PowerXL™

DX-NET-MODBUSTCP-2 Field bus connection for Variable Frequency Drives DA1





All brand and product names are trademarks or registered trademarks of the owner concerned.

#### **Emergency On Call Service**

Please call your local representative: http://www.eaton.eu/aftersales or Hotline of the After Sales Service: +49 (0) 180 5 223822 (de, en) AfterSalesEGBonn@eaton.com

#### For customers in US/Canada contact:

#### EatonCare Customer Support Center

Call the EatonCare Support Center if you need assistance with placing an order, stock availability or proof of shipment, expediting an existing order, emergency shipments, product price information, returns other than warranty returns, and information on local distributors or sales offices.

Voice: 877-ETN-CARE (386-2273) (8:00 a.m. – 6:00 p.m. EST) After-Hours Emergency: 800-543-7038 (6:00 p.m. – 8:00 a.m. EST)

#### **Drives Technical Resource Center**

Voice: 877-ETN-CARE (386-2273) option 2, option 6 (8:00 a.m. – 5:00 p.m. Central Time U.S. [UTC-6]) email: <u>TRCDrives@Eaton.com</u> www.eaton.com/drives

#### **Original Operating Instructions**

The German-language edition of this document is the original operating manual.

#### Translation of the original operating manual

All editions of this document other than those in German language are translations of the original German manual.

1<sup>st</sup> published 2014, edition date 09/14 © 2014 by Eaton Industries GmbH, 53105 Bonn

Production: René Wiegand Translation: globaldocs GmbH

All rights reserved, including those of the translation.

No part of this manual may be reproduced in any form (printed, photocopy, microfilm or any other process) or processed, duplicated or distributed by means of electronic systems without written permission of Eaton Industries GmbH, Bonn.

Subject to alteration without notice.



#### Before commencing the installation

- Disconnect the power supply of the device.
- Ensure that devices cannot be accidentally restarted.
- Verify isolation from the supply.
- Earth and short circuit the device.
- Cover or enclose any adjacent live components.
- Follow the engineering instructions (AWA/IL) for the device concerned.
- Only suitably qualified personnel in accordance with EN 50110-1/-2 (VDE 0105 Part 100) may work on this device/system.
- Before installation and before touching the device ensure that you are free of electrostatic charge.
- The functional earth (FE, PES) must be connected to the protective earth (PE) or the potential equalisation. The system installer is responsible for implementing this connection.
- Connecting cables and signal lines should be installed so that inductive or capacitive interference does not impair the automation functions.
- Install automation devices and related operating elements in such a way that they are well protected against unintentional operation.
- Suitable safety hardware and software measures should be implemented for the I/O interface so that an open circuit on the signal side does not result in undefined states in the automation devices.
- Ensure a reliable electrical isolation of the extra-low voltage of the 24 V supply. Only use power supply units complying with IEC 60364-4-41 (VDE 0100 Part 410) or HD384.4.41 S2.
- Deviations of the mains voltage from the rated value must not exceed the tolerance limits given in the specifications, otherwise this may cause malfunction and dangerous operation.
- Emergency stop devices complying with IEC/EN 60204-1 must be effective in all operating modes of the automation devices. Unlatching the emergency-stop devices must not cause a restart.
- Devices that are designed for mounting in housings or control cabinets must only be operated and controlled after they have been installed and with the housing closed. Desktop or portable units must only be operated and controlled in enclosed housings.
- Measures should be taken to ensure the proper restart of programs interrupted after a voltage dip or failure. This should not cause dangerous operating states even for a short time. If necessary, emergency-stop devices should be implemented.

- Wherever faults in the automation system may cause injury or material damage, external measures must be implemented to ensure a safe operating state in the event of a fault or malfunction (for example, by means of separate limit switches, mechanical interlocks etc.).
- Depending on their degree of protection, frequency inverters may contain live bright metal parts, moving or rotating components or hot surfaces during and immediately after operation.
- Removal of the required covers, improper installation or incorrect operation of motor or frequency inverter may cause the failure of the device and may lead to serious injury or damage.
- The applicable national accident prevention and safety regulations apply to all work carried on live frequency inverters.
- The electrical installation must be carried out in accordance with the relevant regulations (e. g. with regard to cable cross sections, fuses, PE).
- Transport, installation, commissioning and maintenance work must be carried out only by qualified personnel (IEC 60364, HD 384 and national occupational safety regulations).
- Installations containing frequency inverters must be provided with additional monitoring and protective devices in accordance with the applicable safety regulations. Modifications to the frequency inverters using the operating software are permitted.
- All covers and doors must be kept closed during operation.
- To reduce the hazards for people or equipment, the user must include in the machine design measures that restrict the consequences of a malfunction or failure of the drive (increased motor speed or sudden standstill of motor). These measures include:
  - Other independent devices for monitoring safetyrelated variables (speed, travel, end positions etc.).
  - Electrical or non-electrical system-wide measures (electrical or mechanical interlocks).
  - Never touch live parts or cable connections of the frequency inverter after it has been disconnected from the power supply. Due to the charge in the capacitors, these parts may still be live after disconnection. Fit appropriate warning signs.

# Table of contents

| 0     | About this Manual                        | 3        |
|-------|------------------------------------------|----------|
| 0.1   | Target group                             | 3        |
| 0.2   | Writing conventions                      | 4        |
| 0.2.1 | Hazard warnings of material damages      | 4        |
| 0.2.2 | Hazard warnings of personal injury       | 4        |
| 0.3   | Abbreviations and Symbols                | 5        |
| 0.4   | Units                                    | 5        |
|       |                                          | -        |
| 1     | Device series                            | 7        |
| 1.1   | Checking the Delivery                    | 7        |
| 1.2   | Key to part numbers                      | 8        |
| 1.3   | General rated operational data           | 9        |
| 1.4   | Designation at DX-NET-MODBUSTCP-2        | 10       |
| 1.5   | Proper use                               | 11       |
| 1.6   | Maintenance and inspection               | 12       |
| 1.7   | Storage                                  | 12       |
| 1.8   | Service and warranty                     | 12       |
| 1.9   | Disposal                                 | 12       |
| 2     | Engineering                              | 13       |
| 2.1   | Modbus/TCP                               | 13       |
| 2.2   | LED indicators                           | 14       |
| 2.2.1 | NS (Network status)                      | 14       |
| 2.2.2 | MS (Module Status)                       | 14<br>17 |
| 2.2.0 |                                          | 14       |
| 3     | Installation                             | 15       |
| 3.1   | Introduction                             | 15       |
| 3.2   | Notes on the documentation               | 16       |
| 3.3   | Notes on the mechanical surface mounting | 16       |
| 3.4   | Mounting for frame sizes FS2 and FS3     | 17       |
| 3.5   | Mounting from construction size FS4      | 18       |
| 3.6   | Installing the fieldbus connection       | 20       |
| 3.7   | Install field bus                        | 21       |

| 4                     | Commissioning                                                               | 23             |
|-----------------------|-----------------------------------------------------------------------------|----------------|
| 4.1                   | DA1 variable frequency drives                                               | 23             |
| 4.2<br>4.2.1<br>4.2.2 | Protocol description<br>Data model<br>Structure of the master request       | 24<br>24<br>25 |
| 4.3<br>4.3.1          | Operation<br>Process data input                                             | 27<br>27       |
| 4.4<br>4.4.1<br>4.4.2 | mode parameter<br>Application example<br>Configuring the IP address for the | 32<br>33       |
| 4.4.3                 | DX-NET-MODBUSTCP-2 module<br>PLC Configuration                              | 34<br>37       |

# **0** About this Manual

### 0.1 Target group

This manual describes the Modbus/TCP connection DX-NET-MODBUSTCP-2 for the variable frequency drives of the DA1 device series.

It is aimed at experienced drive specialists and automation technicians. Extensive knowledge regarding the MODBUS-TCP fieldbus and programming of a MODBUS-TCP master are assumed. In addition, readers must be familiar with how to use the DA1 variable frequency drive.

Please read this manual carefully before installing and operating the Modbus/ TCP connection.

We assume that you have a good knowledge of engineering fundamentals, and that you are familiar with handling electrical systems and machines, as well as with reading technical drawings.



To make it easier to understand some of the images included in this manual, the housing and other safety-relevant parts have been left out.

The components described here must be used only with a properly fitted housing and all necessary safety-relevant parts.



Please follow the notes in the IL040004ZU instruction leaflet.



All the specifications in this manual refer to the hardware and software versions documented in it.



More information on the series described here can be found on the Internet under:

www.eaton.eu/powerxl

### 0 About this Manual

0.2 Writing conventions

### 0.2 Writing conventions

Symbols used in this manual have the following meanings:

Indicates instructions to be followed.

### 0.2.1 Hazard warnings of material damages

NOTICE

Warns about the possibility of material damage.

### 0.2.2 Hazard warnings of personal injury



#### CAUTION

Warns of the possibility of hazardous situations that may possibly cause slight injury.



#### WARNING

Warns of the possibility of hazardous situations that could result in serious injury or even death.



#### DANGER

Warns of hazardous situations that result in serious injury or death.

0.2.3 Tips



Indicates useful tips.

#### **0.3 Abbreviations and Symbols**

The following abbreviations are used in this manual:

| CW         | Command                       |
|------------|-------------------------------|
| DS         | Default setting               |
| EMC        | Electromagnetic compatibility |
| FB         | Field bus                     |
| FS         | Frame Size                    |
| GND        | Ground (0 V potential)        |
| LED        | Light Emitting Diode (LED)    |
| LSB        | Least significant bit         |
| Modbus/TCP | Ethernet Industrial Protocol  |
| MSB        | Most significant bit          |
| PC         | Personal Computer             |
| PNU        | Parameter number              |
| PD         | Process Data                  |
| PLC        | Programmable logic controller |
| SW         | Status Word                   |
| UL         | Underwriters Laboratories     |

### 0.4 Units

Every physical dimension included in this manual uses international metric system units, otherwise known as SI (Système International d'Unités) units. For the purpose of the equipment's UL certification, some of these dimensions are accompanied by their equivalents in imperial units.

SI value **US-American** Designation Imperial unit **Conversion value** designation Length 25.4 mm 1 in ('') 0.0394 inch 0.7457 kW 1 HP = 1.014 PS Power 1.341 horsepower 8.851 pound-force inches Moment of 0.113 Nm 1 lbf in torque Temperature -17.222 °C (T<sub>C</sub>) 1 °F (T<sub>F</sub>)  $T_{F} = T_{C} \times 9/5 + 32$ Fahrenheit Rotational speed 1 min<sup>-1</sup> 1 rpm Revolutions per minute 1 1 lb Weight 0.4536 kg 2.205 pound Flow rate 1.698 m<sup>3</sup>/min 1 cfm 0.5889 cubic feed per minute

Table 1: Unit conversion examples

0 About this Manual 0.4 Units

# **1** Device series

#### **1.1 Checking the Delivery**



Before opening the package, please check the nameplate on it to make sure that you received the correct connection.

Your fieldbus connection was carefully packaged and handed over for shipment. The devices should be shipped only in their original packaging with suitable transportation materials. Please observe the labels and instructions on the packaging and for handling the unpacked device.

Open the packaging with adequate tools and inspect the contents immediately after receipt in order to ensure that they are complete and undamaged.

The packaging must contain the following parts:

- A fieldbus connection DX-NET-MODBUSTCP-2,
- the instruction leaflet IL040004ZU.



Figure 1: Equipment supplied with fieldbus connection DX-NET-MODBUSTCP-2

Device series
 Key to part numbers

### **1.2 Key to part numbers**

The catalog number selection and the part no. for the DX-NET-... field bus connection card have the following syntax:



Figure 2: Catalog number selection of field bus interface card DX-NET-...

### 1 Device series 1.3 General rated operational data

# 1.3 General rated operational data

| Technical Data         | Symbol         | Unit             | Value                                                                      |
|------------------------|----------------|------------------|----------------------------------------------------------------------------|
| General                |                |                  |                                                                            |
| Standards              |                |                  | meets the requirements of the EN 50178 (standard for electrical safety)    |
| Production quality     |                |                  | RoHS, ISO 9001                                                             |
| Ambient conditions     |                |                  |                                                                            |
| Operation temperature  | θ              | °C               | -40 (no hoarfrost) up to +70                                               |
| Storage temperature    | θ              | °C               | -40 - +85                                                                  |
| Climatic proofing      | p <sub>w</sub> | %                | < 95, relative humidity, no condensation permitted                         |
| Installation altitude  | Н              | m                | max. 1000                                                                  |
| Vibration              | g              | m/s <sup>2</sup> | 5 – according to IEC 68-2-6;<br>10 – 500 Hz;<br>0.35 mm                    |
| Modbus/TCP connections |                |                  |                                                                            |
| Interface              | _              |                  | RJ45 plug                                                                  |
| Data transfer          |                |                  | 10/100 MBit/s full duplex/half duplex/<br>Automatic baud rate detection    |
| Transfer cable         |                |                  | Twisted two-pair balanced cable (screened)                                 |
| Communication protocol | _              |                  |                                                                            |
| Modbus/TCP             |                |                  | Modbus/TCP Server<br>Max. 256 Byte input data<br>Max. 256 Byte output data |
| Baud rate              |                | MBit/s           | 10/100                                                                     |

1 Device series

1.4 Designation at DX-NET-MODBUSTCP-2

### 1.4 Designation at DX-NET-MODBUSTCP-2

The following drawing shows the DX-NET-MODBUSTCP-2 fieldbus connection for Modbus/TCP with two RJ45 ports.



Figure 3: Designations at DX-NET-MODBUSTCP-2

- (1) Network status LED (NS)
- LINK/Activity-LED
- ③ RJ45 sockets
- ④ Module status LED (MS)
- 5 50-pole adapter extension
- (6) Screws for securing DA1 variable frequency drive

#### 1.5 Proper use

The DX-NET-MODBUSTCP-2 fieldbus connection is an electrical piece of equipment that can be used to control DA1 variable frequency drives and connect them to a standard Modbus/TCP field bus system. It is intended to be installed in a machine or assembled with other components into a machine or system. It makes it possible for DA1 series variable frequency drives to be integrated as server (slave) into Modbus/TCP field bus systems.



Figure 4: How the DX-NET-MODBUSTCP-2 fieldbus connection can be integrated into a EtherNet/ network

- ① PC
- (2) Head-end controller (client)
- (3) Switch
- (4) Ethernet cable
- (5) Variable frequency drive DA1 with DX-NET-MODBUSTCP-2 connection
- 6 Motor(s)



The DX-NET-MODBUSTCP-2 fieldbus connection is not a household appliance, but rather a component intended exclusively for use in commercial applications.



Observe the technical data and connection requirements described in this manual.

Any other usage constitutes improper use.

1 Device series

1.6 Maintenance and inspection

#### **1.6 Maintenance and inspection**

The DX-NET-MODBUSTCP-2 fieldbus connection will not require any maintenance if the general rated operational data ( $\rightarrow$  Page 9), as well as all Modbus-specific technical data, is adhered to. However, external factors can influence the components's lifespan and function. Because of this, we recommend inspecting the devices on a regular basis and carrying out the following maintenance activities at the specified intervals.

Table 2: Recommended maintenance

| Maintenance measures                                                                   | Maintenance interval                         |
|----------------------------------------------------------------------------------------|----------------------------------------------|
| Check the filter in the control panel doors<br>(see the manufacturer's specifications) | 6 - 24 months (depending on the environment) |
| Check the tightening torques of the control signal terminals                           | regularly                                    |
| Check connection terminals and all metallic surfaces for corrosion                     | 6 - 24 months (depending on the environment) |

The DX-NET-MODBUSTCP-2 fieldbus connection has not been designed in such a way as to make it possible to replace or repair it. If the card is damaged by external influences, repair is not possible.

#### 1.7 Storage

If the fieldbus connection is stored before use, suitable ambient conditions must be ensured at the site of storage:

- Storage temperature: -40 +85 °C,
- Relative average air humidity: < 95 %, no condensation permitted.

#### **1.8 Service and warranty**

Contact your local sales partner if you have a problem with your Eaton fieldbus connection.

When you call, have following data ready:

- the exact part no. (= DX-NET-MODBUSTCP-2),
- the date of purchase,
- a detailed description of the problem which has occurred with the DX-NET-MODBUSTCP-2 fieldbus connection.

Information concerning the guarantee can be found in the Terms and Conditions Eaton Industries GmbH.

24-hour hotline: +49 (0) 180 5 223 822 e-mail: <u>AfterSalesEGBonn@Eaton.com</u>

#### **1.9 Disposal**

The DX-NET-MODBUSTCP-2 fieldbus connection can be disposed of as electrical waste in accordance with the currently applicable national regulations. Dispose of the device according to the applicable environmental laws and provisions for the disposal of electrical or electronic devices.

# 2 Engineering

### 2.1 Modbus/TCP

The Modbus/TCP protocol is an application protocol – belonging to layer 7 of the OSI Reference Model – that can be used to establish and run client/ server communications between nodes in different bus systems and networks.

The Modbus/TCP protocol is based on the general principle behind TCP/IP networks: All data and parameters are defined in the payload data of a TCP/IP frame. What is referred to as an "MBAP header" is then added to the start of the message (MBAP stands for "ModBus Application Protocol"). Finally, the data is accessed using special function codes.

Communications between Modbus stations are based on the client/server model: The client (a PLC, for example) begins by transmitting a request to the server using function codes. The server then responds to this request and returns the requested data to the client.

Modbus communications always require a master and one or more slaves. The master always initiates communications, i.e., it establishes a connection to the slaves and uses them to send requests.

This means that the slaves are unable to start communications on their own, and instead are limited to responding to requests from the master once they have executed the corresponding functions.

Each TCP/IP network can have multiple masters, in which case communications will continue to work as described above.

The number of cards on a Modbus/TCP system is virtually unlimited.

### 2 Engineering

2.2 LED indicators

### **2.2 LED indicators**

The module's LED indicators are used to indicate operating and network statuses, making quick diagnostics possible.



Figure 5: NS and MS LED indicators

# 2.2.1 NS (Network status)

The network status LED (NS) is used to indicate network statuses.

| LED status         | Description                                           |
|--------------------|-------------------------------------------------------|
| off                | No supply voltage or no IP address                    |
| green illuminating | Connection to Modbus/TCP network established          |
| green flashing     | online, but no communication                          |
| illuminated red    | Error detected (e.g., same IP address assigned twice) |
| red flashing       | Fault detected (e.g., connection request timeout)     |

#### 2.2.2 MS (Module Status)

The module status LED (MS) is used to indicate the Modbus/TCP module's status.

| LED status         | Description                                                         |
|--------------------|---------------------------------------------------------------------|
| off                | No supply voltage or device not turned on                           |
| green illuminating | Connection to Modbus/TCP client established                         |
| illuminated red    | Fatal error detected <sup>1)</sup> (EXCEPTION-State)                |
| red flashing       | A reversible error has occurred <sup>1)</sup> (IP Address Conflict) |

 Reversible errors can be reset by means of a reset or by power cycling the supply voltage (turning it off and then back on). In contrast, fatal errors can only be reset by power cycling the supply voltage or by changing the hardware configuration while the supply voltage is off, as the case may be.

#### 2.2.3 LINK/Activity-LED

The LINK/Activity LED is used to indicate communications statuses.

| LED status         | Description                                             |
|--------------------|---------------------------------------------------------|
| off                | No communications or port not connected                 |
| green illuminating | Communications established (100 Mbit/s), port connected |
| green flashing     | Data transfer active (100 Mbit/s)                       |
| illuminated yellow | Communication established (10 Mbit/s)                   |
| yellow flashing    | Data transfer active (10 Mbit/s)                        |

# **3** Installation

### **3.1 Introduction**

This chapter provides a description of the mounting and the electrical connection for the fieldbus connection DX-NET-MODBUSTCP-2.



While installing and/or mounting the field bus connection, cover all ventilation slots in order to ensure that no foreign bodies can enter the device.



Perform all installation work with the specified tools and without the use of excessive force.

In the case of DA1 variable frequency drives, the way in which the DX-NET-MODBUSTCP-2 fieldbus connection needs to be installed will depend on the corresponding variable frequency drive's size.



Figure 6: Flush mounting of fieldbus connection

In the case of DA1 variable frequency drives with sizes FS2 and FS3, the fieldbus connection will need to be plugged into the variable frequency drive from below.

In the case of sizes FS4 and up, the fieldbus connection will need to be mounted on the right side, underneath the variable frequency drive's front enclosure cover. 3 Installation

3.2 Notes on the documentation

#### 3.2 Notes on the documentation

Documents containing installation instructions:

- IL4020010Z instruction leaflet for DA1 variable frequency drive in size FS2 and FS3
- IL4020011Z instruction leaflet for DA1 variable frequency drive from size FS4

These documents are also available as PDF files on the Eaton Internet website.

# www.eaton.eu → Customer Support → Download Center – Documentation

To find them quickly, please enter the corresponding number (e.g., 4020010Z) into the **Quick Search** field.

### 3.3 Notes on the mechanical surface mounting



#### DANGER

Make sure that the equipment is fully de-energized when performing the handling and installation work required to mechanically set up and install the fieldbus connection.



When installing the DX-NET-MODBUSTCP fieldbus connection in devices with a size of FS4 or greater, it will be necessary to open the DA1 variable frequency drive's housing. We recommend that this mounting work be carried out before electrically installing the variable frequency drive.



Figure 7: Make sure that the equipment is de-energized when performing installation work

# 3.4 Mounting for frame sizes FS2 and FS3

In the case of DA1 variable frequency drives with sizes FS2 and FS3, the DX-NET-MODBUSTCP-2 fieldbus connection needs to be installed on the bottom of the variable frequency drive. To do this, use a flat-blade screwdriver to lift off the cover at the marked cutout (without forcing it) and then remove the cover by hand.



Figure 8: Opening the interface cover

| NOTICE                                                                        |
|-------------------------------------------------------------------------------|
| Do not insert tools or other objects into the opened variable frequency drive |
| Ensure that foreign bodies do not enter the opened housing wall.              |

After doing so, you can insert the connection and secure it with the two screws.



Figure 9: Inserting the fieldbus connection

### 3 Installation

3.5 Mounting from construction size FS4

### 3.5 Mounting from construction size FS4

When working with DA1 variable frequency drives of size FS4 or larger, the DX-NET-MODBUSTCP-2 fieldbus connection must be installed inside the variable frequency drive. To do so, use a standard screwdriver to turn the two screws on the front cover 90°. Then proceed to remove the cover.



Figure 10:Opening the enclosure of DA1 variable frequency drives with size FS4 and up

## **NOTICE** Do not insert tools or other objects into the opened variable frequency drive. Ensure that foreign bodies do not enter the opened housing wall.

After doing so, you can insert the connection on the right-hand side and use the screws to secure it.

Then put the cover back on and use the two screws (turn them 90°) to secure it.



Figure 11:Inserting the fieldbus connection

3 Installation

3.6 Installing the fieldbus connection

### 3.6 Installing the fieldbus connection

An RJ45 plug is used in order to establish a connection to the Modbus/TCP field bus.

Generally, connection cables with RJ45 plugs for Modbus/TCP are available as standard ready-for-use cables. They can also be prepared individually. This will require the connections shown below (pinout).



Figure 12:RJ45 plug pinout



Figure 13:Connecting the RJ45 plug

### 3.7 Install field bus



Never lay the cable of a field bus system directly parallel to the energy carrying cables.

When installing the connection, make sure that the control and signal cables (0 - 10 V, 4 - 20 mA, 24 V DC, etc.), as well as the field bus system's connection cables, are not routed directly parallel to mains connection or motor connection cables conveying power.

With parallel cable routing, the clearances between control, signal and field bus cables (2) and energy-carrying mains and motor cables (1) must be greater than 30 cm. Cables should always intersect at right angles.



Figure 14:Cable routing for Modbus/TCP (2) and mains/motor cables (1)

If the system requires a parallel routing in cable ducts, a partition must be installed between the field bus cable (2) and the mains and motor cable (1), in order to prevent electromagnetic interference on the field bus.



Figure 15:Separate routing in the cable duct

Mains and motor connection cable
 Modbus cable

-



In all cases only use approved EtherNet cables.

3 Installation3.7 Install field bus

# **4** Commissioning

### 4.1 DA1 variable frequency drives



First of all complete all measures for commissioning the DA1 variable frequency drive as described in the respective manual MN04020005Z-DE.



Check the settings and installations for the connection to the Modbus/TCP field bus system which are described in this manual.

#### NOTICE

Make sure that there is no danger in starting the motor. Disconnect the driven machine if there is a danger in an incorrect operating state.



For communications, parameter P12 (drive control) must be set as follows in the DA1 variable frequency drive: P12 = 4.

For detailed information on how to configure parameters, please refer to manual MN04020005Z-EN.

#### 4 Commissioning

4.2 Protocol description

#### **4.2 Protocol description**

The Modbus protocol defines a simple protocol data unit (PDU) that is independent of the underlying communication layers. When the Modbus protocol is mapped on specific bus systems or networks, additional fields are added to the corresponding application data unit (ADU). This Modbus ADU is built by the client that initiates Modbus communications. Meanwhile, the function code indicates to the server which type of data access is required. The Modbus protocol defines the format for client requests. The "function code" field in a Modbus frame is coded in a single byte: Valid codes go from 1 to 255 in decimal notation, with numbers 128 to 255 being reserved for error messages.

When a client sends a message to the server, the function code defines the type of command that needs to be executed. Function code 0 is not permitted. To have multiple commands be executed, sub-function codes can be added to certain function codes. In addition, the data field in messages sent from a client to a server contains information that the server needs in order to process the corresponding command. This information can include, for example, bit and register addresses, the number of commands that have to be processed, and the number of data bytes in the data field.

In certain requests, the data field may have a value of 0, or there may not be a data field to begin with. In these cases, this means that the server does not require any additional information and that the function code alone defines the command that needs to be executed. If the server processes the client's request without any errors, the server's response frame will contain the requested data. If, on the other hand, there is an error, the response frame's data field will contain an exception code that the client will interpret based on the relevant application.

### 4.2.1 Data model

The Modbus data model draws a distinction between four basic data types:

| Data type         | Object type   | Access     | Explanation                                                          |
|-------------------|---------------|------------|----------------------------------------------------------------------|
| Discrete Inputs   | Bit           | Read       | This type of data can be provided by an I/O system                   |
| Coils             | Bit           | Read/Write | This type of data can be modified/written by an application program. |
| Input Registers   | 16 bit (Word) | Read       | This type of data can be provided by an I/O system                   |
| Holding Registers | 16 bit (Word) | Read/Write | This type of data can be modified/written by an application program. |

Table 3: Modbus data types

A maximum of 65,536 data blocks can be implemented for each of these data types. In addition, the read and write operations for this data can be used to process multiple consecutive data blocks. The maximum permissible data length will depend on the function code being used. Finally, all data transmitted via Modbus (bits, registers) must be stored in the Modbus device's application memory.

### 4.2.2 Structure of the master request

### 4.2.2.1 Addressing

In Modbus/TCP, Modbus messages do not use the device address for individual slave addressing. Instead, they use the IP address in the TCP packet.

Modbus/TCP devices are addressed both with a MAC address and with IP addresses. Each device will have a MAC address that is unique worldwide and that consists of an Ethernet address with a length of six bytes. The first three bytes specify the manufacturer-specific ID, while the other three bytes specify the device's serial number.



To find the MAC address for a device, check its nameplate. The DHCP function will be enabled by default.

By assigning an IP address to it, the variable frequency drive can be integrated into a Modbus/TCP environment. The corresponding parameters will then be configured fully automatically by the higher-level master.



The IP address can be configured with a network tool (e.g., RSLogix 5000 or HMS IPconfig).



Figure 16:IP addressing

#### Number of devices

Since TCP uses IP addresses instead of Modbus addresses, the number of devices that can be used in the corresponding Modbus network is virtually unlimited. However, the maximum cable length that can be used without repeaters is limited to 100 meters.

### 4 Commissioning

4.2 Protocol description

### 4.2.2.2 Function code

The function code defines the type of message. The following actions can be performed in the case of DA1 variable frequency drives:

| Function code<br>[hex] | Designation                          | Description                                                                                                                                                                                     |
|------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 03                     | Read Holding Registers               | Reading of the holding registers (process data, parameters, configuration) in the slave.<br>A master request enables up to 11 registers to be read.                                             |
| 06                     | Write Single Register                | Writing of a holding register in the slave.<br>With a general telegram (Broadcast) the appropriate holding<br>registers are written in all slaves. The register is read back<br>for comparison. |
| 23                     | Read and Write Multiple<br>Registers | Used to read from and write to multiple registers simultaneously                                                                                                                                |

### 4.3 Operation

### 4.3.1 Process data input

The input process data is used to control the DA1 variable frequency drive.

#### **Command – Register 0**

The information in the command is used to control the DA1 variable frequency drive.

| PNU | Description                    |                                    |  |
|-----|--------------------------------|------------------------------------|--|
|     | Value = 0                      | Value = 1                          |  |
| 0   | stop                           | Operation                          |  |
| 1   | Clockwise rotating field (FWD) | Anticlockwise rotating field (REV) |  |
| 2   | No action                      | Fault Reset                        |  |
| 3   | No action                      | free run-down                      |  |
| 4   | Not used                       |                                    |  |
| 5   | No action                      | Quick stop (ramp)                  |  |
| 6   | No action                      | Fixed frequency 1 (FF1)            |  |
| 7   | No action                      | Overwrite setpoint value with 0    |  |
| 8   | Not used                       |                                    |  |
| 9   | Not used                       |                                    |  |
| 10  | Not used                       |                                    |  |
| 11  | Not used                       |                                    |  |
| 12  | Not used                       |                                    |  |
| 13  | Not used                       |                                    |  |
| 14  | Not used                       |                                    |  |
| 15  | Not used                       |                                    |  |

#### Setpoint value – Register 1

The permissible values fall within a range of P1-02 (minimum frequency) to P1-01 (maximum frequency). This value will be scaled with a factor of 0.1 in the application.

#### Process data input 3 – Register 2

Configured with parameter P5-14.

The following settings can also be modified during operation:

| Value                        | Description                                                                            | DS |
|------------------------------|----------------------------------------------------------------------------------------|----|
| Field bus module PDI-3 input | 0 = Torque limit / reference<br>1 = User PID reference register<br>2 = User register 3 | 0  |

### 4 Commissioning 4.3 Operation

### Process data input 4 – Register 3

Configured with parameter P5-13.

The following settings can also be modified during operation:

| Value                        | Description                                       | DS |
|------------------------------|---------------------------------------------------|----|
| Field bus module PDI-4 input | 0 = Ramp control field bus<br>1 = User register 4 | 0  |

#### Process data output

#### Status and fault word - Register 256

Device status and fault message information is provided in the status word (bit 0 to bit 7) and fault word (bit 8 to bit 15).

| 15             | 14 | 13 | 12 | 11 | 10 | 9        | 8     | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0   |
|----------------|----|----|----|----|----|----------|-------|---|---|---|---|---|---|---|-----|
| MSB            |    |    |    |    |    |          |       |   |   |   |   |   |   |   | LSB |
| Fault Messages |    |    |    |    |    | Device s | tatus |   |   |   |   |   |   |   |     |

### Status Word

| Bit | Description                    |                                              |
|-----|--------------------------------|----------------------------------------------|
|     | Value = 0                      | Value = 1                                    |
| 0   | Drive not ready                | ready for operation (READY)                  |
| 1   | stop                           | Operation (RUN)                              |
| 2   | Clockwise rotating field (FWD) | Anticlockwise rotating field (REV)           |
| 3   | no error                       | Fault detected (FAULT)                       |
| 4   | Acceleration ramp              | Frequency actual value equals setpoint input |
| 5   | -                              | Zero speed                                   |
| 6   | Speed control deactivated      | Speed control activated                      |
| 7   | STO not triggered              | STO triggered                                |

#### Fault word

| Failure code<br>[hex] | Value shown on<br>display | Meaning                                                                                                                                                     |
|-----------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 00                    | no-fit                    | Stop, ready for operation                                                                                                                                   |
| 01                    | OI-b                      | Braking chopper overcurrent                                                                                                                                 |
| 02                    | OL-br                     | Braking resistance overload                                                                                                                                 |
| 03                    | 0-1                       | <ul> <li>Overcurrent at variable frequency drive output</li> <li>Motor overload</li> <li>Overtemperature on variable frequency drive (heat sink)</li> </ul> |
| 04                    | l.t-trp                   | Motor, thermal overload                                                                                                                                     |
| 05                    | SAFE -1                   | Short-circuit at safety circuit input                                                                                                                       |

### 4 Commissioning 4.3 Operation

| Failure code<br>[hex] | Value shown on<br>display | Meaning                                                                    |
|-----------------------|---------------------------|----------------------------------------------------------------------------|
| 06                    | 0 Volts                   | Overvoltage (DC link)                                                      |
| 07                    | V-volts                   | undervoltage (DC link)                                                     |
| 08                    | 0-t                       | Overtemperature (heat sink)                                                |
| 09                    | V-t                       | Undertemperature (heat sink)                                               |
| 0A                    | P-dEf                     | Default settings, parameters have been loaded                              |
| OB                    | E-trip                    | External fault message                                                     |
| 00                    | SC-ObS                    | Error, OP bus                                                              |
| OD                    | FLt-dc                    | Excessively large voltage waves in DC link                                 |
| OE                    | P-LOSS                    | Phase failure (mains side)                                                 |
| OF                    | h 0-l                     | Overcurrent at variable frequency drive output                             |
| 10                    | th-Flt                    | Thermistor fault, internal (heat sink)                                     |
| 11                    | dAtA-F                    | EEPROM checksum fault                                                      |
| 12                    | 4-20F                     | Analog input:<br>• Out-of-range value<br>• Wire breakage (4 mA monitoring) |
| 13                    | dAtA- E                   | Error in internal memory                                                   |
| 14                    | V-dEF                     | User-definable factory parameters have been loaded                         |
| 15                    | F-Ptc                     | Excessive overtemperature, motor PTC                                       |
| 16                    | FAN-F                     | Fault, internal fan                                                        |
| 17                    | 0-hEAt                    | Excessively high ambient air temperature                                   |
| 18                    | 0-torq                    | Maximum torque limit exceeded                                              |
| 19                    | V-torq                    | Output torque too low                                                      |
| 1A                    | Out-F                     | Fault at variable frequency drive output                                   |
| 1D                    | SAFE-2                    | Short-circuit at safety circuit input                                      |
| 1D                    | Enc-01                    | Encoder, communication lost                                                |
| 1F                    | Enc-02                    | Encoder, speed error                                                       |
| 20                    | Enc-03                    | Encoder, wrong PPRs set                                                    |
| 21                    | Enc-04                    | Encoder, channel A fault                                                   |
| 22                    | Enc-05                    | Encoder, channel B fault                                                   |
| 23                    | Enc-06                    | Encoder, channel A and B fault                                             |
| 24                    | Enc-07                    | Encoder, RS485 data channel error                                          |
| 25                    | Enc-08                    | Encoder, I/O communications loss                                           |
| 26                    | Enc-09                    | Encoder, incorrect type                                                    |
| 27                    | Enc-10                    | Encoder                                                                    |
| 28                    | AtF-01                    | Motor stator resistance fluctuating between phases                         |
| 29                    | AtF-02                    | The motor's stator resistance too high                                     |
| 2B                    | AtF-03                    | Motor inductance too low                                                   |
| 2B                    | AtF-04                    | Motor inductance too high                                                  |
| 2C                    | AtF-05                    | The motor parameters do not match the motor                                |

# 4 Commissioning 4.3 Operation

| Failure code<br>[hex] | Value shown on<br>display | Meaning                                            |
|-----------------------|---------------------------|----------------------------------------------------|
| 32                    | SC-F01                    | Fault: Modbus communication loss error             |
| 33                    | SC-F02                    | Fault: CANopen communication loss error            |
| 34                    | SC-F03                    | Communications with field bus module disconnected  |
| 35                    | SC-F04                    | Loss of communications (I/O cards)                 |
| 3C                    | OF-01                     | Connection to add-on card lost                     |
| 3D                    | OF-02                     | Add-on card in unknown state                       |
| 46                    | PLC-01                    | Unsupported PLC function                           |
| 47                    | PLC-02                    | PLC program too big                                |
| 48                    | PLC-03                    | Division by 0                                      |
| 49                    | PLC-04                    | Lower limit value is higher than upper limit value |

#### Actual value – Register 253

The variable frequency drive's actual value falls within a value range of 0 to P1-01 (maximum frequency). This value will be scaled with a factor of 0.1 in the application.

#### Process data output 3 – Register 258

Configured with parameter P5-12.

The following settings can also be modified during operation:

| Value                            | Description                                                                                                                                                             | DS |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Field bus module PDO-3<br>output | 0 = Output current<br>1 = Output power<br>2 = DI status<br>3 = Al2 signal level<br>4 = Heat sink temperature<br>5 = User register 1<br>6 = User register 2<br>7 = PO-80 | 0  |

#### Process data output 4 – Register 259

Configured with parameter P5-08.

The following settings can also be modified during operation:

| Value                            | Description                                                                                                | DS |
|----------------------------------|------------------------------------------------------------------------------------------------------------|----|
| Field bus module PDO-4<br>output | 0 = Motor torque<br>1 = Output power<br>2 = DI status<br>3 = AI2 signal level<br>4 = Heat sink temperature | 0  |

### 4 Commissioning

4.4 mode parameter

### 4.4 mode parameter

The abbreviations used in the parameter lists below have the following meaning:

| PNU                                                                                                                                      | Pa               | Parameter number                                                                                                                  |                |               |             |  |    |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------|---------------|-------------|--|----|--|--|--|--|
| ID                                                                                                                                       | ld               | Identification number of the parameter                                                                                            |                |               |             |  |    |  |  |  |  |
| RUN                                                                                                                                      | A(<br>/ =<br>- = | Access rights to the parameters during operation (RUN):<br>/ = Modification permissible<br>- = Modification only possible in STOP |                |               |             |  |    |  |  |  |  |
| <b>ro   rw</b> Parameter read and write permissions via a fieldbus connection:<br>ro = read only<br>rw = read and write (read and write) |                  |                                                                                                                                   |                |               |             |  |    |  |  |  |  |
| Value                                                                                                                                    | Se               | etting of the p                                                                                                                   | arameter       |               |             |  |    |  |  |  |  |
| DS                                                                                                                                       | De               | efault setting                                                                                                                    | : (P1.1 = 1) I | base paramete | er          |  |    |  |  |  |  |
| Manual                                                                                                                                   |                  |                                                                                                                                   |                |               |             |  |    |  |  |  |  |
| PNU                                                                                                                                      | ID               | Access                                                                                                                            | right          | Value         | Description |  | DS |  |  |  |  |
|                                                                                                                                          |                  | RUN                                                                                                                               | ro   rw        |               |             |  |    |  |  |  |  |
| 1                                                                                                                                        |                  |                                                                                                                                   |                | 2             | 3           |  | 4  |  |  |  |  |
| PC Softw                                                                                                                                 | are              |                                                                                                                                   |                |               |             |  |    |  |  |  |  |

| PNU | Description | Value | Range | Default | Visible |
|-----|-------------|-------|-------|---------|---------|
| 1   | 3           | 2     |       | 4       |         |

Figure 17:How the parameters are shown in the manual and in the software

| PNU   | ID  | Access right |         | Designation   | Value range                                                                                                                                                                                                         | DS | Value that must<br>be configured |
|-------|-----|--------------|---------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----------------------------------|
|       |     | RUN          | ro   rw |               |                                                                                                                                                                                                                     |    |                                  |
| P1-12 | 112 | -            | rw      | Control level | 0 = Control signal terminals (I/O)<br>1 = Keypad (KEYPAD FWD)<br>2 = Keypad (KEYPAD FWD/REV)<br>3 = PID control<br>4 = Field bus system (Modbus/TCP, Modbus RTU<br>etc.)<br>5 = Slave mode<br>6 = field bus CANopen | 0  | 4                                |

The Baud rate will automatically be set to match the master.

#### 4.4.1 Application example

The example below illustrates how to commission a DA1 variable frequency drive via Modbus/TCP when using an EATON XV100 controller.

Before commissioning the DA1 variable frequency drive, the PLC needs to be set up correctly. The head-end controller (PLC) will establish the connection to the DA1 variable frequency drive and handle all communications as the master.

The CODESYS software is used to configure all the necessary settings:



The software can be downloaded from the Internet at:

http://eaton-automation.com -> Downloads -> Software -> XSoft-CoDeSys-2.



These instructions use the CODESYS "ModbusTCP.Lib" library to control and configure the DA1 variable frequency drive.

After installing CODESYS, please download the "Modbus.Lib" library from the EATON website and store the file in the project directory.

The following configuration is required in order to connect the PLC correctly:



Figure 18:Engineering

- ① PC (with configuration module and xSoft CODESYS software)
- (2) Head-end controller (XV100)
- ③ Ethernet Switch
- (4) Ethernet cable
- (5) DA1 variable frequency drive with DX-NET-MODBUSTCP-2 configuration module
- 6 Motor

4 Commissioning

4.4 mode parameter

### 4.4.2 Configuring the IP address for the DX-NET-MODBUSTCP-2 module

The IP address is configured using the IPconfig program.



The IPconfig software can be downloaded free of charge from the Internet at:
<a href="http://www.anybus.com">www.anybus.com</a> Support

Select **Tools** from the drop-down menu.

▶ Plug the module into the variable frequency drive.



• Connect the variable frequency drive and the computer to the network.



Switch on the variable frequency drive.



DX-NET-MODBUSTCP-2 09/14 MN04012008Z-EN www.eaton.com

• Open the IPconfig program and click on **Settings**.

| ٢ | SN | GW. | DHCP | Version Typ | æ | MAC |  |
|---|----|-----|------|-------------|---|-----|--|
|   |    |     |      |             |   |     |  |
|   |    |     |      |             |   |     |  |
|   |    |     |      |             |   |     |  |
|   |    |     |      |             |   |     |  |
|   |    |     |      |             |   |     |  |
|   |    |     |      |             |   |     |  |

Select the right computer network adapter from the Network Interface Controller drop-down menu and confirm by clicking on OK.

| Network 1             | nterface                                                                                 |
|-----------------------|------------------------------------------------------------------------------------------|
| Eroad                 | cast from a Specific Network Interface Controller                                        |
| Network               | interface Controller                                                                     |
| HighSpe               | d USB Ethernet Adapter 🗾 💌                                                               |
| Internal D            | HCP server                                                                               |
| Warning!<br>that have | Internal DHCP server should only be used to recover modules been set to DHCP by mistake. |
|                       | a Internal PMCP sequer                                                                   |

Right-click on the line for the module and select the Configuration option from the context menu in order to assign the module an IP address.

|            |                  | aw            | DHCP | Version | Line           | L Mel         |    |
|------------|------------------|---------------|------|---------|----------------|---------------|----|
| 192,168,11 | 19.11 255 255 25 | 50 1921681191 | UW   | 1.021   | Configu        | uration       | ñ. |
|            |                  |               |      |         | Open V<br>Wink | /eb-Interface |    |
|            |                  |               |      |         |                |               |    |
|            |                  |               |      |         |                |               |    |
|            |                  |               |      |         |                |               |    |
|            |                  |               |      |         |                |               |    |
|            |                  |               |      |         |                |               |    |
|            |                  |               |      |         |                |               |    |

- . 8 Configure: 00-30-11-0A-51-7F Ethernet configuration IP address 192 . 168 . 119 . 11 DHCP C On Subnet matik: 255 . 255 . 255 . 0 @ 0ff Default galeway: 192 . 168 . 119 . 1 Primary DNS: 0.0.0.0 Secondary DNS: 0 . 0 . 0 . 0 Hostname: Password Change password New password Set Cancel
- Now set an IP address. Confirm with **OK**.

### **4.4.3 PLC Configuration**

Once you have downloaded the CODESYS software, follow the configuration steps below in order to commission the PLC connection.

▶ Open CODESYS and select the target system by clicking on **File** ▶ **New**.

| File | Edit Project Insert Extras Online Window Help |  |  |  |  |  |
|------|-----------------------------------------------|--|--|--|--|--|
| 1    | New                                           |  |  |  |  |  |
| =    | New from template                             |  |  |  |  |  |
| 9    | Open                                          |  |  |  |  |  |
| 1    | Close                                         |  |  |  |  |  |
|      | Save                                          |  |  |  |  |  |
|      | Save as                                       |  |  |  |  |  |
|      | Save/Mail Archive                             |  |  |  |  |  |

Use the Configuration drop-down menu in the Target Settings dialog box to select the right controller type (VX100 in this example). Then click on OK.

| Jonliguration:  | W16-V2395P31           | обма)                                  | -                            |          |
|-----------------|------------------------|----------------------------------------|------------------------------|----------|
| Target Platform | Methony Layout   Ger   | neral   Network functionality   Visual | zation                       |          |
| Platform        | Intel StrongARM        | -                                      |                              |          |
| Tirit paramet   | er register (integer): | Last parameter register (integer)      | Register for vetues value [k | ander)   |
| R0              | -                      | R3 -                                   | - R0                         | <u> </u> |
|                 |                        |                                        |                              |          |
|                 |                        |                                        |                              |          |
| P Intel byte    | aider                  |                                        |                              |          |
|                 |                        |                                        |                              |          |
|                 |                        |                                        |                              |          |

Now, in the New POU dialog box, select the Program option under Type of POU and then select a language for the block. Then, enter a name (Name of the new POU) for the program. Once you are done, click on OK.

| Name of the new POU:                | PLC MIG             | 05     |
|-------------------------------------|---------------------|--------|
| Type of POU                         | Language of the POU | Cancel |
| Program                             | CIL                 |        |
| <ul> <li>Function Block.</li> </ul> | CLD                 |        |
| C Function                          | C FBD               |        |
| Return Type:                        | C SEC               |        |
| BOOL                                | I I I ST            |        |
|                                     | COFC                |        |

4 Commissioning

4.4 mode parameter

▶ Now add the **ModBusTCP.lib** Modbus library:

To do so, click on: **Resources ► Library Manager ► Insert ► Additional** Library...



► Now, in the main program, open the **MBM\_COMMUNICATE** Modbus/ TCP block.





Following is a table that explains what each of the inputs and outputs in **MBM\_COMMUNICATE** means:

| Table 4: | Inputs and outputs MBM_COMMUNICATE |
|----------|------------------------------------|
|          |                                    |

| Inputs/outputs  | Description                                                                                                                   |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------|
| Inputs          |                                                                                                                               |
| xStrobe         | A rising edge will start the function block                                                                                   |
| dwIPAddress     | IP address in DWORD format                                                                                                    |
| wPort           | Port that can be used to reach the slave                                                                                      |
| dwBindlP        | Makes it possible to establish connections using an alternative IP interface                                                  |
| bUnitldentifier | Unique slave number within a range of 1 to 247 (for when multiple slaves can be reached at a single IP address, for instance) |
| bFunctioncode   | Function code Modbus                                                                                                          |
| wOffset         | First value that should be processed (for all function codes)                                                                 |
| wCount          | Number of values that should be processed (FCs 1, 2, 3, 4, 8, 15, 16, 23)                                                     |
| wOffsetAdd      | FC 23: Offset for write operation                                                                                             |
| wCountAdd       | FC 23: Number of write operations                                                                                             |
| warDataOut      | Register values for write access (FCs 6, 8, 16, 23)                                                                           |
| xarDataOut      | Output values for write access (FCs 5, 15)                                                                                    |
| xCloseImmediate | Used to terminate the IP connection immediately after data transfers                                                          |
| tTimeout        | Maximum time for waiting for a response to arrive                                                                             |
| Outputs         |                                                                                                                               |
| xBusy           | The function block is still busy (because a slave response has not yet arrived, for example)                                  |
| iErrorCode      | Failure code<br>Should be queried only after the function block's xBusy output has been set back to<br>FALSE.                 |
| wDatacount      | Amount of data being returned                                                                                                 |
| warDataIn       | Returned register values                                                                                                      |
| xardataln       | Returned input/output values                                                                                                  |

Now fill out the block with the following data:

- Use the MakeIP function block to set the module's IP address (separated by commas)
- The default port address should be 502
- Specify function code 23 for read and write operations
- Use **StartMB\_Kommunikation** to activate the block
- The timeout should be 3 s
- Register 0: start signal; register 1 (300 = 30 Hz): setpoint
- Status information should be read using registers 256 to 259

Declare the variable frequency drive's input and output data in the global variables. Use **varDataOut** and **varDataIn** for this purpose.



- Connect all devices.
- ▶ Now log in: Online menu → Log in

#### Accessing the drive parameters

The DA1 variable frequency drive's parameter data can be accessed using register numbers.

There are specific Modbus registers available for receiving the requested data. The following table shows the corresponding register numbers:

| No. | Descrip                  | tion                                                       | Access<br>right | ADI number | Register  |
|-----|--------------------------|------------------------------------------------------------|-----------------|------------|-----------|
| 1   |                          | Process Input Data                                         | W               | 1          | 0 - 3     |
| 2   |                          | Process Output Data                                        | ro              | 2          | 256 - 259 |
| 3   | Drive ID                 |                                                            | ro              | 9          | 536       |
| 4   | Drive Typ                | De la                  | ro              | 10         | 537       |
| 5   | Control p                | Control part software                                      |                 | 11         | 538       |
| 6   | Control section checksum |                                                            | ro              | 12         | 539       |
| 7   | Software power section   |                                                            | ro              | 13         | 540       |
| 8   | Power se                 | ection checksum                                            | ro              | 14         | 541       |
| 9   | Serial nu                | imber 1                                                    | ro              | 15         | 542       |
| 10  | Serial nu                | mber 2                                                     | ro              | 16         | 543       |
| 11  | Serial nu                | imber 3                                                    | ro              | 17         | 544       |
| 12  | Serial nu                | mber 4                                                     | ro              | 18         | 545       |
| 13  | P1-01                    | Maximum frequency / maximum speed                          | rw              | 101        | 628       |
| 14  | P1-02                    | Minimum frequency / minimum speed                          | rw              | 102        | 629       |
| 15  | P1-03                    | Acceleration time (acc1)                                   | rw              | 103        | 630       |
| 16  | P1-04                    | Deceleration time (dec1)                                   | rw              | 104        | 631       |
| 17  | P1-05                    | Stop Function                                              | rw              | 105        | 632       |
| 18  | P1-06                    | Energy optimization                                        | rw              | 106        | 633       |
| 19  | P1-07                    | Motor, rated operating voltage                             | rw              | 107        | 634       |
| 20  | P1-08                    | Motor, rated operational current                           | rw              | 108        | 635       |
| 21  | P1-09                    | Motor, rated frequency                                     | rw              | 109        | 636       |
| 22  | P1-10                    | Motor, rated speed                                         | rw              | 110        | 637       |
| 23  | P1-11                    | Output voltage at zero frequency                           | rw              | 111        | 638       |
| 24  | P1-12                    | Control level                                              | rw              | 112        | 639       |
| 25  | P1-13                    | Digital input, function                                    | rw              | 113        | 640       |
| 26  | P1-14                    | Parameter range access code (dependent on P2-40 and P6-30) | rw              | 114        | 641       |
| 27  | P2-01                    | Fixed frequency FF1 / speed 1                              | rw              | 201        | 728       |
| 28  | P2-02                    | Fixed frequency FF2 / speed 2                              | rw              | 202        | 729       |
| 29  | P2-03                    | Fixed frequency FF3 / speed 3                              | rw              | 203        | 730       |
| 30  | P2-04                    | Fixed frequency FF4 / speed 4                              | rw              | 204        | 731       |
| 31  | P2-05                    | Fixed frequency FF5 / speed 5                              | rw              | 205        | 732       |

DX-NET-MODBUSTCP-2 09/14 MN04012008Z-EN www.eaton.com

### 4 Commissioning 4.4 mode parameter

| No. | Descrip | otion                                                                 | Access<br>right | ADI number | Register |
|-----|---------|-----------------------------------------------------------------------|-----------------|------------|----------|
| 32  | P2-06   | Fixed frequency FF6 / speed 6                                         | rw              | 206        | 733      |
| 33  | P2-07   | Fixed frequency FF7 / speed 7                                         | rw              | 207        | 734      |
| 34  | P2-08   | Fixed frequency FF8 / speed 8                                         | rw              | 208        | 735      |
| 35  | P2-09   | Frequency jump 1, bandwidth                                           | rw              | 209        | 736      |
| 36  | P2-10   | Frequency skip 1, center                                              | rw              | 210        | 737      |
| 37  | P2-11   | A01 signal (Analog Output)                                            | rw              | 211        | 738      |
| 38  | P2-12   | A01, signal range                                                     | rw              | 212        | 739      |
| 39  | P2-13   | A02 signal (Analog Output)                                            | rw              | 213        | 740      |
| 40  | P2-14   | A02, signal range                                                     | rw              | 214        | 741      |
| 41  | P2-15   | RO1 Signal (Relay 1 Output)                                           | rw              | 215        | 742      |
| 42  | P2-16   | A01 / R01 upper limit                                                 | rw              | 216        | 743      |
| 43  | P2-17   | A01 / R01 lower limit                                                 | rw              | 217        | 744      |
| 44  | P2-18   | RO2 Signal (Relay Output )                                            | rw              | 218        | 745      |
| 45  | P2-19   | A02 / R02 upper limit                                                 | rw              | 219        | 746      |
| 46  | P2-20   | A02 / R02 lower limit                                                 | rw              | 220        | 747      |
| 47  | P2-21   | Scaling factor for value                                              | rw              | 221        | 748      |
| 48  | P2-22   | Scaled display value                                                  | rw              | 222        | 749      |
| 49  | P2-23   | Holding time for speed of zero                                        | rw              | 223        | 750      |
| 50  | P2-24   | Pulse frequency                                                       | rw              | 224        | 751      |
| 51  | P2-25   | Quick stop deceleration ramp time                                     | rw              | 225        | 752      |
| 52  | P2-26   | Motor flying restart circuit                                          | rw              | 226        | 753      |
| 53  | P2-27   | Standby mode delay time                                               | rw              | 227        | 754      |
| 54  | P2-28   | Slave speed scaling                                                   | rw              | 228        | 755      |
| 55  | P2-29   | Slave speed scaling factor                                            | rw              | 229        | 756      |
| 56  | P2-30   | AI1, Signal range                                                     | rw              | 230        | 757      |
| 57  | P2-31   | Al1 scaling factor                                                    | rw              | 231        | 758      |
| 58  | P2-32   | Al1 offset                                                            | rw              | 232        | 759      |
| 59  | P2-33   | Al2, Signal range                                                     | rw              | 233        | 760      |
| 60  | P2-34   | AI2 scaling factor                                                    | rw              | 234        | 761      |
| 61  | P2-35   | AI2 offset                                                            | rw              | 235        | 762      |
| 62  | P2-36   | REAF, Start function with automatic restart, control signal terminals | rw              | 236        | 763      |
| 63  | P2-37   | REAF, start function with automatic restart,                          | rw              | 237        | 764      |
| 64  | P2-38   | Response in the event of a power failure                              | rw              | 238        | 765      |
| 65  | P2-39   | Parameter access lock                                                 | rw              | 239        | 766      |
| 66  | P2-40   | Access codes - menu level 2                                           | rw              | 240        | 767      |
| 67  | P3-01   | PID controllers, P amplification                                      | rw              | 301        | 828      |
| 68  | P3-02   | PID controller, I time constant                                       | rw              | 302        | 829      |

4.4 mode parameter

| No. Descrip |       | tion                                              | Access<br>right | ADI number | Register |
|-------------|-------|---------------------------------------------------|-----------------|------------|----------|
| 69          | P3-03 | PID controller, D time constant                   | rw              | 303        | 830      |
| 70          | P3-04 | PID controller, control deviation                 | rw              | 304        | 831      |
| 71          | P3-05 | PID controller, setpoint source                   | rw              | 305        | 832      |
| 72          | P3-06 | PID controller, digital reference value           | rw              | 306        | 833      |
| 73          | P3-07 | PID controller, actual value limiting, maximum    | rw              | 307        | 834      |
| 74          | P3-08 | PID controller, actual value limiting, minimum    | rw              | 308        | 835      |
| 75          | P3-09 | PID controller, actual value limiting             | rw              | 309        | 836      |
| 76          | P3-10 | PID controller, actual value (PV)                 | rw              | 310        | 837      |
| 77          | P3-11 | Maximum PID error for enabling the ramps          | rw              | 311        | 838      |
| 78          | P3-12 | PID feedback display scaling factor               | rw              | 312        | 839      |
| 79          | P3-13 | PID feedback wake up level                        | rw              | 313        | 840      |
| 80          | P3-14 | Reserved                                          | -               | 314        | 841      |
| 81          | P3-15 | Reserved                                          | -               | 315        | 842      |
| 82          | P3-16 | Reserved                                          | -               | 316        | 843      |
| 83          | P3-17 | Reserved                                          | -               | 317        | 844      |
| 84          | P3-18 | PID reset control                                 | rw              | 318        | 845      |
| 85          | P4-01 | Motor control mode selection                      | rw              | 401        | 928      |
| 86          | P4-02 | Auto-tune enable                                  | rw              | 402        | 929      |
| 87          | P4-03 | Rotational speed controller P gain                | rw              | 403        | 930      |
| 88          | P4-04 | Speed controller integral time                    | rw              | 404        | 931      |
| 89          | P4-05 | Motor power factor (cos φ)                        | rw              | 405        | 932      |
| 90          | P4-06 | Torque setpoint/limit                             | rw              | 406        | 933      |
| 91          | P4-07 | Maximum torque (motor)                            | rw              | 407        | 934      |
| 92          | P4-08 | Minimum torque                                    | rw              | 408        | 935      |
| 93          | P4-09 | Maximum torque (generator)                        | rw              | 409        | 936      |
| 94          | P4-10 | V/Hz characteristic curve modification voltage    | rw              | 410        | 937      |
| 95          | P4-11 | V/Hz characteristic curve modification frequency  | rw              | 411        | 938      |
| 96          | P5-01 | Inverter Slave Adress                             | rw              | 501        | 1028     |
| 97          | P5-02 | CANopen baud rate                                 | rw              | 502        | 1029     |
| 98          | P5-03 | Modbus RTU Baud rate                              | rw              | 503        | 1030     |
| 99          | P5-04 | Modbus RTU data format – Parity type              | rw              | 504        | 1031     |
| 100         | P5-05 | Timeout – Communications dropout                  | rw              | 505        | 1032     |
| 101         | P5-06 | Response in the event of a communications dropout | rw              | 506        | 1033     |
| 102         | P5-07 | Ramp via field bus                                | rw              | 507        | 1034     |
| 103         | P5-08 | Field bus module PDO-4 output                     | rw              | 508        | 1035     |

### 4 Commissioning 4.4 mode parameter

| No. | Descrip | ntion                                                             | Access<br>right | ADI number | Register |
|-----|---------|-------------------------------------------------------------------|-----------------|------------|----------|
| 104 | P5-09   | Reserved                                                          | -               | 509        | 1036     |
| 105 | P5-10   | Reserved                                                          | -               | 510        | 1037     |
| 106 | P5-11   | Reserved                                                          | -               | 511        | 1038     |
| 107 | P5-12   | Field bus module PDO-3 output                                     | rw              | 512        | 1039     |
| 108 | P5-13   | Field bus module PDI-4 input                                      | rw              | 513        | 1040     |
| 109 | P5-14   | Field bus module PDI-3 input                                      | rw              | 514        | 1041     |
| 110 | P6-01   | Firmware upgrade enable                                           | rw              | 601        | 1128     |
| 111 | P6-02   | Auto temperature management                                       | rw              | 602        | 1129     |
| 112 | P6-03   | Auto-reset waiting time                                           | rw              | 603        | 1130     |
| 113 | P6-04   | Relay hysteresis band                                             | rw              | 604        | 1131     |
| 114 | P6-05   | Enable incremental encoder feedback                               | rw              | 605        | 1132     |
| 115 | P6-06   | Incremental encoder scale                                         | rw              | 606        | 1133     |
| 116 | P6-07   | Maximum speed error                                               | rw              | 607        | 1134     |
| 117 | P6-08   | Input frequency at maximum speed                                  | rw              | 608        | 1135     |
| 118 | P6-09   | Droop speed                                                       | rw              | 609        | 1136     |
| 119 | P6-10   | PLC function enable                                               | rw              | 610        | 1137     |
| 120 | P6-11   | Speed holding time in the event of an enable signal               | rw              | 611        | 1138     |
| 121 | P6-12   | Speed holding time in the event of a disable signal               | rw              | 612        | 1139     |
| 122 | P6-13   | Motor brake opening time                                          | rw              | 613        | 1140     |
| 123 | P6-14   | Motor brake engagement delay                                      | rw              | 614        | 1141     |
| 124 | P6-15   | Minimum torque for brake opening                                  | rw              | 615        | 1142     |
| 125 | P6-16   | Minimum torque time limit                                         | rw              | 616        | 1143     |
| 126 | P6-17   | Maximum torque time limit                                         | rw              | 617        | 1144     |
| 127 | P6-18   | Voltage for DC injection braking                                  | rw              | 618        | 1145     |
| 128 | P6-19   | Brake resistor value                                              | rw              | 619        | 1146     |
| 129 | P6-20   | Brake resistor power                                              | rw              | 620        | 1147     |
| 130 | P6-21   | Braking chopper cycle in the event of excessively low temperature | rw              | 621        | 1148     |
| 131 | P6-22   | Reset fan run-time                                                | rw              | 622        | 1149     |
| 132 | P6-23   | kWh meter reset                                                   | rw              | 623        | 1150     |
| 133 | P6-24   | Service interval                                                  | rw              | 624        | 1151     |
| 134 | P6-25   | Service interval reset                                            | rw              | 625        | 1152     |
| 135 | P6-26   | A01 - scaling                                                     | rw              | 626        | 1153     |
| 136 | P6-27   | A01 - offset                                                      | rw              | 627        | 1154     |
| 137 | P6-28   | Display index PO-80                                               | rw              | 628        | 1155     |
| 138 | P6-29   | Save parameters as default                                        | rw              | 629        | 1156     |
| 139 | P6-30   | Access code for menu level 3                                      | rw              | 630        | 1157     |

4.4 mode parameter

| No. | Descrip | tion                                        | Access<br>right | ADI number | Register |
|-----|---------|---------------------------------------------|-----------------|------------|----------|
| 140 | P7-01   | Motor stator resistance                     | rw              | 701        | 1228     |
| 141 | P7-02   | Rotor resistance                            | rw              | 702        | 1229     |
| 142 | P7-03   | Motor leakage inductance (d)                | rw              | 703        | 1230     |
| 143 | P7-04   | Motor magnetizing current                   | rw              | 704        | 1231     |
| 144 | P7-05   | Motor leakage factor                        | rw              | 705        | 1232     |
| 145 | P7-06   | Motor leakage inductance (q)                | rw              | 706        | 1233     |
| 146 | P7-07   | Advanced generator control                  | rw              | 707        | 1234     |
| 147 | P7-08   | Enable, motor parameter adaptation          | rw              | 708        | 1235     |
| 148 | P7-09   | Overvoltage current limit                   | rw              | 709        | 1236     |
| 149 | P7-10   | Load inertia factor                         | rw              | 710        | 1237     |
| 150 | P7-11   | Minimum PWM pulse width                     | rw              | 711        | 1238     |
| 151 | P7-12   | Magnetizing time at the U/f method          | rw              | 712        | 1239     |
| 152 | P7-13   | Rotational speed controller D gain          | rw              | 713        | 1240     |
| 153 | P7-14   | Torque boost                                | rw              | 714        | 1241     |
| 154 | P7-15   | Maximum frequency limit for torque boost    | rw              | 715        | 1242     |
| 155 | P7-16   | Enable, signal injection                    | rw              | 716        | 1243     |
| 156 | P7-17   | Signal injection level                      | rw              | 717        | 1244     |
| 157 | P8-01   | Second acceleration time (acc2)             | rw              | 801        | 1328     |
| 158 | P8-02   | Transition frequency (acc1 - acc2)          | rw              | 802        | 1329     |
| 159 | P8-03   | Third acceleration time (acc3)              | rw              | 803        | 1330     |
| 160 | P8-04   | Transition frequency (acc2 - acc3)          | rw              | 804        | 1331     |
| 161 | P8-05   | Fourth acceleration time (acc4)             | rw              | 805        | 1332     |
| 162 | P8-06   | Transition frequency (acc3 - acc4)          | rw              | 806        | 1333     |
| 163 | P8-07   | Fourth deceleration time (dec4)             | rw              | 807        | 1334     |
| 164 | P8-08   | Transition frequency (dec3 - dec4)          | rw              | 808        | 1335     |
| 165 | P8-09   | Third deceleration time (dec3)              | rw              | 809        | 1336     |
| 166 | P8-10   | Transition frequency (dec2 - dec3)          | rw              | 810        | 1337     |
| 167 | P8-11   | Second deceleration time (dec2)             | rw              | 811        | 1338     |
| 168 | P8-12   | Transition frequency (dec1 - dec2)          | rw              | 812        | 1339     |
| 169 | P8-13   | Ramp selection when there is a preset speed | rw              | 813        | 1340     |
| 170 | P9-01   | Control source - enable                     | rw              | 901        | 1428     |
| 171 | P9-02   | Control source - quick stop                 | rw              | 902        | 1429     |
| 172 | P9-03   | Control source - start signal 1 (FWD)       | rw              | 903        | 1430     |
| 173 | P9-04   | Control source – start signal 2 (REV)       | rw              | 904        | 1431     |
| 174 | P9-05   | Control source - Stay-put function          | rw              | 905        | 1432     |
| 175 | P9-06   | Control source - enable (REV)               | rw              | 906        | 1433     |
| 176 | P9-07   | Control source - reset                      | rw              | 907        | 1434     |

### 4 Commissioning 4.4 mode parameter

| No. | Descrip | tion                                    | Access<br>right | ADI number | Register |
|-----|---------|-----------------------------------------|-----------------|------------|----------|
| 177 | P9-08   | Control source – external fault         | rw              | 908        | 1435     |
| 178 | P9-09   | Control source - terminal control       | rw              | 909        | 1436     |
| 179 | P9-10   | Source - Speed 1                        | rw              | 910        | 1437     |
| 180 | P9-11   | Source - speed 2                        | rw              | 911        | 1438     |
| 181 | P9-12   | Source - speed 3                        | rw              | 912        | 1439     |
| 182 | P9-13   | Source - speed 4                        | rw              | 913        | 1440     |
| 183 | P9-14   | Source - speed 5                        | rw              | 914        | 1441     |
| 184 | P9-15   | Source - speed 6                        | rw              | 915        | 1442     |
| 185 | P9-16   | Source - speed 7                        | rw              | 916        | 1443     |
| 186 | P9-17   | Source - speed 8                        | rw              | 917        | 1444     |
| 187 | P9-18   | Speed - input 0                         | rw              | 918        | 1445     |
| 188 | P9-19   | Speed - input 1                         | rw              | 919        | 1446     |
| 189 | P9-20   | Speed - input 2                         | rw              | 920        | 1447     |
| 190 | P9-21   | Fixed frequency 0                       | rw              | 921        | 1448     |
| 191 | P9-22   | Fixed frequency 1                       | rw              | 922        | 1449     |
| 192 | P9-23   | Fixed frequency 2                       | rw              | 923        | 1450     |
| 193 | P9-24   | Acceleration ramp input 0               | rw              | 924        | 1451     |
| 194 | P9-25   | Acceleration ramp input 1               | rw              | 925        | 1452     |
| 195 | P9-26   | Deceleration time input 0               | rw              | 926        | 1453     |
| 196 | P9-27   | Deceleration time input 1               | rw              | 927        | 1454     |
| 197 | P9-28   | Control source - Up-pushbutton          | rw              | 928        | 1455     |
| 198 | P9-29   | Control source - Down-pushbutton        | rw              | 929        | 1456     |
| 199 | P9-30   | FWD limit switch                        | rw              | 930        | 1457     |
| 200 | P9-31   | REV limit switch                        | rw              | 931        | 1458     |
| 201 | P9-32   | Reserved                                | -               | 932        | 1459     |
| 202 | P9-33   | Source - analog output (AO) 1           | rw              | 933        | 1460     |
| 203 | P9-34   | Source - analog output (AO) 2           | rw              | 934        | 1461     |
| 204 | P9-35   | Control source - Relay 1                | rw              | 935        | 1462     |
| 205 | P9-36   | Control source - Relay 2                | rw              | 936        | 1463     |
| 206 | P9-37   | Control source - scaling                | rw              | 937        | 1464     |
| 207 | P9-38   | Source - PID setpoint value             | rw              | 938        | 1465     |
| 208 | P9-39   | Source - PID feedback                   | rw              | 939        | 1466     |
| 209 | P9-40   | Source - torque control reference       | rw              | 940        | 1467     |
| 210 | P9-41   | Function choices - Relay output 3, 4, 5 | rw              | 941        | 1468     |
| 211 | DI 1    |                                         | ro              | 1001       | 1528     |
| 212 | DI 2    |                                         | ro              | 1002       | 1529     |
| 213 | DI 3    |                                         | ro              | 1003       | 1530     |

4.4 mode parameter

| No. | Description           | Access<br>right | ADI number | Register |
|-----|-----------------------|-----------------|------------|----------|
| 014 |                       |                 | 1004       | 1501     |
| 214 |                       | ro              | 1004       | 1531     |
| 215 |                       | ro              | 1005       | 1532     |
| 216 |                       | ro              | 1005       | 1533     |
| 217 |                       | ro              | 1007       | 1534     |
| 218 | DI 8                  | ro              | 1008       | 1535     |
| 219 | A0 1                  | ro              | 1009       | 1536     |
| 220 | A0 2                  | ro              | 1010       | 1537     |
| 221 | DO 1                  | ro              | 1011       | 1538     |
| 222 | DO 2                  | ro              | 1012       | 1539     |
| 223 | DO 3                  | ro              | 1013       | 1540     |
| 224 | DO 4                  | ro              | 1014       | 1541     |
| 225 | D0 5                  | ro              | 1015       | 1542     |
| 226 | User register 1       | rw              | 1017       | 1544     |
| 227 | User register 2       | rw              | 1018       | 1545     |
| 228 | User register 3       | rw              | 1019       | 1546     |
| 229 | User register 4       | rw              | 1020       | 1547     |
| 230 | User register 5       | rw              | 1021       | 1548     |
| 231 | User register 6       | rw              | 1022       | 1549     |
| 232 | User register 7       | rw              | 1023       | 1550     |
| 233 | User register 8       | rw              | 1024       | 1551     |
| 234 | User register 9       | rw              | 1025       | 1552     |
| 235 | User register 10      | rw              | 1026       | 1553     |
| 236 | User register 11      | rw              | 1027       | 1554     |
| 237 | User register 12      | rw              | 1028       | 1555     |
| 238 | User register 13      | rw              | 1029       | 1556     |
| 239 | User register 14      | rw              | 1030       | 1557     |
| 240 | User register 15      | rw              | 1031       | 1558     |
| 241 | User AO 1             | rw              | 1032       | 1559     |
| 242 | User AO 2             | rw              | 1033       | 1560     |
| 243 | User RO 1             | rw              | 1036       | 1563     |
| 244 | User RO 2             | rw              | 1037       | 1564     |
| 245 | User RO 3             | rw              | 1038       | 1565     |
| 246 | User RO 4             | rw              | 1039       | 1566     |
| 247 | User RO 5             | rw              | 1040       | 1567     |
| 248 | User, scaling value   | rw              | 1041       | 1568     |
| 249 | User, decimal scaling | rw              | 1042       | 1569     |
| 250 | User speed reference  | rw              | 1043       | 1570     |
| 251 | User torque deference | rw              | 1044       | 1571     |
| 201 |                       |                 |            | 1071     |

### 4 Commissioning 4.4 mode parameter

| No. | Description                         | Access<br>right | ADI number | Register |
|-----|-------------------------------------|-----------------|------------|----------|
| 252 | Field bus / User ramp               | rw              | 1045       | 1572     |
| 253 | Scope index 1 / 2                   | rw              | 1046       | 1573     |
| 254 | Scope index 3 / 4                   | rw              | 1047       | 1574     |
| 255 | 24hour timer                        | rw              | 1048       | 1575     |
| 256 | User display Ctrl                   | rw              | 1049       | 1576     |
| 257 | User display value                  | rw              | 1050       | 1577     |
| 258 | AI 1 (Q12)                          | ro              | 1061       | 1588     |
| 259 | AI 1 (%)                            | ro              | 1062       | 1589     |
| 260 | AI 2 (Q12)                          | ro              | 1063       | 1590     |
| 261 | AI 2 (%)                            | ro              | 1064       | 1591     |
| 262 | DI status                           | ro              | 1065       | 1592     |
| 263 | Speed reference                     | ro              | 1066       | 1593     |
| 264 | Value, digital potentiometer        | ro              | 1067       | 1594     |
| 265 | Field bus speed reference           | ro              | 1068       | 1595     |
| 266 | Master speed reference              | ro              | 1069       | 1596     |
| 267 | Slave speed reference               | ro              | 1070       | 1597     |
| 268 | Frequency on speed reference input  | ro              | 1071       | 1598     |
| 269 | Torque reference (Q12)              | ro              | 1072       | 1599     |
| 270 | Torque reference (%)                | ro              | 1073       | 1600     |
| 271 | Master torque reference (Q12)       | ro              | 1074       | 1601     |
| 272 | Field bus torque reference (Q12)    | ro              | 1075       | 1602     |
| 273 | PID user reference (Q12)            | ro              | 1076       | 1603     |
| 274 | PID user return value (Q12)         | ro              | 1077       | 1604     |
| 275 | PID controller reference (Q12)      | ro              | 1078       | 1605     |
| 276 | PID controller feedback value (Q12) | ro              | 1079       | 1606     |
| 277 | PID controller output (Q12)         | ro              | 1080       | 1607     |
| 278 | Motor, velocity                     | ro              | 1081       | 1608     |
| 279 | Motor, current                      | ro              | 1082       | 1609     |
| 280 | Motor, torque                       | ro              | 1083       | 1610     |
| 281 | Motor, power                        | ro              | 1084       | 1611     |
| 282 | PID controller starting speed       | ro              | 1085       | 1612     |
| 283 | DC- voltage                         | ro              | 1086       | 1613     |
| 284 | Unit Temperature                    | ro              | 1087       | 1614     |
| 285 | PCB controle temperature            | ro              | 1088       | 1615     |
| 286 | Drive scaling value 1               | ro              | 1089       | 1616     |
| 287 | Drive scaling value 2               | ro              | 1090       | 1617     |
| 288 | Motor, torque (%)                   | ro              | 1091       | 1618     |
| 289 | Expansion, IO input status          | ro              | 1093       | 1620     |

DX-NET-MODBUSTCP-2 09/14 MN04012008Z-EN www.eaton.com

4.4 mode parameter

| No. | Description                           | Access<br>right | ADI number | Register |
|-----|---------------------------------------|-----------------|------------|----------|
| 290 | ID, Plug-in module                    | ro              | 1096       | 1623     |
| 291 | ID, field bus boards                  | ro              | 1097       | 1624     |
| 292 | Scope channel 1 data                  | ro              | 1101       | 1628     |
| 293 | Scope channel 2 data                  | ro              | 1102       | 1629     |
| 294 | Scope channel 3 data                  | ro              | 1103       | 1630     |
| 295 | Scope channel 4 data                  | ro              | 1104       | 1631     |
| 296 | OLED language number                  | ro              | 1105       | 1632     |
| 297 | OLED version                          | ro              | 1106       | 1633     |
| 298 | power section                         | ro              | 1107       | 1634     |
| 299 | Service time                          | ro              | 1128       | 1655     |
| 300 | Fan speed                             | ro              | 1129       | 1656     |
| 301 | User kWh meter                        | ro              | 1130       | 1657     |
| 302 | User, MWh meter                       | ro              | 1131       | 1658     |
| 303 | Complete, KWh meter                   | ro              | 1132       | 1659     |
| 304 | Complete, MWh meter                   | ro              | 1133       | 1660     |
| 305 | Total, operating hours meter          | ro              | 1134       | 1661     |
| 306 | Total, min/sec operating time counter | ro              | 1135       | 1662     |
| 307 | User, hours-run meter                 | ro              | 1136       | 1663     |
| 308 | User, min/sec operating time counter  | ro              | 1137       | 1664     |

# Alphabetical index

# A

| <b>A</b>            |      |      |    |
|---------------------|------|------|----|
| Abbreviations       | <br> | <br> | 5  |
| Application example | <br> | <br> | 33 |

### В

| D         |      |      |   |
|-----------|------|------|---|
| Baud rate | <br> | <br> | 9 |

# С

| Climatic proofing       |
|-------------------------|
| CODESYS                 |
| Command                 |
| Communication protocol9 |
| Construction size       |
| Control cables          |

# D

| Display                 |
|-------------------------|
| DX-NET-MODBUSTCP-2      |
| Designation10           |
| electrical connection15 |
| exchange                |
| intended use11          |
| Mounting 15, 17, 18     |

# Ε

| Environmental Condi | tions9 |  |
|---------------------|--------|--|
| Equipment supplied  |        |  |

# F

| Fault Code      | 8 |
|-----------------|---|
| FS (Frame Size) | 5 |

### Н

| Hazard warnings4    |
|---------------------|
| Head-end controller |
| Hotline             |

### I

| -                      |
|------------------------|
| Inspection             |
| Installation           |
| Instructional leaflet7 |
| IL4020010Z 16          |
| IL4020011Z 16          |
| IP configuration       |
|                        |

# Κ

| Key to part numbers |  |
|---------------------|--|
|---------------------|--|

#### L Led

| L | /             |    |
|---|---------------|----|
|   | LINK/Activity | 14 |
|   | MS            | 14 |
|   | NS            | 14 |
|   |               |    |

## Μ

| Mains supply voltages5 |
|------------------------|
| Maintenance            |
| Maintenance interval   |
| Motor cables           |

# Ν

| Network statuses            | 14 |
|-----------------------------|----|
| Notes, on the documentation | 16 |

# 0

| Operating | states |      |    | <br> | <br> |  |  |  |  | 14  |  |
|-----------|--------|------|----|------|------|--|--|--|--|-----|--|
| Operation | temper | atur | е. | <br> | <br> |  |  |  |  | . 9 |  |

# Ρ

| Part no            |  |  |  |  |  |  |  |  |  | <br>8    | ; |
|--------------------|--|--|--|--|--|--|--|--|--|----------|---|
| PLC Configuration  |  |  |  |  |  |  |  |  |  | <br>. 37 | , |
| Production quality |  |  |  |  |  |  |  |  |  | <br>9    | ) |

### R

| Rated operational data |  |
|------------------------|--|
| RJ45 plug              |  |
| connection             |  |
| Pinout                 |  |

# S

| Setpoint value      | 27 |
|---------------------|----|
| Signal cables       | 21 |
| Standards           | 9  |
| Storage temperature | 12 |
| Switch              | 11 |

# U

| Units of measurement |  |  |  |  |  |  |  |  |  |  | • |  |  | • |  |  | • |  |  | . ! | 5 |
|----------------------|--|--|--|--|--|--|--|--|--|--|---|--|--|---|--|--|---|--|--|-----|---|
|----------------------|--|--|--|--|--|--|--|--|--|--|---|--|--|---|--|--|---|--|--|-----|---|

#### **V** Vibratio

| Vibration            |  |
|----------------------|--|
| W                    |  |
| Warranty             |  |
| Writing conventions4 |  |