overline{I_{r}}$	Octet 3	Lokaler Parameter: $I_r^{1)}$ \rightarrow Tabelle 22
$\overline{I_{i}}$	Octet 4	Lokaler Parameter: $I_i^{1)}$ \rightarrow Tabelle 23
T _r	Octet 5	Lokaler Parameter: <i>T</i> _r ¹) → Tabelle 25
$\overline{I_{\sf sd}}$	Octet 6	Lokaler Parameter: I _{sd} 1) → Tabelle 24
$T_{\sf sd}$	Octet 7	Lokaler Parameter: T _{sd} ¹) → Tabelle 25
$\overline{I_{\sf dn}}$	Octet 8	Lokaler Parameter: I _{dn} 1) → Tabelle 22
$T_{ m vdn}$	Octet 9	Lokaler Parameter: T _{vdn} 1) → Tabelle 25

¹⁾ Voraussetzung: Parameter wird vom angeschlossenen Leistungsschalter unterstützt, ansonsten "Nicht genutzt".

Tabelle 22 bis Tabelle 25 befinden sich im Abschnitt "Objekt Leistungsschalter Diagnosedatensatz 1 bis 10", ab Seite 118.

Objekt Leistungsschalter neue Parameter

Dieses Objekt dient zur Aufnahme neuer, vom Leistungsschalter zu verwendende Parameter.

Dieses Objekt ist nur beschreibbar (Write). Es kann von einem Klasse 1 und/oder einem Klasse 2 DPV1-Master angesprochen werden.

Verwendungszweck

Verwenden Sie dieses Objekt um neue Parameter bezüglich

- Ansprechwert und Verzögerungszeit des Überlastauslösers,
- Ansprechwert und Verzögerungszeit des kurzzeitverzögerten Kurzschlussauslösers,
- Ansprechwert des unverzögerten Kurzschlussauslösers,
- Ansprechwert und Verzögerungszeit des Fehlerstromschutzmoduls,
- Verwendete Kennlinie für den Kurzschlussschutz (I^2t) an den Leistungsschalter zu übergeben.

Es hängt vom Typ der elektronischen Auslöseeinheit ab, welche Parameter vorhanden sind. Einstellungen für nicht vorhandene Parameter sind unwirksam.

Vorsicht!

Ein Schreiben auf dieses Objekt bewirkt unmittelbar den Austausch der bisher verwendeten Parameter durch die neuen übergebenen Parameter. Hierdurch werden die Auslöseeigenschaften des Leistungsschalter entsprechend der neuen Parameterwerte verändert. Bitte gehen Sie entsprechend sorgfältig bei der Auswahl der neuen Parameterwerte und beim Aufruf des Write Dienstes für dieses Objekt vor.

Es werden nur Parameterwerte von der elektronischen Auslöseeinheit übernommen, die kleiner oder gleich den lokal eingestellten Parameterwerten sind.

Adressierung und Länge des Objektes

Für die Adressierung des Objektes verwenden Sie die folgenden Informationen:

- API ist gleich 0 (nur für Klasse 2 DPV1-Master erforderlich),
- Slot Number ist gleich 0,
- Index ist gleich 14.

Die Länge der zu schreibenden Daten beträgt 9 Octets. Beachten Sie, das sie keine andere Länge beim Aufruf des Dienstes Write eintragen, da sie ansonsten eine Fehlermeldung erhalten.

Variablendefinition (Beispiel) für das Objekt Nach IEC 61131-3 definieren Sie folgende Variable (Datenbaustein):

Name	Datentyp
LS_Neue_Parameter	STRUCT
Optionen	ARRAY [116] OF BOOL oder ARRAY [12] OF BYTE
$\overline{I_{r}}$	BYTE oder USINT
<u>I</u> i	
T_{r}	
$\overline{I_{sd}}$	
$T_{\sf sd}$	
$I_{\sf dn}$	
$T_{ m vdn}$	

Format und Bedeutung der Dateninhalte des Objektes

Die folgende Tabelle zeigt die Adresslage und Bedeutung der Dateninhalte des Objektes. Des weiteren gibt sie beispielhaft an, wie auf diese Dateninhalte mit Hilfe der beispielhaft definierten Variable seitens der Anwendung zugegriffen werden kann.

Tabelle 30: Adresslage und Bedeutung der Dateninhalte des Objektes

Variablenzugriff (Beispiel)	Datenposition	Bedeutung
LS_Neue_Parameter.		
	Octet 1	
Optionen[1]	Bit 0	Lokaler Parameter: <i>I</i> ² <i>t</i> → Tabelle 26
	Bit 1 bis Bit 7	Nicht genutzt
	Octet 2	
	Bit 0 bis Bit 7	Nicht genutzt
$\overline{I_{r}}$	Octet 3	Lokaler Parameter: <i>I</i> _r → Tabelle 22
$\overline{I_{i}}$	Octet 4	Lokaler Parameter: <i>I</i> _i → Tabelle 23
$\overline{T_{r}}$	Octet 5	Lokaler Parameter: <i>T</i> _r → Tabelle 25
$\overline{I_{\sf sd}}$	Octet 6	Lokaler Parameter: I _{sd} → Tabelle 24
\mathcal{T}_{sd}	Octet 7	Lokaler Parameter: <i>T</i> _{sd} → Tabelle 25
$\overline{I_{\sf dn}}$	Octet 8	Lokaler Parameter: I _{dn} → Tabelle 22
$\mathcal{T}_{ ext{vdn}}$	Octet 9	Lokaler Parameter: <i>T</i> _{vdn} → Tabelle 25

Tabelle 22 bis Tabelle 26 befinden sich im Abschnitt "Objekt Leistungsschalter Diagnosedatensatz 1 bis 10", ab Seite 118.

Objekt Leistungsschalter Geräteidentifikation

Dieses Objekt enthält die Geräteidentifikation des angeschlossenen Leistungsschalter (ASCII-Strings).

Dieses Objekt ist nur lesbar (Read). Es kann von einem Klasse 1 und/oder einem Klasse 2 DPV1-Master angesprochen werden.

Verwendungszweck

Verwenden Sie dieses Objekt um sich über die Leistungsschalter-Geräteidentifikation bezüglich

- Baugröße NZM,
- Typ NZM,
- Polzahl.
- Bemessungsstrom,
- N-Leiter-Schutz.
- Seriennummer,
- Typ Stromwandler,
- Firmwareversion,
- Typ, Hardwareversion und Firmwareversion eines Aufsteckmoduls

zu informieren.

Adressierung und Länge des Objektes

Für die Adressierung des Objektes verwenden Sie die folgenden Informationen:

- API ist gleich 0 (nur für Klasse 2 DPV1-Master erforderlich).
- Slot Number ist gleich 0,
- Index ist gleich 15.

Die Länge der auszulesenden Daten beträgt 86 Octets. Beachten Sie, das sie keine kleinere Länge beim Aufruf des Dienstes Read eintragen, da sie ansonsten eine Fehlermeldung erhalten.

Variablendefinition (Beispiel) für das Objekt Nach IEC 61131-3 definieren Sie folgende Variable (Datenbaustein):

Name	Datentyp
LS_Identifikation	STRUCT
Seriennummer	DWORD oder UDINT
Baugroesse	ARRAY [14] OF CHAR oder STRING [4]
NZM_Typ	ARRAY [18] OF CHAR oder STRING [8]
I _n	ARRAY [16] OF CHAR oder STRING [6]
Polzahl	ARRAY [18] OF CHAR oder STRING [8]
Stromwandler	ARRAY [110] OF CHAR oder STRING [10]
N_Leiter_Schutz	ARRAY [122] OF CHAR oder STRING [22]
SW_Version	ARRAY [16] OF CHAR oder STRING [6]
Modul_Version	ARRAY [112] OF CHAR oder STRING [12]
Modul_SW_Version	ARRAY [16] OF CHAR oder STRING [6]

Format und Bedeutung der Dateninhalte des Objektes

Die folgende Tabelle zeigt die Adresslage und Bedeutung der Dateninhalte des Objektes. Des weiteren gibt sie beispielhaft an, wie auf diese Dateninhalte mit Hilfe der beispielhaft definierten Variable seitens der Anwendung zugegriffen werden kann.

Tabelle 31: Adresslage und Bedeutung der Dateninhalte des Objektes

Variablenzugriff Datenposition		Bedeutung
(Beispiel)		
LS_Identifikation.		
Seriennummer	Octet 1 bis 4	Seriennummer des Leistungsschalters
Baugroesse	Octet 5 bis 8	Baugröße des Leistungsschalters
NZM_Typ	Octet 9 bis 16	Typ des Leistungsschalters
$\overline{I_{n}}$	Octet 17 bis 22	Bemessungsstrom
Polzahl	Octet 23 bis 30	Polzahl des Leistungsschalters
Stromwandler	Octet 31 bis 40	Typ des Stromwandlerss
N_Leiter_Schutz	Octet 41 bis 62	Angabe über den N-Leiter- Schutz
SW_Version	Octet 63 bis 68	Firmwareversion des Leistungsschalters
Modul_Version	Octet 69 bis 80	Typ und Hardwareversion des Aufsteckmoduls Typ 0: kein Aufsteckmodul vorhanden
Modul_SW_Version	Octet 81 bis 86	Firmwareversion des Aufsteckmoduls

Alle Dateninhalte außer der Seriennummer sind als ASCII-Strings kodiert.

Beachten Sie beim Zugriff auf den Dateninhalt "Seriennummer" das im PROFIBUS-DP verwendete Motorola-Kodierungsformat (Octet N: High-Byte, Octet N+1: Low-Byte). Sollte das Datenverarbeitungsformat in Ihrem DP-Master-System hiervon abweichen und die DPV1-Zugriffsbefehle keine automatische Konvertierung beinhalten, müssen Sie die notwendige Konvertierung in Ihrem Anwendungsprogramm selbst vornehmen. Beachten Sie diesbezüglich die Dokumentation Ihres DP-Master-Systems.

Objekt Leistungsschalter/DMI Kommandos

Dieses Objekt dient zur Entgegennahme von Kommandos, die an den Leistungsschalter oder an das DMI gerichtet sind.

Dieses Objekt ist nur beschreibbar (Write). Es kann von einem Klasse 1 und/oder einem Klasse 2 DPV1-Master angesprochen werden.

Verwendungszweck

Verwenden Sie dieses Objekt um Kommandos bezüglich

- Auslösung des Leistungsschalter,
- Schaltzustand des Leistungsschalters,
- Motorsteuerung durch das DMI,
- Sammelquittung von Alarmen,
- Quittierung eines Anlaufstopps an den Leistungsschalter bzw. das DMI zu übergeben.

Für bestimmte Kommandos sind die → Tabelle 32 enthaltenen Voraussetzungen notwendig.

Vorsicht!

Ein Schreiben auf dieses Objekt bewirkt unmittelbar die Ausführung des gewählten Kommandos. Bitte gehen Sie entsprechend sorgfältig bei der Auswahl des Kommandos und beim Aufruf des Write Dienstes für dieses Objekt vor.

Achtung!

Ein Auslösen des Leistungsschalters durch ein Kommando kann nur dann erfolgen, wenn durch diesen ein Strom fließt.

Adressierung und Länge des Objektes

Für die Adressierung des Objektes verwenden Sie die folgenden Informationen:

- API ist gleich 0 (nur für Klasse 2 DPV1-Master erforderlich,)
- Slot Number ist gleich 0,
- Index ist gleich 16.

Die Länge der zu schreibenden Daten beträgt 1 Octet. Beachten Sie, das sie keine andere Länge beim Aufruf des Dienstes Write eintragen, da sie ansonsten eine Fehlermeldung erhalten.

Variablendefinition (Beispiel) für das Objekt

Nach IEC 61131-3 definieren Sie folgende Variable (Datenbaustein):

Name	Datentyp
LS_DMI_Kommando	BYTE oder USINT

Format und Bedeutung der Dateninhalte des Objektes

Die folgende Tabelle zeigt die Adresslage und Bedeutung der Dateninhalte des Objektes. Des weiteren gibt sie beispielhaft an, wie auf diese Dateninhalte mit Hilfe der beispielhaft definierten Variable seitens der Anwendung zugegriffen werden kann.

Tabelle 32: Adresslage und Bedeutung der Dateninhalte des Objektes

Variablenzugriff (Beispiel)	Datenposition	Bedeutung
LS_DMI_Kommando.	Octet 1	Kommando an den Leistungs- schalter oder das DMI → Tabelle 33

Tabelle 33: Kodierung der Kommandos

Kommando-Code (hexadezimal)	Wirkung	Voraussetzung
00	NZM löst aus	In den Phasen des Leistungs- schalters fließt Strom
01	Quittierung Anlaufstopp	-
02	Nicht genutzt	
03	Nicht genutzt	
04	NZM wird eingeschaltet	Im DMI ist die Fernantriebs-
05	NZM wird ausgeschaltet	Funktion parametriert
06	DMI schaltet den ange- schlossenen Motor aus	Im DMI ist die Motorstarter- funktion parametriert
07	DMI schaltet den ange- schlossenen Motor ein oder auf Linkslauf	
08	DMI schaltet den ange- schlossenen Motor auf Rechtslauf	
09	Alle anstehenden Alarme (Trips und Motorschutzaus- lösung) werden quittiert	-

Wird ein Kommando gegeben, für das die notwendigen Voraussetzungen nicht gegeben sind, so wird der Write Dienst negativ quittiert.

Objekt Leistungsschalter Ströme

Dieses Objekt enthält die aktuellen Stromwerte des angeschlossenen Leistungsschalters.

Dieses Objekt ist nur lesbar (Read). Es kann von einem Klasse 1 und/oder einem Klasse 2 DPV1-Master angesprochen werden.

Verwendungszweck

Verwenden Sie dieses Objekt um sich über die aktuellen Werte bezüglich

- Phasenströme,
- N-Leiter Strom,
- Maximalem Phasenstrom,
- Fehlerstrom

zu informieren.

Adressierung und Länge des Objektes

Für die Adressierung des Objektes verwenden Sie die folgenden Informationen:

- API ist gleich 0 (nur für Klasse 2 DPV1-Master erforderlich),
- Slot Number ist gleich 0,
- Index ist gleich 17.

Die Länge der auszulesenden Daten beträgt 12 Octets. Beachten Sie, dass sie keine kleinere Länge beim Aufruf des Dienstes Read eintragen, da sie ansonsten eine Fehlermeldung erhalten.

Variablendefinition (Beispiel) für das Objekt

Nach IEC 61131-3 definieren Sie folgende Variable (Datenbaustein):

Name	Datentyp
LS_Ströme	ARRAY [1 6] OF WORD oder ARRAY [1 6] OF UINT

Format und Bedeutung der Dateninhalte des Objektes

Die folgende Tabelle zeigt die Adresslage und Bedeutung der Dateninhalte des Objektes. Des weiteren gibt sie beispielhaft an, wie auf diese Dateninhalte mit Hilfe der beispielhaft definierten Variable seitens der Anwendung zugegriffen werden kann.

Tabelle 34: Adresslage und Bedeutung der Dateninhalte des Objektes

Variablenzugriff (Beispiel)	Datenposition	Bedeutung
LS_Stroeme[1]	Octet 1 und 2	Effektivstrom Phase 1
LS_Stroeme[2]	Octet 3 und 4	Effektivstrom Phase 2
LS_Stroeme[3]	Octet 5 und 6	Effektivstrom Phase 3
LS_Stroeme[4]	Octet 7 und 8	Effektivstrom N-Leiter
LS_Stroeme[5]	Octet 9 und 10	maximaler Phasenstrom
LS_Stroeme[6]	Octet 11 und 12	Fehlerstrom

Beachten Sie beim Zugriff auf alle Dateninhalte des Objektes das im PROFIBUS-DP verwendete Motorola-Kodierungsformat (Octet N: High-Byte, Octet N+1: Low-Byte). Sollte das Datenverarbeitungsformat in Ihrem DP-Master-System hiervon abweichen und die DPV1-Zugriffsbefehle keine automatische Konvertierung beinhalten, müssen Sie die notwendige Konvertierung in Ihrem Anwendungsprogramm selbst vornehmen. Beachten Sie diesbezüglich die Dokumentation Ihres DP-Master-Systems.

Es hängt vom Typ des angeschlossenen Leistungsschalters ab, ob der Effektivstrom N-Leiter und der Fehlerstrom zur Verfügung steht.

Objekt Leistungsschalter/DMI Kommunikationsstatus

Dieses Objekt enthält den aktuellen Status der Kommunikation zwischen NZM und DMI.

Dieses Objekt ist nur lesbar (Read). Es kann von einem Klasse 1 und/oder einem Klasse 2 DPV1-Master angesprochen werden.

Verwendungszweck

Verwenden Sie dieses Objekt um sich über den aktuellen Kommunikationsstatus bezüglich

- Anlaufverhalten,
- Parametervergleich,
- Initialisierung

zu informieren.

Adressierung und Länge des Objektes

Für die Adressierung des Objektes verwenden Sie die folgenden Informationen:

- API ist gleich 0 (nur für Klasse 2 DPV1-Master erforderlich),
- Slot Number ist gleich 0,
- Index ist gleich 20.

Die Länge der auszulesenden Daten beträgt 2 Octets. Beachten Sie, dass sie keine kleinere Länge beim Aufruf des Dienstes Read eintragen, da sie ansonsten eine Fehlermeldung erhalten.

Variablendefinition (Beispiel) für das Objekt

Nach IEC 61131-3 definieren Sie folgende Variable (Datenbaustein):

Name	Datentyp
LS_DMI_Com_Status	ARRAY [116] OF BOOL oder ARRAY [12] OF BYTE

Format und Bedeutung der Dateninhalte des Objektes

Die folgende Tabelle zeigt die Adresslage und Bedeutung der Dateninhalte des Objektes. Des weiteren gibt sie beispielhaft an, wie auf diese Dateninhalte mit Hilfe der beispielhaft definierten Variable seitens der Anwendung zugegriffen werden kann.

Tabelle 35: Adresslage und Bedeutung der Dateninhalte des Objektes

Objectes		
Variablenzugriff (Beispiel)	Datenposition	Bedeutung
	Octet 1	
LS_DMI_Com_Status[1]	Bit 0	NZM mit neuer Seriennummer erkannt und Anlaufstop aktiv
LS_DMI_Com_Status[2]	Bit 1	Parameter im DMI (verwendete Parameter) und NZM (lokal eingestellte Parameter) unterschiedlich
LS_DMI_Com_Status[3]	Bit 2	Motorstarter-Funktion im DMI parametriert, die vom angeschlossenem NZM nicht unterstützt wird
	Bit 3 bis Bit 4	Nicht genutzt
LS_DMI_Com_Status[6]	Bit 5	Nach Initialisierung der Schnittstelle, bis beim Verbindungsaufbau eine LS-Kennung oder PC- Kennung erkannt wurde
LS_DMI_Com_Status[7]	Bit 6	Nach Initialisierung der Schnittstelle, bis beim Verbindungsaufbau ein Kennungsblock korrekt empfangen wurde
LS_DMI_Com_Status[8]	Bit 7	Nach Initialisierung der Schnittstelle, bis beim Verbindungsaufbau das erste Übernahmekom- mando empfangen wurde
	Octet 2	
	Bit 0 bis 7	Nicht genutzt

Die Bedeutung ist gegeben wenn das entsprechende Bit gesetzt ist.

Objekt DMI Ausgangsbelegung

Dieses Objekt enthält die aktuelle Ausgangsbelegung des DMI.

Dieses Objekt ist lesbar und beschreibbar (Read, Write). Es kann von einem Klasse 1 und/oder einem Klasse 2 DPV1-Master angesprochen werden.

Verwendungszweck

Verwenden Sie dieses Objekt um sich über die aktuelle Ausgangsbelegung des DMI bezüglich

- Schaltsignale,
- Fernantriebs-Funktion,
- Motorstarter-Funktion

zu informieren und/oder

verwenden Sie dieses Objekt um dem DMI eine neue Ausgangsbelegung bezüglich

- Schaltsignale,
- Fernantriebs-Funktion,
- Motorstarter-Funktion

zu übergeben.

Vorsicht!

Ein Schreiben auf dieses Objekt bewirkt unmittelbar den Austausch der bisherigen Ausgangsbelegung durch die neue Ausgangsbelegung. Bitte gehen Sie entsprechend sorgfältig bei der Auswahl der Ausgangsbelegung und beim Aufruf des Write Dienstes für dieses Objekt vor.

Adressierung und Länge des Objektes

Für die Adressierung des Objektes verwenden Sie die folgenden Informationen:

- API ist gleich 0 (nur für Klasse 2 DPV1-Master erforderlich),
- Slot Number ist gleich 0,
- Index ist gleich 21.

Die Länge der auszulesenden bzw. der zu schreibenden Daten beträgt 9 Octets. Beachten Sie, dass sie keine andere Länge beim Aufruf des Dienstes Write eintragen oder eine kleinere Länge beim Aufruf des Dienstes Read, da Sie ansonsten eine Fehlermeldung erhalten.

Variablendefinition (Beispiel) für das Objekt Nach IEC 61131-3 definieren Sie folgende Variable (Datenbaustein):

Name	Datentyp
DMI_Ausgangsbelegung	STRUCT
Ausgang_0	BYTE oder USINT
Ausgang_1	
Ausgang_2	
Ausgang_3	
Ausgang_4	
Ausgang_5	
Umschaltzeit	WORD oder UINT
Schaltelement	BYTE oder USINT

Format und Bedeutung der Dateninhalte des Objektes

Die folgende Tabelle zeigt die Adresslage und Bedeutung der Dateninhalte des Objektes. Des weiteren gibt sie beispielhaft an, wie auf diese Dateninhalte mit Hilfe der beispielhaft definierten Variable seitens der Anwendung zugegriffen werden kann.

Tabelle 36: Adresslage und Bedeutung der Dateninhalte des Objektes

Variablenzugriff (Beispiel)	Datenposition	Bedeutung
DMI_Ausgangsbelegung.		
Ausgang_0	Octet 1	Belegung des Ausgangs Q0 → Tabelle 37 und Tabelle 38
Ausgang_1	Octet 2	Belegung des Ausgangs Q1 → Tabelle 37 und Tabelle 38
Ausgang_2	Octet 3	Belegung des Ausgangs Q2 → Tabelle 37 und Tabelle 38
Ausgang_3	Octet 4	Belegung des Ausgangs Q3 → Tabelle 37
Ausgang_4	Octet 5	Belegung des Ausgangs Q4 → Tabelle 37
Ausgang_5	Octet 6	Belegung des Ausgangs Q5 → Tabelle 37
Umschaltzeit	Octet 7 und 8	Umschaltzeit Stern-Dreieck 1 entspricht 100 ms (Minimalwert) 999 entspricht 99 s (Maximalwert)
Schaltelement	Octet 9	Verwendetes Schaltelement: 0 entspricht Schalter 1 entspricht Taster

Beachten Sie beim Zugriff auf den Dateninhalt "Umschaltzeit Stern-Dreieck" das im PROFIBUS-DP verwendete Motorola-Kodierungsformat (Octet N: High-Byte, Octet N+1: Low-Byte). Sollte das Datenverarbeitungsformat in Ihrem DP-Master-System hiervon abweichen und die DPV1-Zugriffsbefehle keine automatische Konvertierung beinhalten, müssen Sie die notwendige Konvertierung in Ihrem Anwendungsprogramm selbst vornehmen. Beachten Sie diesbezüglich die Dokumentation Ihres DP-Master-Systems.

Ein Ausgang kann entweder mit einem Schaltsignal (Ausgang Q0 bis Ausgang Q5), einer Motorstarter-Funktion (Ausgang Q0 bis Q3) oder der Fernantriebs-Funktion (Ausgang Q4 und Ausgang Q5) belegt werden.

Nur Ausgänge, deren Schaltsignal mit "Bus" belegt wurde, lassen sich über den PROFIBUS-DP schalten.

Belegung der Ausgänge mit Schaltsignalen

Die nachfolgende Tabelle zeigt die mögliche Belegung der Ausgänge Q0 bis Q5 mit Schaltsignalen und dem korrespondierenden Wert für die Octets 1 bis 6 des Objektes.

Tabelle 37: Schaltsignale und deren Werte

Wert für Ausgangsbe- legung (dezimal)	Schaltsignal	Ausgang schaltet, wenn
00	Trip I_{i}	eine Kurzschlussauslösung erfolgt ist
01	Trip I_{r}	eine Überlastauslösung erfolgt ist (langzeitverzögert)
02	Trip I_{sd}	eine kurzzeitverzögerte Auslösung erfolgt ist (ohne aktivierte I^2t -Überwachung)
03	Trip I ² t	eine kurzzeitverzögerte Auslösung erfolgt ist aufgrund I^2t Charakteristik (mit aktivierter I^2t Überwachung)

Wert für	Schaltsignal	Ausgang schaltet, wenn
Ausgangsbe- legung (dezimal)		
04	Trip I_{dn}	der zugelassene Fehlerstrom überschritten wurde und dadurch eine Auslösung erfolgt ist
05	Übertemperatur	die zulässige Betriebstemperatur der NZM-Elektronik überschritten wurde und dadurch eine Auslösung erfolgt ist
06	Überlastbereich 1	der Strom in mindestens einer Phase 100 % des zugelassenen Wertes überschreitet
07	Überlastbereich 2	der Strom in mindestens einer Phase 120 % des zugelassenen Wertes überschreitet
08	Überlast- vorwarnung	der Strom in mindestens einer Phase 70 % des zugelassenen Wertes überschreitet
09	Asymmetrie	eine Asymmetrie der Ströme besteht
10	Parametervergleich	die Parameter im DMI (verwendete Parameter) und im NZM (lokal eingestellte Parameter) unterschied- lich sind
11	Trip	eine Auslösung erfolgt ist (unabhängig vom Auslösegrund)
12	Alarm	ein Alarmzustand erreicht ist (unabhängig von der Alarmursache)
13	Motorschutz	der Leistungsschalter (-ME Typ) einen Überlastfall erkennt und das DMI auffordert, den Motor abzu- schalten. Sollte die Überlast bestehen bleiben, löst der Leistungsschalter aus.
14	Bus	der Ausgang über den PROFIBUS-DP geschaltet wird
15	Aus	der Ausgang dauerhaft ausgeschaltet ist
16	Ein	der Ausgang dauerhaft eingeschaltet ist

Belegung der Ausgänge mit Motorstarter-Funktion

Die nachfolgende Tabelle zeigt die mögliche Belegung der Ausgänge Q0 bis Q3 mit Motorstarter-Funktionen und dem korrespondierenden Wert für die Octets 1 bis 4 des Objektes.

Tabelle 38: Motorstarter-Funktionen und deren Werte

Wert für Ausgangs- belegung (dezimal)	Motorstarter-Funktion	Belegt die Ausgänge
17	Direktstarter	Q0
18	Wendestarter	Q0, Q1
19	Stern-Dreieck-Starter	Q0, Q2, Q3
20	Stern-Dreieck-Wendestarter	Q0, Q1, Q2, Q3

Beachten Sie, dass Sie die Motorstarter-Funktion nur in Verbindung mit den hierfür vorgesehenen Leistungsschaltertypen -ME parametrieren können. Sollten Sie dieses nicht einhalten, erhalten Sie beim Schreiben auf das Objekt eine Fehlermeldung.

Beachten Sie, dass Sie nur die angegebenen Ausgänge mit dem der gewünschten Motorstarter-Funktion entsprechendem Wert parametrieren dürfen. Alle angegebenen Ausgänge sind mit demselben, für die entsprechende Motorstarter-Funktion vorgesehenen Wert zu parametrieren. Sollten Sie diese Bedingungen nicht einhalten, erhalten Sie beim Schreiben auf das Objekt eine Fehlermeldung.

Informationen zum Anschluss der Motor-Schütze finden Sie im → Abschnitt "Motorstarter", Seite 44.

Belegung der Ausgänge mit Fernantriebs-Funktion

Die nachfolgende Tabelle zeigt die mögliche Belegung der Ausgänge Q4 bis Q5 mit der Fernantriebs-Funktion und dem korrespondierenden Wert für die Octets 5 und 6 des Objektes.

Tabelle 39: Fernantriebfunktion und deren Wert

Wert für Ausgangs- belegung (dezimal)	Funktion	Belegt die Ausgänge
21	Fernantrieb	Q4, Q5

Beachten Sie, dass Sie nur die angegebenen Ausgänge mit dem der Fernantriebs-Funktion entsprechendem Wert parametrieren dürfen. Alle angegebene Ausgänge sind mit demselben, für die Fernantriebs-Funktion vorgesehenen Wert zu parametrieren. Sollten Sie diese Bedingungen nicht einhalten, erhalten Sie beim Schreiben auf das Objekt eine Fehlermeldung.

Objekt DMI Standardanzeigebelegung

Dieses Objekt enthält die aktuelle Standardanzeigebelegung des DMI.

Dieses Objekt ist lesbar und beschreibbar (Read, Write). Es kann von einem Klasse 1 und/oder einem Klasse 2 DPV1-Master angesprochen werden.

Verwendungszweck

Verwenden Sie dieses Objekt um sich über die aktuelle Standardanzeigebelegung des DMI zu informieren oder um dem DMI eine neue Standardanzeigebelegung zu übergeben.

Die Standardanzeige des DMI erscheint automatisch im Display, wenn am DMI seit mehr als 30 Sekunden keine Taste betätigt wurde. Sie umfasst 6 Zeilen, wobei die ersten vier Zeilen im Display sichtbar sind. Durch die Cursortasten fü können Sie die übrigen zwei Zeilen erreichen.

Adressierung und Länge des Objektes

Für die Adressierung des Objektes verwenden Sie die folgenden Informationen:

- API ist gleich 0 (nur für Klasse 2 DPV1-Master erforderlich),
- Slot Number ist gleich 0,
- Index ist gleich 22.

Die Länge der auszulesenden bzw. der zu schreibenden Daten beträgt 6 Octets. Beachten Sie, dass sie keine andere Länge beim Aufruf des Dienstes Write eintragen oder eine kleinere Länge beim Aufruf des Dienstes Read, da sie ansonsten eine Fehlermeldung erhalten.

Variablendefinition (Beispiel) für das Objekt Nach IEC 61131-3 definieren Sie folgende Variable (Datenbaustein):

Name	Datentyp
DMI_Standard_Anzeige	ARRAY [16] OF BYTE oder ARRAY [16] OF USINT

Format und Bedeutung der Dateninhalte des Objektes

Die folgende Tabelle zeigt die Adresslage und Bedeutung der Dateninhalte des Objektes. Des weiteren gibt sie beispielhaft an, wie auf diese Dateninhalte mit Hilfe der beispielhaft definierten Variable seitens der Anwendung zugegriffen werden kann.

Tabelle 40: Adresslage und Bedeutung der Dateninhalte des Objektes

Variablenzugriff (Beispiel)	Datenposition	Bedeutung → Tabelle 41
DMI_Standard_Anzeige[1]	Octet 1	Belegung Zeile 1
DMI_Standard_Anzeige[2]	Octet 2	Belegung Zeile 2
DMI_Standard_Anzeige[3]	Octet 3	Belegung Zeile 3
DMI_Standard_Anzeige[4]	Octet 4	Belegung Zeile 4
DMI_Standard_Anzeige[5]	Octet 5	Belegung Zeile 5
DMI_Standard_Anzeige[6]	Octet 6	Belegung Zeile 6

Die nachfolgende Tabelle zeigt die mögliche Belegung der Zeilen 1 bis 6 der Standardanzeige des DMI und dem korrespondierenden Wert für die Octets 1 bis 6 des Objektes.

Tabelle 41: Anzeigeinhalte und deren Werte

Wert für Standard- anzeigebelegung (dezimal)	Bedeutung, in der gewählten Zeile wird dargestellt:
00	Keine Anzeige
01	Verwendeter Parameter: I _r
02	Verwendeter Parameter: I _i
03	Verwendeter Parameter: Isd
04	Verwendeter Parameter: I _{dn}
05	Verwendeter Parameter: \mathcal{T}_{r}
06	Verwendeter Parameter: \mathcal{T}_{sd}
07	Verwendeter Parameter: \mathcal{T}_{vdn}
08	Verwendeter Parameter: I ² t
09	Aktueller Wert: I _{1eff}
10	Aktueller Wert: I _{2eff}
11	Aktueller Wert: I _{3eff}

Wert für Standard- anzeigebelegung (dezimal)	Bedeutung, in der gewählten Zeile wird dargestellt:
12	Aktueller Wert: I _{neff}
13	Aktueller Wert: I _{dneff}
14	Gewählte Motorstarter-Funktion
15	Motorzustand
16	Aktueller Zustand der Eingänge I0 bis I5
17	Aktueller Zustand der Ausgänge Q0 bis Q5
18	Uhrzeit
19	Datum

Anzeige verwendeter Parameter

Die Anzeige der verwendeten Stromparameter erfolgt in Abhängigkeit der im DMI gewählten Darstellungsform entweder absolut in Ampere oder relativ zu $I_{\rm r}$ oder $I_{\rm n}$. Die Darstellungsform können Sie über den PROFIBUS-DP mit Hilfe des Objektes DMI Grundeinstellungen auswählen. Im Auslieferungszustand ist die Option relative Darstellung vorgewählt. Die Anzeige der verwendeten Zeitparameter erfolgt immer absolut.

Beachten Sie, dass Sie nur die verwendeten Parameter und Ströme anzeigen können, die der angeschlossene Leistungsschalter auch tatsächlich zur Verfügung stellt. Wählen Sie einen nicht vorhandenen Parameter oder Strom für die Anzeige aus, wird die gewählte Zeile nicht dargestellt.

Beachten Sie, dass bei der Auswahl "keine Anzeige" für eine gewählte Zeile ebenfalls alle folgenden Zeilen im DMI nicht dargestellt werden.

Anzeige aktueller Stromwerte

Die Anzeige der aktuellen Stromwerte erfolgt in Abhängigkeit der im DMI gewählten Darstellungsform entweder absolut in Ampere oder relativ zu $I_{\rm r}$. Die Darstellungsform können Sie über den PROFIBUS-DP mit Hilfe des Objektes DMI Grundeinstellungen auswählen. Im Auslieferungszustand ist die Option relative Darstellung vorgewählt.

Beachten Sie, dass Sie nur die aktuellen Stromwerte anzeigen können, die der angeschlossene Leistungsschalter auch tatsächlich zur Verfügung stellt. Wählen Sie einen nicht vorhandenen Stromwert für die Anzeige aus, wird die gewählte Zeile nicht dargestellt.

Anzeige der gewählten Motorstarter-Funktion und des Motorzustandes

Beachten Sie, dass bei nicht parametrierter Motorstarter-Funktion in der Anzeige für beide Auswahlmöglichkeiten der Wert "AUS" erscheint.

Anzeige des aktuellen Zustands der Ein-/Ausgänge Der aktuelle Zustand der Eingänge bzw. Ausgänge erfolgt in der O/I Darstellung, wobei 0 für "AUS" und I für "EIN" steht. Die Darstellung erfolgt von links nach rechts für I0 bis I5 bzw. Q0 bis Q5.

Objekt DMI Grundeinstellung

Dieses Objekt enthält die aktuelle Grundeinstellungen des DMI.

Dieses Objekt ist lesbar und beschreibbar (Read, Write). Es kann von einem Klasse 1 und/oder einem Klasse 2 DPV1-Master angesprochen werden.

Verwendungszweck

Verwenden Sie dieses Objekt um sich über die aktuelle Grundeinstellungen des DMI bezüglich

- Passwort.
- Menüsprache,
- Darstellungsform,

- Seriennummer NZM,
- Quittierungseingang

zu informieren und/oder verwenden Sie dieses Objekt um dem DMI eine neue Grundeinstellung bezüglich

- Passwort.
- Menüsprache,
- Darstellungsform,
- Seriennummer NZM,
- Quittierungseingang zu übergeben.

Ein Schreiben auf dieses Objekt bewirkt unmittelbar den Austausch der bisherigen Grundeinstellung durch die neue Grundeinstellung. Bitte gehen Sie entsprechend sorgfältig bei der Auswahl der Einstellungen und beim Aufruf des Write Dienstes für dieses Objekt vor.

Adressierung und Länge des Objektes

Für die Adressierung des Objektes verwenden Sie die folgenden Informationen:

- API ist gleich 0 (nur für Klasse 2 DPV1-Master erforderlich),
- Slot Number ist gleich 0,
- Index ist gleich 23.

Die Länge der auszulesenden bzw. der zu schreibenden Daten beträgt 9 Octets. Beachten Sie, dass sie keine andere Länge beim Aufruf des Dienstes Write eintragen oder eine kleinere Länge beim Aufruf des Dienstes Read, da sie ansonsten eine Fehlermeldung erhalten.

Variablendefinition (Beispiel) für das Objekt

Nach IEC 61131-3 definieren Sie folgende Variable (Datenbaustein):

Name	Datentyp
DMI_Grundeinstellung	STRUCT
Passwort	WORD oder UINT
Sprachwahl	WORD oder UINT
Seriennummer_LS	DWORD oder UDINT
Optionen	ARRAY [18] OF BOOL oder BYTE

Format und Bedeutung der Dateninhalte des Objektes

Die folgende Tabelle zeigt die Adresslage und Bedeutung der Dateninhalte des Objektes. Des weiteren gibt sie beispielhaft an, wie auf diese Dateninhalte mit Hilfe der beispielhaft definierten Variable seitens der Anwendung zugegriffen werden kann.

Tabelle 42: Adresslage und Bedeutung der Dateninhalte des Objektes

Variablenzugriff (Beispiel)	Datenposition	Bedeutung
DMI_Grundeinstellung.		
Passwort	Octet 1 und 2	Passwort für den Zugang zum Eingabemenü des DMI → Tabelle 43
Sprachwahl	Octet 3 und 4	Sprachauswahl für das DMI Menü → Tabelle 44
Seriennumer_LS	Octet 5 bis 8	Seriennummer des angeschlossenen Leistungsschalter
	Octet 9 ¹⁾	
Optionen[1]	Bit 0	Absolutwertdarstellung

Variablenzugriff (Beispiel)	Datenposition	Bedeutung
Optionen[2]	Bit 1	Quittierungseingang I0
Optionen[3]	Bit 2	Anlaufstop bei neuer Seriennummer des NZM
	Bit 3 bis Bit 7	Nicht genutzt

1) In Octet 9 ist eine Option gewählt wenn das zugehörige Bit gesetzt ist.

Beachten Sie beim Zugriff auf die Dateninhalte "Seriennummer des angeschlossenen Leistungsschalters", Passwort und Sprachwahl das im PROFIBUS-DP verwendete Motorola-Kodierungsformat (Octet N: High-Byte, Octet N+1: Low-Byte). Sollte das Datenverarbeitungsformat in Ihrem DP-Master-System hiervon abweichen und die DPV1-Zugriffsbefehle keine automatische Konvertierung beinhalten, müssen Sie die notwendige Konvertierung in Ihrem Anwendungsprogramm selbst vornehmen. Beachten Sie diesbezüglich die Dokumentation Ihres DP-Master-Systems.

Die folgende Tabelle zeigt die möglichen Passwörter für den Zugang zum Eingabemenü des DMI und dem korrespondierenden Wert in den Octets 1 und 2 des Objektes.

Tabelle 43: Passwörter und deren Werte

Wert (dezimal)	Bedeutung: Passwort hat den Wert
0	Kein Passwort
1	1
2	2
3	3
bis 9999	bis 9999

Die folgende Tabelle zeigt die möglichen Sprachen für das Menü des DMI und dem korrespondierenden Wert in den Octets 3 und 4 des Objektes.

Tabelle 44: Menüsprachen und deren Werte

Wert (dezimal)	Bedeutung: Ausgewählte Sprache ist
0	Deutsch
1	Englisch
2	Französisch
3	Italienisch
4	Spanisch

Objekt DMI Uhr

Dieses Objekt enthält die aktuelle Uhrzeit und das aktuelle Datum des DMI.

Dieses Objekt ist lesbar und beschreibbar (Read, Write). Es kann von einem Klasse 1 und/oder einem Klasse 2 DPV1-Master angesprochen werden.

Verwendungszweck

Verwenden Sie dieses Objekt um sich über die aktuelle Uhrzeit und das aktuelle Datum des DMI zu informieren oder um dem DMI eine neue Uhrzeit und/oder ein neues Datum zu übergeben.

Adressierung und Länge des Objektes

Für die Adressierung des Objektes verwenden Sie die folgenden Informationen:

- API ist gleich 0 (nur für Klasse 2 DPV1-Master erforderlich),
- Slot Number ist gleich 0,
- Index ist gleich 24.

Die Länge der auszulesenden bzw. der zu schreibenden Daten beträgt 8 Octets. Beachten Sie, dass sie keine andere Länge beim Aufruf des Dienstes Write eintragen oder eine kleinere Länge beim Aufruf des Dienstes Read, da sie ansonsten eine Fehlermeldung erhalten.

Variablendefinition (Beispiel) für das Objekt

Nach IEC 61131-3 definieren Sie folgende Variable (Datenbaustein):

Name	Datentyp
DMI_Uhr	DATE_AND_TIME

Format und Bedeutung der Dateninhalte des Objektes

Die folgende Tabelle zeigt die Adresslage und Bedeutung der Dateninhalte des Objektes. Des weiteren gibt sie beispielhaft an, wie auf diese Dateninhalte mit Hilfe der beispielhaft definierten Variable seitens der Anwendung zugegriffen werden kann.

Tabelle 45: Adresslage und Bedeutung der Dateninhalte des Objektes

Variablenzugriff (Beispiel)	Datenposition	Bedeutung
DMI_Uhr	Octet 1 bis 8	Uhrzeit und Datum des DMI → Tabelle 46

Die folgende Tabelle zeigt die BCD-Kodierung des Dateninhalts "Uhrzeit und Datum des DMI".

Tabelle 46: Format des Dateninhalts Uhrzeit und Datum

Datenposition	Bedeutung	Erläuterung
Octet 1		
Bit 4 bis Bit 7	Jahreszahl, 10er Stelle	Wert 90 entspricht 1990
Bit 0 bis Bit 3	Jahreszahl, 1er Stelle	Wert 99 entspricht 1999
		Wert 90 entspricht 2000
		Wert 89 entspricht 2089
Octet 2		
Bit 4 bis Bit 7	Monatszahl, 10er Stelle	-
Bit 0 bis Bit 3	Monatszahl, 1er Stelle	

Datenposition	Bedeutung	Erläuterung
Octet 3		
Bit 4 bis Bit 7	Tageszahl, 10er Stelle	-
Bit 0 bis Bit 3	Tageszahl, 1er Stelle	
Octet 4		
Bit 4 bis Bit 7	Stundenzahl, 10er Stelle	-
Bit 0 bis Bit 3	Stundenzahl, 1er Stelle	
Octet 5		
Bit 4 bis Bit 7	Minutenzahl, 10er Stelle	-
Bit 0 bis Bit 3	Minutenzahl, 1er Stelle	
Octet 6		
Bit 4 bis Bit 7	Sekundenzahl, 10er Stelle	-
Bit 0 bis Bit 3	Sekundenzahl, 1er Stelle	
Octet 7		
Bit 4 bis Bit 7	Millisekundenzahl, 100er Stelle	-
Bit 0 bis Bit 3	Millisekundenzahl, 10er Stelle	
Octet 8		
Bit 4 bis Bit 7	Millisekundenzahl, 1er Stelle	-
Bit 0 bis Bit 3	Wochentag	Wert 0 entspricht nicht verwendet Wert 1 entspricht Sonntag Wert 2 entspricht Montag Wert 7 entspricht Samstag

Die Uhr im DMI verwendet intern keine Millisekunden und keinen Wochentag. Daher sind beim Lesen des Objektes die entsprechenden Datenfelder mit "0" belegt. Beim Schreiben des Objektes werden Werte in diesen Datenfeldern ignoriert.

Objekt DMI Eingänge

Dieses Objekt enthält die aktuelle Zustände der Eingänge IO bis I5 des DMI.

Dieses Objekt ist nur lesbar (Read). Es kann von einem Klasse 1 und/oder einem Klasse 2 DPV1-Master angesprochen werden.

Verwendungszweck

Verwenden Sie dieses Objekt um sich über den Zustand der Eingänge des DMI zu informieren.

Adressierung und Länge des Objektes

Für die Adressierung des Objektes verwenden Sie die folgenden Informationen:

- API ist gleich 0 (nur für Klasse 2 DPV1-Master erforderlich).
- Slot Number ist gleich 0,
- Index ist gleich 25.

Die Länge der auszulesenden Daten beträgt 1 Octet. Beachten Sie, dass sie keine kleinere Länge beim Aufruf des Dienstes Read eintragen, da sie ansonsten eine Fehlermeldung erhalten.

Variablendefinition (Beispiel) für das Objekt

Nach IEC 61131-3 definieren Sie folgende Variable (Datenbaustein):

Name	Datentyp
DMI_Eingänge	ARRAY [18] OF BOOL oder BYTE

Format und Bedeutung der Dateninhalte des Objektes

Die folgende Tabelle zeigt die Adresslage und Bedeutung der Dateninhalte des Objektes. Des weiteren gibt sie beispielhaft an, wie auf diese Dateninhalte mit Hilfe der beispielhaft definierten Variable seitens der Anwendung zugegriffen werden kann.

Tabelle 47: Adresslage und Bedeutung der Dateninhalte des Objektes

Variablenzugriff (Beispiel)	Datenposition	Bedeutung
	Octet 1	
DMI_Eingaenge[1]	Bit 0	Zustand I0
DMI_Eingaenge[2]	Bit 1	Zustand I1
DMI_Eingaenge[3]	Bit 2	Zustand I2
DMI_Eingaenge[4]	Bit 3	Zustand I3
DMI_Eingaenge[5]	Bit 4	Zustand I4
DMI_Eingaenge[6]	Bit 5	Zustand I5
	Bit 6 und Bit 7	Nicht genutzt

Ein gesetztes Bit entspricht dem Zustand "EIN", ein nicht gesetztes Bit entspricht dem Zustand "AUS.

Bei parametrierter Motorstarter-Funktion geben die Eingänge I1 und I3 den aktuellen Zustand der Motorsteuerung wieder (—> Abschnitt "Format der Dateneingänge", Seite 87.

Objekt DMI Ausgänge

Dieses Objekt enthält die aktuelle Zustände der Ausgänge Q0 bis Q5 des DMI.

Dieses Objekt ist nur lesbar (Read). Es kann von einem Klasse 1 und/oder einem Klasse 2 DPV1-Master angesprochen werden.

Verwendungszweck

Verwenden Sie dieses Objekt um sich über den Zustand der Ausgänge des DMI zu informieren.

Sie können den Zustand aller Ausgänge des DMI mit diesem Objekt lesen, unabhängig davon ob diese für das Schaltsignal "Bus" parametriert wurden.

Adressierung und Länge des Objektes

Für die Adressierung des Objektes verwenden Sie die folgenden Informationen:

- API ist gleich 0 (nur für Klasse 2 DPV1-Master erforderlich),
- Slot Number ist gleich 0,
- Index ist gleich 26.

Die Länge der auszulesenden Daten beträgt 1 Octet. Beachten Sie, das sie keine kleinere Länge beim Aufruf des Dienstes Read eintragen, da sie ansonsten eine Fehlermeldung erhalten.

Variablendefinition (Beispiel) für das Objekt Nach IEC 61131-3 definieren Sie folgende Variable (Datenbaustein):

Name	Datentyp
DMI_Ausgaenge	ARRAY [18] OF BOOL oder BYTE

Format und Bedeutung der Dateninhalte des Objektes

Die folgende Tabelle zeigt die Adresslage und Bedeutung der Dateninhalte des Objektes. Des weiteren gibt sie beispielhaft an, wie auf diese Dateninhalte mit Hilfe der beispielhaft definierten Variable seitens der Anwendung zugegriffen werden kann.

Tabelle 48: Adresslage und Bedeutung der Dateninhalte des Objektes

Variablenzugriff (Beispiel)	Datenposition	Bedeutung
	Octet 1	
DMI_Ausgaenge[1]	Bit 0	Zustand Q0
DMI_Ausgaenge[2]	Bit 1	Zustand Q1
DMI_Ausgaenge[3]	Bit 2	Zustand Q2

Variablenzugriff (Beispiel)	Datenposition	Bedeutung
DMI_Ausgaenge[4]	Bit 3	Zustand Q3
DMI_Ausgaenge[5]	Bit 4	Zustand Q4
DMI_Ausgaenge[6]	Bit 5	Zustand Q5
	Bit 6 und Bit 7	Nicht genutzt

Ein gesetztes Bit entspricht dem Zustand "EIN", ein nicht gesetztes Bit entspricht dem Zustand "AUS".

Objekt DMI Bus-Ausgänge

Dieses Objekt ermöglicht die Steuerung des Zustands der Ausgänge des DMI.

Dieses Objekt ist nur schreibbar (Write). Es kann nur von einem Klasse 2 DPV1-Master angesprochen werden.

Verwendungszweck

Verwenden Sie dieses Objekt um den Zustand der Ausgänge des DMI zu steuern.

Sie können nur den Zustand der Ausgänge des DMI mit diesem Objekt setzen, deren Schaltsignal auf "Bus" parametriert wurden. Steuersignale für Ausgänge, deren Schaltsignal nicht auf "Bus" parametriert wurde, werden ignoriert.

Sie können nur auf dieses Objekt zugreifen, wenn kein Klasse 1 DP-Master mit dem angesprochenen NZM-XDMI_DPV1-Modul zyklischen Datenaustausch betreibt.

Adressierung und Länge des Objektes

Für die Adressierung des Objektes verwenden Sie die folgenden Informationen:

- API ist gleich 0 (nur für Klasse 2 DPV1-Master erforderlich),
- Slot Number ist gleich 0,
- Index ist gleich 27.

Die Länge der zu schreibenden Daten beträgt 1 Octet. Beachten Sie, dass sie keine andere Länge beim Aufruf des Dienstes Write eintragen, da sie ansonsten eine Fehlermeldung erhalten.

Variablendefinition (Beispiel) für das Objekt Nach IEC 61131-3 definieren Sie folgende Variable (Datenbaustein):

Name	Datentyp
DMI_Bus_Ausgaenge	ARRAY [18] OF BOOL oder BYTE

Format und Bedeutung der Dateninhalte des Objektes

Die folgende Tabelle zeigt die Adresslage und Bedeutung der Dateninhalte des Objektes. Des weiteren gibt sie beispielhaft an, wie auf diese Dateninhalte mit Hilfe der beispielhaft definierten Variable seitens der Anwendung zugegriffen werden kann.

Tabelle 49: Adresslage und Bedeutung der Dateninhalte des Obiektes

Variablenzugriff	Datenposition	Bedeutung
(Beispiel)		
	Octet 1	
DMI_Bus_Ausgaenge[1]	Bit 0	Neuer Zustand Q0 (nur wenn Schaltsignal auf Bus parametriert und kein zyklischer Datenverkehr)
DMI_Bus_Ausgaenge[2]	Bit 1	Neuer Zustand Q1 (nur wenn Schaltsignal auf Bus parametriert und kein zyklischer Datenverkehr)
DMI_Bus_Ausgaenge[3]	Bit 2	Neuer Zustand Q2 (nur wenn Schaltsignal auf Bus parametriert und kein zyklischer Datenverkehr)
DMI_Bus_Ausgaenge[4]	Bit 3	Neuer Zustand Q3 (nur wenn Schaltsignal auf Bus parametriert und kein zyklischer Datenverkehr)
DMI_Bus_Ausgaenge[5]	Bit 4	Neuer Zustand Q4 (nur wenn Schaltsignal auf Bus parametriert und kein zyklischer Datenverkehr)
DMI_Bus_Ausgaenge[6]	Bit 5	Neuer Zustand Q5 (nur wenn Schaltsignal auf Bus parametriert und kein zyklischer Datenverkehr)
	Bit 6 und Bit 7	Nicht genutzt

Ein gesetztes Bit entspricht dem Zustand "EIN", ein nicht gesetztes Bit entspricht dem Zustand "AUS.

Objekt DMI Geräteidentifikation

Dieses Objekt enthält die Geräteidentifikation des angeschlossenen DMI (ASCII-String).

Dieses Objekt ist nur lesbar (Read). Es kann von einem Klasse 1 und/oder einem Klasse 2 DPV1-Master angesprochen werden.

Verwendungszweck

Verwenden Sie dieses Objekt um sich über die Geräteidentifikation bezüglich Firmwareversion des DMI zu informieren.

Adressierung und Länge des Objektes

Für die Adressierung des Objektes verwenden Sie die folgenden Informationen:

- API ist gleich 0 (nur für Klasse 2 DPV1-Master erforderlich),
- Slot Number ist gleich 0,
- Index ist gleich 28.

Die Länge der auszulesenden Daten beträgt 12 Octets. Beachten Sie, dass sie keine kleinere Länge beim Aufruf des Dienstes Read eintragen, da sie ansonsten eine Fehlermeldung erhalten.

Variablendefinition (Beispiel) für das Objekt

Nach IEC 61131-3 definieren Sie folgende Variable (Datenbaustein):

Name	Datentyp
DMI_SW_Version	ARRAY [112] OF CHAR oder STRING [12]

Format und Bedeutung der Dateninhalte des Objektes

Die folgende Tabelle zeigt die Adresslage und Bedeutung der Dateninhalte des Objektes. Des weiteren gibt sie beispielhaft an, wie auf diese Dateninhalte mit Hilfe der beispielhaft definierten Variable seitens der Anwendung zugegriffen werden kann.

Tabelle 50: Adresslage und Bedeutung der Dateninhalte des Objektes

Variablenzugriff (Beispiel)	Datenposition	Bedeutung
DMI_SW_Version	Octet 1 bis 12	Firmwareversion des DMI

Der Dateninhalt ist als ASCII-String kodiert.

Objekt NZM-XDMI-DPV1 Geräteidentifikation

Dieses Objekt enthält die Geräteidentifikation des NZM-XDMI-DPV1 (ASCII-String).

Dieses Objekt ist nur lesbar (Read). Es kann von einem Klasse 1 und/oder einem Klasse 2 DPV1-Master angesprochen werden.

Verwendungszweck

Verwenden Sie dieses Objekt um sich über die Geräteidentifikation bezüglich Firmwareversion des NZM-XDMI-DPV1 zu informieren.

Adressierung und Länge des Objektes

Für die Adressierung des Objektes verwenden Sie die folgenden Informationen:

- API ist gleich 0 (nur für Klasse 2 DPV1-Master erforderlich).
- Slot Number ist gleich 0,
- Index ist gleich 29.

Die Länge der auszulesenden Daten beträgt 8 Octets. Beachten Sie, das sie keine kleinere Länge beim Aufruf des Dienstes Read eintragen, da sie ansonsten eine Fehlermeldung erhalten.

Variablendefinition (Beispiel) für das Objekt Nach IEC 61131-3 definieren Sie folgende Variable (Daten-

baustein):
Name Datentyp

Name	Datentyp
NZM_XDMI_DPV1_SW_Version	ARRAY [18] OF CHAR oder STRING [8]

Format und Bedeutung der Dateninhalte des Objektes

Die folgende Tabelle zeigt die Adresslage und Bedeutung der Dateninhalte des Objektes. Des weiteren gibt sie beispielhaft an, wie auf diese Dateninhalte mit Hilfe der beispielhaft definierten Variable seitens der Anwendung zugegriffen werden kann.

Tabelle 51: Adresslage und Bedeutung der Dateninhalte des Objektes

Variablenzugriff (Beispiel)	Datenposition	Bedeutung
NZM_XDMI_DPV1_SW_Version	Octet 1 bis 8	Firmwareversion des NZM-XDMI-DPV1

Der Dateninhalt ist als ASCII-String kodiert.

Objekt Leistungsschalter/DMI StatistikwerteDieses Objekt enthält Statistikwerte vom Leistungsschalter

Dieses Objekt enthält Statistikwerte vom Leistungsschalter und DMI.

Dieses Objekt ist nur lesbar (Read). Es kann von einem Klasse 1 und/oder einem Klasse 2 DPV1-Master angesprochen werden.

Verwendungszweck

Verwenden Sie dieses Objekt um sich über die

- Betriebsstunden des Leistungsschalters,
- Betriebsstunden des DMI,
- Anzahl der Auslösungen des Leistungsschalters zu informieren.

Adressierung und Länge des Objektes

Für die Adressierung des Objektes verwenden Sie die folgenden Informationen:

- API ist gleich 0 (nur für Klasse 2 DPV1-Master erforderlich),
- Slot Number ist gleich 0,
- Index ist gleich 30.

Die Länge der auszulesenden Daten beträgt 10 Octets. Beachten Sie, dass sie keine kleinere Länge beim Aufruf des Dienstes Read eintragen, da sie ansonsten eine Fehlermeldung erhalten.

Variablendefinition (Beispiel) für das Objekt

INach IEC 61131-3 definieren Sie folgende Variable (Datenbaustein):

Name	Datentyp
LS_DMI_Statistik	STRUCT
LS_Betriebsstunden	DWORD oder UDINT
DMI_Betriebsstunden	DWORD oder UDINT
LS_Anzahl_Trip	WORD oder UINT

Format und Bedeutung der Dateninhalte des Objektes

Die folgende Tabelle zeigt die Adresslage und Bedeutung der Dateninhalte des Objektes. Desweiteren gibt sie beispielhaft an, wie auf diese Dateninhalte mit Hilfe der beispielhaft definierten Variable seitens der Anwendung zugegriffen werden kann.

Tabelle 52: Adresslage und Bedeutung der Dateninhalte des Objektes

Variablenzugriff (Beispiel)	Daten- position	Bedeutung
LS_DMI_Statistik.		
LS_Betriebsstunden	Octet 1 bis 4	Anzahl der Betriebsstunden des angeschlossenen Leistungsschalters
DMI_Betriebsstunden	Octet 5 bis 8	Anzahl der Betriebsstunden des DMI
LS_Anzahl_Trip	Octet 9 und 10	Anzahl der Auslösungen des angeschlossenen Leistungsschalters

Beachten Sie beim Zugriff auf die Dateninhalte "LS_Betriebsstunden", "DMI_Betriebsstunden" und "LS_Anzahl_Trip" das im PROFIBUS-DP verwendete Motorola-Kodierungsformat (Octet N: High-Byte, Octet N+1: Low-Byte). Sollte das Datenverarbeitungsformat in Ihrem DP-Master-System hiervon abweichen und die DPV1-Zugriffsbefehle keine automatische Konvertierung beinhalten, müssen Sie die notwendige Konvertierung in Ihrem Anwendungsprogramm selbst vornehmen. Beachten Sie diesbezüglich die Dokumentation Ihres DP-Master-Systems.

Die Dateninhalte "Anzahl der Betriebsstunden des angeschlossenen Leistungsschalters" und "Anzahl der Auslösungen des angeschlossenen Leistungsschalters" werden auf den Wert 0 zurückgesetzt, wenn der Leistungsschalter vom DMI getrennt wird.

Objektzusammenstellung A

Dieses Objekt enthält als vorgefertigte Zusammenstellung die Dateninhalte folgender Einzelobjekte:

- Leistungsschalter/DMI Kommunikationsstatus,
- DMI Eingänge,
- DMI Ausgänge,
- Leistungsschalter Ströme,
- DMI Uhr,
- Leistungsschalter Status.

Dieses Objekt ist nur lesbar (Read). Es kann von einem Klasse 1 und/oder einem Klasse 2 DPV1-Master angesprochen werden.

Verwendungszweck

Verwenden Sie dieses Objekt wenn Sie sich mit einem Lesezugriff über die Dateninhalte der enthaltenen Objekte informieren wollen.

Beachten Sie alle Informationen die in den Beschreibungen der enthaltenen Einzelobjekte gegeben werden.

Adressierung und Länge des Objektes

Für die Adressierung des Objektes verwenden Sie die folgenden Informationen:

- API ist gleich 0 (nur für Klasse 2 DPV1-Master erforderlich),
- Slot Number ist gleich 0,
- Index ist gleich 50.

Die Länge der auszulesenden Daten beträgt 31 Octets. Beachten Sie, dass sie keine kleinere Länge beim Aufruf des Dienstes Read eintragen, da sie ansonsten eine Fehlermeldung erhalten.

Variablendefinition (Beispiel) für das Objekt Nach IEC 61131-3 definieren Sie folgende Variable (Datenbaustein):

Name	Datentyp
Objekt_A	STRUCT
LS_DMI_Com_Status	ARRAY [116] OF BOOL oder ARRAY [12] OF BYTE
DMI_Ein_Ausgaenge	ARRAY [116] OF BOOL oder ARRAY [12] OF BYTE
LS_Stroeme	ARRAY [16] OF WORD oder ARRAY [16] OF UINT
DMI_Uhr	DATE_AND_TIME
LS_Status	ARRAY [156] OF BOOL oder ARRAY [17] OF BYTE

Format und Bedeutung der Dateninhalte des Objektes

Die folgende Tabelle zeigt die Adresslage und Bedeutung der Dateninhalte des Objektes. Des weiteren gibt sie beispielhaft an, wie auf diese Dateninhalte mit Hilfe der beispielhaft definierten Variable seitens der Anwendung zugegriffen werden kann.

Tabelle 53: Adresslage und Bedeutung der Dateninhalte des Objektes

Variablenzugriff (Beispiel)	Datenposition	Bedeutung
Objekt_A.	Octet 1	
LS_DMI_Com_Status[1]	Bit 0	Leistungsschalter mit neuer Seriennummer erkannt und Anlaufstop aktiv
LS_DMI_Com_Status[2]	Bit 1	Parameter in DMI und Leistungsschalter unterschiedlich
	Bit 2 bis Bit 4	Nicht genutzt
LS_DMI_Com_Status[6]	Bit 5	Nach Initialisierung der Schnittstelle, bis beim Verbindungsaufbau eine LS-Kennung oder PC-Kennung erkannt wurde
LS_DMI_Com_Status[7]	Bit 6	Nach Initialisierung der Schnittstelle, bis beim Verbindungsaufbau ein Kennungsblock korrekt empfangen wurde
LS_DMI_Com_Status[8]	Bit 7	Nach Initialisierung der Schnittstelle, bis beim Verbindungsaufbau das erste Übernahme- kommando empfangen wurde
	Octet 2	
	Bit 0 bis Bit 7	Nicht genutzt
	Octet 3	
DMI_Ein_Ausgaenge[1]	Bit 0	Zustand I0
DMI_Ein_Ausgaenge[2]	Bit 1	Zustand I1
DMI_Ein_Ausgaenge[3]	Bit 2	Zustand I2
DMI_Ein_Ausgaenge[4]	Bit 3	Zustand I3
DMI_Ein_Ausgaenge[5]	Bit 4	Zustand I4
DMI_Ein_Ausgaenge[6]	Bit 5	Zustand I5
	Bit 6 und Bit 7	Nicht genutzt

Variablenzugriff (Beispiel)	Datenposition	Bedeutung
	Octet 4	
DMI_Ein_Ausgaenge[9]	Bit 0	Zustand Q0
DMI_Ein_Ausgaenge[10]	Bit 1	Zustand Q1
DMI_Ein_Ausgaenge[11]	Bit 2	Zustand Q2
DMI_Ein_Ausgaenge[12]	Bit 3	Zustand Q3
DMI_Ein_Ausgaenge[13]	Bit 4	Zustand Q4
DMI_Ein_Ausgaenge[14]	Bit 5	Zustand Q5
	Bit 6 und Bit 7	Nicht genutzt
LS_Stroeme[1]	Octet 5 und 6	Effektivstrom Phase 1
LS_Stroeme[2]	Octet 7 und 8	Effektivstrom Phase 2
LS_Stroeme[3]	Octet 9 und 10	Effektivstrom Phase 3
LS_Stroeme[4]	Octet 11 und 12	Effektivstrom N-Leiter
LS_Stroeme[5]	Octet 13 und 14	maximaler Phasenstrom
LS_Stroeme[6]	Octet 15 und 16	Fehlerstrom
DMI_Uhr	Octet 17 bis 24	Uhrzeit und Datum des DMI → Tabelle 46
	Octet 25	Auslösebedingungen
LS_Status[1]	Bit 0	Trip <i>I</i> _i : Kurzschluss
LS_Status[2]	Bit 1	Trip I^2t (wenn I^2t Option gewählt): Überlast variabel kurzzeitverzögert Trip $I_{\rm mv}$ (wenn I^2t Option nicht gewählt): Überlast konstant kurzzeitverzögert
LS_Status[3]	Bit 2	Trip I_r : Überlast, variabel langzeitverzögert
LS_Status[4]	Bit 3	Trip I_{dn} : Fehlerstrom, konstant kurzzeitverzögert
LS_Status[5]	Bit 4	Trip Select: Zeitlimit bei H-Selektivität über- schritten (noch nicht unterstützt)

	Datenposition	Bedeutung
(Beispiel)	Datenposition	bedeutung
LS_Status[6]	Bit 5	Trip Com: Auslösung über PROFIBUS-DP erfolgt
LS_Status[7]	Bit 6	Trip Temp: Auslösung aufgrund Geräteübertemperatur (NZM)
LS_Status[8]	Bit 7	Nicht genutzt
	Octet 26 ¹⁾	Alarmbedingungen
LS_Status[9]	Bit 0	Überlastvorwarnung
LS_Status[10]	Bit 1	Überlastbereich 1
LS_Status[11]	Bit 2	Überlastbereich 2
LS_Status[12]	Bit 3	Motorschutz (nur bei -ME Typen von Bedeutung, ansonsten konstant "1"): der Leistungsschalter hat einen Überlastfall erkannt und fordert das DMI auf, den Motor abzuschalten. Sollte die Überlast bestehen bleiben, löst der Leistungsschalter aus.
LS_Status[13]	Bit 4	Asymmetrie
	Bit 5	Nicht genutzt
LS_Status[15]	Bit 6	Externe Versorgung des NZM (durch DMI oder PC)
LS_Status[16]	Bit 7	Versorgungsspannung in Ordnung
	Octet 27 ¹⁾	Phasenzustände L1 und L2
LS_Status[17]	Bit 0	Phase L1: Normalbereich
LS_Status[18]	Bit 1	Phase L1: Überlastvorwarnung
LS_Status[19]	Bit 2	Phase L1: Überlastbereich 1
LS_Status[20]	Bit 3	Phase L1: Überlastbereich 2
LS_Status[21]	Bit 4	Phase L2: Normalbereich
LS_Status[22]	Bit 5	Phase L2: Überlastvorwarnung
LS_Status[23]	Bit 6	Phase L2: Überlastbereich 1
LS_Status[24]	Bit 7	Phase L2: Überlastbereich 2

Variablenzugriff (Beispiel)	Datenposition	Bedeutung
	Octet 28 ¹⁾	Phasenzustände L3 und N-Leiter
LS_Status[25]	Bit 0	Phase L3: Normalbereich
LS_Status[26]	Bit 1	Phase L3: Überlastvorwarnung
LS_Status[27]	Bit 2	Phase L3: Überlastbereich 1
LS_Status[28]	Bit 3	Phase L3: Überlastbereich 2
LS_Status[29]	Bit 4	N-Leiter: Normalbereich
LS_Status[30]	Bit 5	N-Leiter: Überlastvorwarnung
LS_Status[31]	Bit 6	N-Leiter: Überlastbereich 1
LS_Status[32]	Bit 7	N-Leiter: Überlastbereich 2
	Octet 29 ¹⁾	Auslösende Phase
LS_Status[33]	Bit 0	Auslösung durch L1
LS_Status[34]	Bit 1	Auslösung durch L2
LS_Status[35]	Bit 2	Auslösung durch L3
LS_Status[36]	Bit 3	Auslösung durch N-Leiter
LS_Status[37]	Bit 4	Leistungsschalter ist im Schaltzustand "EIN"
LS_Status[38]	Bit 5	Leistungsschalter ist im Schaltzustand "AUS"
LS_Status[39]	Bit 6	Leistungsschalter ist im Schaltzustand "Ausgelöst"
LS_Status[40]	Bit 7	Normaler Betrieb des Leistungsschalter (Kommunikation in Ordnung)
	Octet 30 ¹⁾	Alarmgebende Phase
	Bit 0 bis Bit 3	Nicht genutzt
LS_Status[45]	Bit 4	Alarm durch L1
LS_Status[46]	Bit 5	Alarm durch L2
LS_Status[47]	Bit 6	Alarm durch L3
LS_Status[48]	Bit 7	Alarm durch N-Leiter

Variablenzugriff (Beispiel)	Datenposition	Bedeutung
	Octet 31 ¹⁾	Fehlerzustände
LS_Status[49]	Bit 0	Fehler NZM: A/D Wandler
LS_Status[50]	Bit 1	Fehler NZM: Signalverarbeitung
LS_Status[51]	Bit 2	Fehler NZM: Wandlerblock
LS_Status[52]	Bit 3	Fehler NZM: EEPROM
LS_Status[53]	Bit 4	Fehler NZM-Aufsteckmodul 1
LS_Status[54]	Bit 5	Fehler NZM-Aufsteckmodul 2
LS_Status[55]	Bit 6	Fehler NZM-Aufsteckmodul 3
LS_Status[56]	Bit 7	Fehler NZM-Aufsteckmodul 4

¹⁾ Die Bedeutung ist gegeben, wenn das entsprechende Bit gesetzt ist.

Objektzusammenstellung B

Dieses Objekt enthält als vorgefertigte Zusammenstellung die Dateninhalte folgender Objekte:

- Leistungsschalter verwendete Parameter,
- Leistungsschalter lokal eingestellte Parameter.

Dieses Objekt ist nur lesbar (Read). Es kann von einem Klasse 1 und/oder einem Klasse 2 DPV1-Master angesprochen werden.

Verwendungszweck

Verwenden Sie dieses Objekt wenn Sie sich mit einem Lesezugriff über die Dateninhalte der enthaltenen Objekte informieren wollen.

Beachten Sie alle Informationen die in den Beschreibungen der enthaltenen Einzel-Objekte gegeben werden.

Adressierung und Länge des Objektes

Für die Adressierung des Objektes verwenden Sie die folgenden Informationen:

- API ist gleich 0 (nur f
 ür Klasse 2 DPV1-Master erforderlich),
- Slot Number ist gleich 0,
- Index ist gleich 51.

Die Länge der auszulesenden Daten beträgt 19 Octets. Beachten Sie, das sie keine kleinere Länge beim Aufruf des Dienstes Read eintragen, da sie ansonsten eine Fehlermeldung erhalten.

Variablendefinition (Beispiel) für das Objekt Nach IEC 61131-3 definieren Sie folgende Variable (Datenbaustein):

Name	Datentyp
Objekt_B	STRUCT
Optionen_verwendet	ARRAY [116] OF BOOL oder ARRAY [12] OF BYTE
I _r _verwendet	BYTE oder USINT
<i>I</i> i_verwendet	
T_{r} verwendet	
I _{sd} _verwendet	
T_{sd} _verwendet	
I _{dn} _verwendet	
T_{vdn} verwendet	
Reserved	

Name	Datentyp
Optionen_lokal	ARRAY [116] OF BOOL oder ARRAY [12] OF BYTE
I _r _lokal	BYTE oder USINT
<i>I</i> i_lokal	
T _r _lokal	
I _{sd} _lokal	
T _{sd} _lokal	
I _{dn} _lokal	
T _{vdn} _lokal	

Format und Bedeutung der Dateninhalte des Objektes

Die folgende Tabelle zeigt die Adresslage und Bedeutung der Dateninhalte des Objektes. Des weiteren gibt sie beispielhaft an, wie auf diese Dateninhalte mit Hilfe der beispielhaft definierten Variable seitens der Anwendung zugegriffen werden kann.

Tabelle 54: Adresslage und Bedeutung der Dateninhalte des Objektes

Variablenzugriff (Beispiel)	Datenposition	Bedeutung
Objekt_B.	Octet 1	
Optionen_verwendet[1]	Bit 0	Verwendeter Parameter: <i>I</i> ² <i>t</i> → Tabelle 26
	Bit 1 bis Bit 7	Nicht genutzt
	Octet 2	
	Bit 0 bis Bit 7	Nicht genutzt

Variablenzugriff (Beispiel)	Datenposition	Bedeutung
I _r _verwendet	Octet 3	Verwendeter Parameter: <i>I</i> _r → Tabelle 22
I _i _verwendet	Octet 4	Verwendeter Parameter: <i>I</i> _i → Tabelle 23
T _r _verwendet	Octet 5	Verwendeter Parameter: <i>T</i> _r → Tabelle 25
I _{sd} _verwendet	Octet 6	Verwendeter Parameter: <i>I</i> _{sd} → Tabelle 24
T _{sd} _verwendet	Octet 7	Verwendeter Parameter: <i>T</i> _{sd} → Tabelle 25
I _{dn} _verwendet	Octet 8	Verwendeter Parameter: <i>I</i> _{dn} → Tabelle 22
T _{vdn} _verwendet	Octet 9	Verwendeter Parameter: T_{vdn} \rightarrow Tabelle 25
	Octet 10	Nicht genutzt
	Octet 11	
Optionen_lokal[1]	Bit 0	Lokaler Parameter: <i>I</i> ² <i>t</i> → Tabelle 26
	Bit 1bis Bit 7	Nicht genutzt
	Octet 12	
	Bit 0 bis Bit 7	Nicht genutzt
I _r _lokal	Octet 13	Lokaler Parameter: <i>I</i> _r → Tabelle 22
I _i _lokal	Octet 14	Lokaler Parameter: <i>I</i> _i → Tabelle 23
T _r _lokal	Octet 15	Lokaler Parameter: <i>T</i> _r → Tabelle 25
I _{sd} _lokal	Octet 16	Lokaler Parameter: <i>I</i> _{sd} → Tabelle 24

Variablenzugriff (Beispiel)	Datenposition	Bedeutung
T _{sd} _lokal	Octet 17	Lokaler Parameter: <i>T</i> _{sd} → Tabelle 25
I _{dn} _lokal	Octet 18	Lokaler Parameter: I _{dn} → Tabelle 22
T _{vdn} _lokal	Octet 19	Lokaler Parameter: <i>T</i> _{vdn} → Tabelle 25

Tabelle 22 bis Tabelle 26 befinden sich im Abschnitt "Objekt Leistungsschalter Diagnosedatensatz 1 bis 10", Seite 118.

DPV1 Fehlermeldungen

Das NZM-XDMI-DPV1 erzeugt die in nachfolgender Tabelle enthaltenen DPV1 Fehlermeldungen.

Tabelle 55: DPV1 Fehlermeldungen

Fehlermeldung	Bedeutung	Erläuterung/Abhilfe
Access denied (Code B6 hexa- dezimal)	Das angesprochene Objekt ist für den Typ des DP-Masters gesperrt	Sie haben mit einem Klasse 1 DP-Master ein Objekt angesprochen, welches nur von einem Klasse 2 DPV1-Master angesprochen werden kann. Beachten Sie die Objektbeschreibung.
	Das angesprochene Objekt ist für den ausgewählten Dienst gesperrt	Sie haben entweder mit einem Write Dienst auf ein Objekt zugegriffen, welches nur lesbar ist, oder mit einem Read Dienst auf ein Objekt zugegriffen, welches nur schreibbar ist. Beachten Sie die Objektbeschreibung.
Feature not supported (Code A9 hexa- dezimal)	Sie haben beim Schreiben des Objektes "DMI Ausgangsbele- gung" eine Parametrierung für die Motorstarter-Funktion gewählt obwohl der ange- schlossene Leistungsschalter diese nicht unterstützt	Beachten Sie die Objektbeschreibung.
	Sie haben beim Schreiben des Objektes "Leistungsschalter/ DMI Kommandos" ein Kommando gegeben, welches die Fernantriebs- oder Motor- starter-Funktion benötigt, obwohl diese nicht paramet- riert ist	Beachten Sie die Objektbeschreibung.
Invalid index (Code B0 hexa- dezimal)	Der im Read oder Write Dienst angegebene Index ist für das NZM-XDMI-DPV1 ungültig	Verwenden Sie den in der Objektbeschreibung angegebenen Index

Fehlermeldung	Bedeutung	Erläuterung/Abhilfe
Invalid parameter (Code B8 hexa- dezimal)	Die beim Read Dienst verwendete Datenlänge ist kleiner als die Datenlänge des angesprochenen Objektes	Verwenden Sie die in der Objektbeschreibung angegebene Datenlänge
	Die beim Verbindungsaufbau des Klasse 2 DPV1-Masters verwendeten Parameter stimmen nicht mit denen des NZM-XDMI-DPV1 überein	Der Klasse 2 DPV1-Master muss beim Verbindungsaufbau die Parameter Features Supported auf "1" und Profile Ident Number auf "0" setzen
	Sie haben beim Schreiben des Objektes "DMI Ausgangsbele- gung" eine inkonsistente Para- metrierung für die Motor- starter- oder Fernantriebs- Funktion gewählt	Beachten Sie die Objektbeschreibung
Invalid range (Code B7 hexa- dezimal)	Beim Write Dienst wurde für einen Dateninhalt ein unzuläs- siger Wert benutzt	Beachten Sie die Wertebereiche der Daten- inhalte gemäß Objektbeschreibung
Invalid slot (Code B2 hexa- dezimal)	Der im Read oder Write Dienst angegebene Slot ist für das NZM-XDMI-DPV1 ungültig	Verwenden Sie den in der Objektbeschreibung angegebenen Slot
Resource unavailable (Code C3 hexa- dezimal)	Das angesprochene Objekt ist zur Zeit nicht erreichbar, da entweder die Kommunikation zwischen NZM-XDMI-DPV1 und DMI oder zwischen DMI und Leistungsschalter gestört ist	Überprüfen Sie die Verbindung zwischen den Geräten
	Sie haben beim Lesen des Objektes "Leistungsschalter Diagnosedatensatz" eine Datensatznummer gewählt, für die es zur Zeit keinen Eintrag gibt	Wählen Sie eine niedrigere Datensatz- Nummer

Fehlermeldung	Bedeutung	Erläuterung/Abhilfe
State conflict (Code B5 hexa- dezimal)	Sie haben von einem Klasse 2 Master auf das Objekt "DMI Bus-Ausgänge" geschrieben, obwohl ein Klasse 1 Master aktiv ist	Beachten Sie die Objektbeschreibung
Write length error (Code B1 hexa- dezimal)	Die beim Write Dienst verwendete Datenlänge stimmt nicht mit der Datenlänge des angesprochenen Objektes überein	Verwenden Sie die in der Objektbeschreibung angegebene Datenlänge

Was ist, wenn ...?

Ereignis	Erklärung	Abhilfe
POW-LED leuchtet nicht	Keine Versorgungsspannung	Stromversorgung anschließen und einschalten
POW-LED blinkt	Datentransfer über den EASY-LINK in Ordnung	
BUS-LED leuchtet nicht	Keine PROFIBUS-DP-Daten-kommunikation	PROFIBUS-DP anschließen und betreiben
BUS-LED leuchtet	Datentransfer über den PROFIBUS-DP ist in Ordnung	
Slave meldet sich nicht	 Keine Slaveadresse eingestellt Abschlusswiderstand nicht vorhanden Leitung, Stecker defekt Keine Versorgungsspannung 	 Slaveadresse einstellen Abschlusswiderstände setzen Anschluss überprüfen Gerät mit Spannung versorgen

Technische Daten	Allgemeines	Allgemeines	
	Normen und Bestimmungen	EN 55011, EN 55022, IEC/EN 61-4, IEC 60068-2-27, IEC 61158	
	Abmessungen (B \times H \times T)	$35,5 \times 90 \times 56,5$	
	Gewicht	150 g	
	Montage	Hutschiene IEC/EN 60715, 35 mm Schraubmontage mit Geräte- füßen ZB4-101-GF1 (Zubehör)	

Klimatische Umgebungstemperaturen

Betriebsumgebungstemperatur waagerechter/senkrechter Einbau	Kälte nach IEC 60068-2-1 Wärme nach IEC 60068-2-2	–25 bis 55 °C
Betauung		Betauung durch geeignete Maßnahmen verhindern
Lager-/Transporttemperatur		-40 bis +70 °C
Relative Luftfeuchte	IEC 60068-2-30	5 bis 95 %, keine Betauung
Luftdruck (Betrieb)		795 bis 1080 hPa
Korrosionsunempfindlichkeit	IEC 60068-2-42 IEC 60068-2-43	SO ₂ 10 cm ³ /m ³ , 4 Tage H ₂ S 1 cm ³ /m ³ , 4 Tage

Mechanische Umgebungsbedingungen

Verschmutzungsgrad		2
Schutzart	EN 50178 IEC 60529 VBG4	IP20
Schwingungen	IEC 60068-2-6	10 bis 57 Hz (konstante Amplitude 0,15 mm) 57 bis 150 Hz (konstante Beschleunigung 2 g)
Schocken	IEC 60068-2-27	18 Schocks (Halbsinus 15 g/11 ms)
Kippfallen	IEC 60068-2-31	Fallhöhe 50 mm
Freier Fall, verpackt	IEC 60068-2-32	1 m

Elektromagnetische Verträglichkeit (EMV)

Elektrostatische Entladung	IEC/EN 61000-4-2, Schärfegrad 3	8 kV Luftentladung 6 kV Kontaktentladung
Elektromagnetische Felder	IEC/EN 61000-4-3	Feldstärke 10 V/m
Funkentstörung	EN 55011, EN 55022	Grenzwertklasse A
Burst Impulse	IEC/EN 61000-4-4, Schärfegrad 3	2 kV Versorgungs-, 1 kV Signalleitungen
Energiereiche Impulse (Surge)		
DMI	IEC/EN 61000-4-5, Schärfegrad 2	0,5 kV Versorgungsleitung symmetrisch
Einströmung	IEC/EN 61000-4-6	10 V

Isolationsfestigkeit

Bemessung der Luft- und	EN 50178, UL 508, CSA C22.2
Kriechstrecken	No 142
Isolationsfestigkeit	EN 50178

Werkzeug und Anschlussquerschnitte

eindrähtig	
min.	0,2 mm ² , AWG 22
max.	4 mm ² , AWG 12
feindrähtig mit Aderendhülse	
min.	0,2 mm ² , AWG 22
max.	2,5 mm ² , AWG 12
Schlitzschraubendreherbreite in	3,5 × 0,8 mm
Anzugsdrehmoment max.	0,5 Nm

Stromversorgung

Bemessungsspannung	
Nennwert	24 V DC, -15 %, +20 %
Zulässiger Bereich	20,4 bis 28,8 V DC
Restwelligkeit	< 5 %
Eingangsstrom bei 24 V DC	typ. 200 mA
Spannungseinbrüche (IEC/EN 61131-2)	10 ms
Verlustleistung bei 24 V DC	typ. 4,8 W

LED-Anzeigen

LED-Power (POW)	grün
LED-PROFIBUS-DP (BUS)	grün

PROFIBUS-DP

Anschluss Gerät	SUB-D 9-polig, Buchse
Potentialtrennung	Bus zu Versorgungsspannung (einfach) Bus und Stromversorgung zu DMI (sichere Trennung)
Funktion	PROFIBUS-DP-Slave
Schnittstelle	RS 485
Busprotokoll	PROFIBUS-DP
Baudraten	Automatische Suche bis 12 MBd
Busabschlusswiderstände	Über Stecker zuschaltbar
Busadressen	1 bis 126 über DMI

Abmessungen

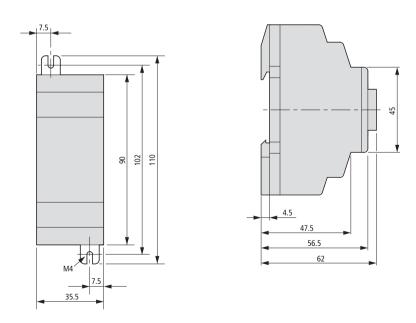


Abbildung 20: Maße NZM-XDMI-DPV1

Stichwortverzeichnis

Α	Absolutwerte	33		
	Alarm-			
	bildschirm	13, 66		
	meldung	33, 66 57 57 20, 70		
	Ändern Passwort			
	Anlaufstopp Anlaufverhalten Anschlussquerschnitte			
	Anzeige			
	aktueller Zustand der Ein-/Ausgänge			
	gewählte Motorstarter-Funktion			
	Motorzustand			
	Stromwerte			
	verwendete Parameter	161 28 41 12		
	Anzeigemenü			
	Ausgang Zuordnung			
			В	Bedienelemente
		Bedienkonzept	13	
	Bedienung			
	Belegung			
	Ausgänge mit Fernantriebs-Funktion	158		
	Ausgänge mit Motorstarter-Funktion			
	Benutzersprache			
	Betriebsstunden			
	Biegeradius			
	Busadresse			
C	Com			
	Cursortasten	13		

D	Datenarten	
	Diagnose	
	Display	
	DMI Firmware-Versionen	
	DPV1 Fehlermeldungen	190
E	easy	11
	Eingabemenü	35
	Eingänge	
	Einrichten Passwort	
	Einschalten	
	EMV	
_	F	4.4
F	Fernantrieb	41
G	GSD-Datei	83
Н	Hauptmenü	
	Hilfsschalter	
	Hutschiene	20
I	Identifikation	61
	Installation16	
	Interface	11
	-module	67
K	Kommando	41
	Trip	
	Kompatibilität	
	Konfiguration des Klasse 1 DP-Master	
L	LED	12, 31
	LED-Statusanzeigen	

Stichwortverzeichnis

М	Menüsprache	27
	Menüstruktur	
	Hauptmenü	14
	Sondermenü	
	Menüübersicht	
	Anzeigemenü	29
	Eingabemenü	36
	Status NZM	60
	Modul 1	
	Modul 2	91
	Modul 4	101
	Montage	17
	Hutschiene	18
	Motorstarter	44
0	Objekt DMI	
	Ausgänge	170
	Ausgangsbelegung	152
	Bus-Ausgänge	172
	Eingänge	169
	Geräte-Identifikation	174
	Grundeinstellung	162
	Standardanzeigebelegung	
	Uhr	166
	Objekt Leistungsschalter	
	Diagnosedatensatz	
	DMI Kommandos	
	DMI Kommunikationsstatus	
	DMI Statistikwerte	177
	Geräte Identifikation	142
	lokal eingestellte Parameter	
	neue Parameter	139
	Status	129
	Ströme	148
	verwendete Parameter	134

	Objekt NZM-XDMI-DPV1 Geräteidentifikation	176
	Objektübersicht	115
	Objektzusammenstellung A	179
	Objektzusammenstellung B	185
P	Parameter31, 39, 40, 54, 5	
	Parametrierung	
	Passwort	
	Problem	67
	PROFIBUS-DP	
	anschließen	
	Busleitungslänge	
	Diagnose	
	Übertragungsraten	
	PROFIBUS-DPV1-Interface in Betrieb nehmen	81
R	Relativwerte	33
S	Schaltelemente	54
	Schaltspiele	
	Seriennummer32, 5	
	Sondermenü1	
	Sprache	
	SPS	
	Standardanzeige13, 26, 27, 2	
	Status	
	DMI	
	NZM	
	Ströme	31, 33
	Systemkonzept	11
T	Trip	60

Stichwortverzeichnis

U	Uhrzeit	
	Umschaltzeit	54
٧	Versorgungsspannung anschließen	78
	3 3 1 3	
Z	Zeit	37
_	Zustand	
	I/0	
	Leistungsschalter	62
	Zyklischer Datenaustausch	85