XI/OC-Signalmodule

Alle Marken- und Produktnamen sind Warenzeichen oder eingetragene Warenzeichen der jeweiligen Titelhalter.

Störfallservice

Bitte rufen Sie Ihre lokale Vertretung an: http://www.eaton.com/moeller/aftersales oder Hotline After Sales Service: +49 (0) 180 5 223822 (de, en) <u>AfterSalesEGBonn@eaton.com</u>

Originalbetriebsanleitung

Die deutsche Ausführung dieses Dokuments ist die Originalbetriebsanleitung.

Übersetzung der Originalbetriebsanleitung

Alle nicht deutschen Sprachausgaben dieses Dokuments sind Übersetzungen der Originalbetriebsanleitung.

- 1. Auflage 2002, Redaktionsdatum 05/02
- 2. Auflage 2002, Redaktionsdatum 10/02
- 3. Auflage 2003, Redaktionsdatum 04/03
- 4. Auflage 2003, Redaktionsdatum 10/03
- 5. Auflage 2003, Redaktionsdatum 12/03
- 6. Auflage 2004, Redaktionsdatum 02/04
- 7. Auflage 2004, Redaktionsdatum 04/04
- 8. Auflage 2004, Redaktionsdatum 07/04
- 9. Auflage 2004, Redaktionsdatum 09/04
- 10. Auflage 2005, Redaktionsdatum 02/05
- 11. Auflage 2006, Redaktionsdatum 02/06
- 12. Auflage 2008, Redaktionsdatum 04/08
- 13. Auflage 2010, Redaktionsdatum 10/10
- 14. Auflage 2016, Redaktionsdatum 02/16

siehe Änderungsprotokoll im Kapitel "Zu diesem Handbuch"© 2008 by Eaton Industries GmbH, 53105 Bonn

© 2002 by Eaton Industries GmbH, 53105 Bonn

Autoren: Norbert Mausolf, Heribert Einwag Redaktion: Thomas Kracht

Alle Rechte, auch die der Übersetzung, vorbehalten.

Kein Teil dieses Handbuches darf in irgendeiner Form (Druck, Fotokopie, Mikrofilm oder einem anderen Verfahren) ohne schriftliche Zustimmung der Firma Eaton Industries GmbH, Bonn, reproduziert oder unter Verwendung elektronischer Systeme verarbeitet, vervielfältigt oder verbreitet werden.

Änderungen vorbehalten.

Gedruckt auf Papier aus chlor- und säurefrei gebleichtem Zellstoff.

Gefahr! Gefährliche elektrische Spannung!

Vor Beginn der Installationsarbeiten

- Gerät spannungsfrei schalten
- Gegen Wiedereinschalten sichern
- Spannungsfreiheit feststellen
- Erden und kurzschließen
- Benachbarte, unter Spannung stehende Teile abdecken oder abschranken.
- Die für das Gerät angegebenen Montagehinweise (AWA) sind zu beachten.
- Nur entsprechend qualifiziertes Personal gemäß EN 50 110-1/-2 (VDE 0105 Teil 100) darf Eingriffe an diesem Gerät/System vornehmen.
- Achten Sie bei Installationsarbeiten darauf, dass Sie sich statisch entladen, bevor Sie das Gerät berühren.
- Die Funktionserde (FE) muss an die Schutzerde (PE) oder den Potentialausgleich angeschlossen werden. Die Ausführung dieser Verbindung liegt in der Verantwortung des Errichters.
- Anschluss- und Signalleitungen sind so zu installieren, dass induktive und kapazitive Einstreuungen keine Beeinträchtigung der Automatisierungsfunktionen verursachen.
- Einrichtungen der Automatisierungstechnik und deren Bedienelemente sind so einzubauen, dass sie gegen unbeabsichtigte Betätigung geschützt sind.
- Damit ein Leitungs- oder Aderbruch auf der Signalseite nicht zu undefinierten Zuständen in der Automatisierungseinrichtung führen kann, sind bei der E/A-Kopplung hard- und softwareseitig entsprechende Sicherheitsvorkehrungen zu treffen.

- Bei 24-Volt-Versorgung ist auf eine sichere elektrische Trennung der Kleinspannung zu achten. Es dürfen nur Netzgeräte verwendet werden, die die Forderungen der IEC 60 364-4-41 bzw. HD 384.4.41 S2 (VDE 0100 Teil 410) erfüllen.
- Schwankungen bzw. Abweichungen der Netzspannung vom Nennwert dürfen die in den technischen Daten angegebenen Toleranzgrenzen nicht überschreiten, andernfalls sind Funktionsausfälle und Gefahrenzustände nicht auszuschließen.
- NOT-AUS-Einrichtungen nach IEC/EN 60 204-1 müssen in allen Betriebsarten der Automatisierungseinrichtung wirksam bleiben. Entriegeln der NOT-AUS-Einrichtungen darf keinen Wiederanlauf bewirken.
- Einbaugeräte für Gehäuse oder Schränke dürfen nur im eingebauten Zustand, Tischgeräte oder Portables nur bei geschlossenem Gehäuse betrieben und bedient werden.
- Es sind Vorkehrungen zu treffen, dass nach Spannungseinbrüchen und -ausfällen ein unterbrochenes Programm ordnungsgemäß wieder aufgenommen werden kann. Dabei dürfen auch kurzzeitig keine gefährlichen Betriebszustände auftreten. Ggf. ist NOT-AUS zu erzwingen.
- An Orten, an denen in der Automatisierungseinrichtung auftretende Fehler Personen- oder Sachschäden verursachen können, müssen externe Vorkehrungen getroffen werden, die auch im Fehler- oder Störfall einen sicheren Betriebszustand gewährleisten beziehungsweise erzwingen (z. B. durch unabhängige Grenzwertschalter, mechanische Verriegelungen usw.).

Inhalt

Zu diesem Handbuch		5
	Änderungsprotokoll	5
	Weitere Handbücher	6
	Zielgruppe	6
	Abkürzungen und Symbole	6
1 Zu den Signalmodulen	Übersicht der Gemelere dule für VC CDU100/200	9
	Obersicht der Signalmodule für XC-CPUT00/200	10
	Zubenor	10
		10
	Anschluss an SPS	10
	Anardnung dar Madula nach Strombadarf	10
	Anordnung der Module hat arböhter	10
		10
	Stecknlatzhelegung im Baugruppenträger	11
	Montage der Baugruppenträger	12
	 Montage der Budgruppentidger Montage auf der Hutschiene 	13
	 Montage auf der Montageplatte 	13
	Demontage des Baugruppenträgers	13
	Montage der Signalmodule	15
	Demontage der Signalmodule	15
	Befestigung des Klemmenblocks	15
	Verdrahtung der Ein-/Ausgangs-Signale	16
	 Verdrahtung des Schraubklemmenblocks 	16
	 Verdrahtung des Federzugklemmenblocks 	16
	 Anschlussquerschnitte der Klemmenblocks 	16
	Verdrahtung des Digital-Eingangsmoduls (24 V DC)	16
	Verdrahtung der Digital-Ausgangsmodule (24 V DC)	17
	 Verdrahtung des Relais-Ausgangsmoduls 	17
	– Verdrahtung des Transistor-Ausgangsmoduls	17
	Verdrantung des Eingangsmoduls XIOC-32DI und des	10
	Ausgangsmoduls XIOC-32DO	10
	Verdranlung der Analogmodule	19
	- Signalumschaltung bei den Analogmodulen	19
	Frweiterung des XIOC-Bus in der essySoft-CoDeSys	20
	Abmessungen	21
	- Signalmodule	22
	– Baugruppenträger	22
2 Temperaturerfassungsmodule		23
	XIOC-4T-PT	23
	– Eigenschaften	23
	– Verdrahtung	24
	– Datenauswertung	25
	– Konvertierungstabellen	26
	- Fehlersuche	28
	XIOC-4AI-T	29
	– Eigenschaften	29
	– Anschluss	29
	 Kontiguration und Parametrierung 	29
	- Diagnose	30

3	Counter-Module XIOCCNT-100kHz	 Aufbau RESET-Taster auf dem Modul LED-Anzeige Programmierung Mode-/Betriebsartenschalter Inkrementalgeber an den Counter-Eingang anschließen Zwei Inkrementalgeber Inkrementalgeber mit differentiellen Ausgang Inkrementalgeber mit NPN-Transistor-Ausgang Inkrementalgeber mit NPN-Transistor-Ausgang (Open-Collector) Geräte an den Ausgängen Y anschließen Funktionsübersicht Linear-Zähler Ring-Zähler Weitere Funktionen für Linear- und Ring-Zähler Zählereigenschaften konfigurieren Ablauf der Befehle Zustandsanzeige in der Steuerungskonfiguration FLAG-Übersicht Funktionsablauf zur Impulsverarbeitung (Beispiel) 	31 31 31 31 32 33 33 36 36 36 36 36 36 36 36 36 36 37 37 37 38 39 40 41 45 45 46
4	Counter-Analog-Modul XIOC-2CNT-2AO-INC	Eigenschaften LEDs	47 47 48
		Programmieren und Konfigurieren – Informationsaustausch über das Ein-/Ausgangsabbild Konfiguration der Basisparameter	48 48 51
5	Serielles Schnittstellen-Modul XIOC-SER	Eigenschaften LED-Anzeige Aufbau der RS422-/RS485-Schnittstelle Modul im Konfigurator der easySoft-CoDeSys auswählen Schnittstelle konfigurieren – Betriebsart "Transparentmodus" – Betriebsart "Suconet K (Slave)" Zugriff auf die Empfangs- und Sendedaten	53 53 54 54 54 55 55 55 56
6	Fernwirkbaugruppe XIOC-TC1	Eigenschaften LED-Anzeige Aufbau der RS422-/RS485-Schnittstelle Modul im Konfigurator der easySoft-CoDeSys auswählen Schnittstelle konfigurieren – Betriebsart "Transparentmodus" Zugriff auf die Empfangs- und Sendedaten Kommunikationsbibliothek für das DNP3-Protokoll V1.1 – Voraussetzungen – DNP3-Kommunikations- und Datenmodell – Funktionsübersicht – Programmierung – Definition der FLAGs bei DNP3	57 57 58 58 59 59 59 59 59 59 59 61 69 69

7	Suconet-K-Modul (Master) XIOC-NET-SK-M		71
		Eigenschaften	71
		LED-Anzeige	71
		Aufbau der Suconet-K- (RS485-)Schnittstelle	71
		Modul im Konfigurator der easySoft-CoDeSys auswählen	72
		Schnittstelle konfigurieren	72
		Zugriff auf die Empfangs- und Sendedaten	72
8	PROFIBUS-DP-Module XIOC-NET-DP-M//XIOC-NET-DP-S		73
		Hard- und Software-Voraussetzungen	73
		Eigenschaften	74
		 PROFIBUS-DP-Schnittstelle 	74
		 Schalter f ür Busabschlusswiderst ände 	74
		 Status- und Diagnoseanzeige (LEDs) 	74
		DP-Modul betreiben	75
		 Verhalten nach Download 	75
		 Verhalten nach Einschalten der Versorgungsspannung 	75
		− Verhalten nach RUN \rightarrow STOP-Wechsel	75
		 Verhalten nach Unterbrechung des DP-Stranges 	75
		Ablaufanalyse	75
		Konfiguration XIOC-NET-DP-S/M	75
		Datenaustausch	76
		– PROFIBUS-DP- Modul (Master) ↔ Slaves	76
		– PROFIBUS-DP-Master ↔ DP-S-Modul	76
		− XC100/XC200 \leftrightarrow DP-M-Modul	76
		XC100: Zustandsanzeige der PROFIBUS-DP-Slaves Beispiel: Datenübertragung XC200 (Master) ↔	79
		XC100 (Slave)	79
		Diagnose der PROFIBUS-DP-Slaves	81
		– Diagnose durchführen	81
		 Diagnosedaten auswerten 	82
		 Grobdiagnose mit Variable vom Typ GETBUSSTATE 	82
		 Detaillierte Diagnose mit Funktionsbaustein 	
		DIAGGETSTATE	83
		Diagnose in der Slavesteuerung	86
		 Master- und Verbindungsstatus abfragen 	86
		 Diagnosebaustein "xDPS_SendDiag" 	86
		Anwendungsbeispiel zum Senden von Diagnosedaten	
		(mit dem Funktionsbaustein xDPS_SendDiag)	87
		Beispielprogramm zur Diagnose in der Mastersteuerung	89
		 Konfiguration erstellen 	89
		 Aufbau des Beispielprogramms mit einem Master 	90
		 Funktion des Beispielprogramms 	91
		 Funktion des Diagnoseprogramms 	91
		 – Funktion des Datenaustausch (Überwachung) 	91
		 Beispielprogramm zur Diagnose mit einem Master 	92
		Parametrierung der LE4 mit Analog-Ein-/Ausgängen	94

9 Technische Daten			95
		XControl	95
		Digitale Eingangsmodule	96
		Digitale Ausgangsmodule	98
		 Transistor-Ausgangsmodule 	98
		– Relais-Ausgangsmodul	99
		Digitale Ein-/Ausgangsmodule	100
		- Konfiguration und Programmierung der Digital-Ein-/	
		Ausgänge	100
		Analoge Eingangsmodule	102
		Analog-Ausgangsmodul	103
		Analoge Ein-/Ausgangsmodule	105
		Temperaturerfassungsmodul XIOC-4T-PT	107
		Temperaturerfassungsmodul XIOC-4AI-T	108
		Counter-Modul	109
		Counter-Analog-Modul	110
		Serielles Schnittstellenmodul/Fernwirkbaugruppe	111
		Suconet-K-Modul (Master)	112
		PROFIBUS-DP-Modul	112

Stichwortverzeichnis

113

Zu diesem Handbuch

Änderungsprotokoll

Gegenüber den früheren Ausgaben AWB2725-1452D haben sich folgende wesentliche Änderungen ergeben:

Redaktions- datum	Seite	Stichwort	neu	geändert	entfällt
10/02	31	Counter-Module XIOCCNT-100kHz		\checkmark	\checkmark
	100	Digitale Ein-/Ausgangsmodule	\checkmark		
04/03	16	Anschlussquerschnitte der Klemmenblocks		\checkmark	\checkmark
	95, 96, 98, 99, 100	Technische Daten		\checkmark	\checkmark
	100	Konfiguration und Programmierung der Digital-Ein-/Ausgänge	\checkmark		
10/03	9, 105	Analoge Ein-/Ausgangsmodule	\checkmark		
	97	XIOC-16DI-110VAC			
	105	Hinweis			
12/03	9, 10, 16, 17, 18, 22, 96, 98, 105	XIOC-32DI/ XIOC-32DO	\checkmark		
	11, 12	XIOC-BP-EXT	\checkmark		
	47, 110	XIOC-2CNT-2AO-INC			
	53, 111	XIOC-SER	\checkmark		
04/04	9, 19, 106	XIOC-2AI-1AO-U1-I1 XIOC-4AI-2AO-U1-I1	\checkmark		
	31	Programmierung	\checkmark		
	48	Programmieren und Konfigurieren	\checkmark		
	55	Gap-Time	\checkmark		
07/04	73, 111	PROFIBUS-DP-Module XIOC-NET-DP-M//XIOC-NET-DP-S	\checkmark		
09/04	53	XIOC-SER-Modul Suconet-K-Mode (Slave)	\checkmark		
02/05	18	Verdrahtung XIOC-32DI/DO, Aderfarbe	\checkmark		
	71, 111	Suconet-K-Modul (Master) XIOC-NET-SK-M	\checkmark		
	73, 111	XIOC-NET-DP-S	\checkmark		
11/06	29, 108	XIOC-4AI-T	\checkmark		
11/06,	29	Hinweis	\checkmark		
unverän-	30	Belegung der Diagnose-Informationen			
dertes Red Datum	108	Technische Daten		\checkmark	\checkmark
04/08	55	Betriebsart "Suconet K (Slave)", Parametrierung		\checkmark	\checkmark
-	56	In der Sucosoft S40 konfigurieren			
07/10	Allgemein	XIOC-16DO-S entfällt		\checkmark	\checkmark
	9, 11, 16, 95, 96	XIOC-16DI/XIOC-8DI		\checkmark	
	9, 11, 17, 93, 98	XIOC-16D0/XIOC-8D0		\checkmark	
	57	XIOC-TC1	\checkmark		
10/10	Allgemein	Umstellung auf Eaton-Bezeichnungen		\checkmark	
02/16	10	Anordnung der Module	\checkmark		

Das vorliegende Handbuch beschreibt die XIOC-Signalmodule für die erweiterbaren SPS-Typen XC-CPU100/200.

In Kapitel 1 erhalten Sie Informationen zur Montage und Verdrahtung, die für alle Signalmodule gleichermaßen zutreffen. In Kapitel 9 stehen die ausführlichen Technischen Daten. Auch hier gibt es zunächst einen allgemeinen Teil. Die spezifischen Merkmale werden dann anschließend separat aufgeführt, bzw. dort, wo es sinnvoll war, in Gruppen zusammengefasst. Die übrigen Kapitel enthalten produktspezifische Informationen zu den Modulen.

Weitere Handbücher

Die in Verbindung mit den Signalmodulen eingesetzten SPS-Typen werden in folgenden Handbüchern beschrieben:

SPS-Тур	Handbuch-Nr.
XC-CPU100	MN05003004Z-DE (vormals AWB2724-1453D)
XC-CPU200	MN05003001Z-DE (vormals AWB2724-1491D)
XC-CPU600	AWB2700-1428D

Die Handbücher gibt es auch online als PDF-Datei unter: <u>http://www.eaton.com/moeller</u> → Support

Für ein schnelles Auffinden geben Sie die oben genannte Handbuch-Nr. ein.

Zielgruppe

Lesen Sie dieses Handbuch sorgfältig durch, bevor Sie die Signalmodule installieren und in Betrieb nehmen. Wir setzen voraus, dass Sie über physikalische Grundkenntnisse verfügen und mit der Handhabung in elektrischen Anlagen und dem Lesen technischer Zeichnungen vertraut sind.

Abkürzungen und Symbole

In diesem Handbuch werden Symbole und Abkürzungen eingesetzt, die folgende Bedeutung haben:

E/A	Ein-/Ausgang
SPS	Speicherprogrammierbare Steuerung
I ₀	Eingangsstrom
<i>I</i> ₁	Ausgangsstrom
Uo	Eingangsspannung
<i>U</i> ₁	Ausgangsspannung

In Kapitel 3 Counter-Module XIOC-...CNT-100kHz steht in der Bezeichnung einiger Baustein-Ein-/Ausgänge ein "n". Dieses "n" ist ein Platzhalter. Zum Beispiel gilt die Bezeichnung "CounternEnable" für die Eingänge "Counter1Enable" und

"Counter2Enable" des Funktionsbausteins "CounterControl".

Alle Maßangaben sind in Millimeter, falls nicht anders angegeben.

► zeigt Handlungsanweisungen an

macht Sie aufmerksam auf interessante Tipps und Zusatzinformationen

Achtung! warnt vor leichten Sachschäden.

Warnung!

warnt vor schweren Sachschäden und leichten Verletzungen.

Gefahr!

warnt vor schweren Sachschäden und schweren Verletzungen oder Tod.

Für eine gute Übersichtlichkeit finden Sie auf den linken Seiten im Kopf die Kapitelüberschrift und auf den rechten Seiten den aktuellen Abschnitt. Ausnahmen sind Kapitelanfangsseiten und leere Seiten am Kapitelende. Zu diesem Handbuch

8

1 Zu den Signalmodulen

Übersicht der Signalmodule für XC-CPU100/200

Bezeichnung	Тур	Technische Daten
Baugruppenträger	XIOC-BP-XC	Für CPU mit Netzteil
	XIOC-BP-XC1	Für CPU mit Netzteil, 1 Signalbaugruppe
	XIOC-BP-2	Für 2 Signalmodule
	XIOC-BP-3	Für 3 Signalmodule
	XIOC-BP-EXT	E/A-Modul zur Erweiterung
Digital-Eingangsmodul	XIOC-8DI/-16DI/-32DI	8 Kanäle/16 Kanäle, 32 Kanäle 24 V DC
	XIOC-16DI-110VAC	16 Kanäle, 110 bis 120 V AC
	XIOC-16DI-AC	16 Kanäle, 200 bis 240 V AC
Digital-Ausgangsmodul	XIOC-8D0/16D0	8 Kanäle/16 Kanäle, Transistor-Ausgang 24 V DC (Source-Typ), kurzschlussfest
	XIOC-32DO	32 Kanäle, Transistor-Ausgang, 24 V DC (Source-Typ)
	XIOC-12DO-R	12 Kanäle, Relais-Ausgang
Digital-Ein-/ Ausgangsmodul	XIOC-16DX	16 Eingangskanäle, 24 V DC, 12 Ausgangskanäle, Transistor-Ausgang 24 V DC (Source-Typ)
Analog-Eingangsmodul	XIOC-8AI-12	Stromeingang (Kanäle 0 bis 7) 4 bis 20 mA, 12 Bit
	XIOC-8AI-U1	Spannungseingang (Kanäle 0 bis 7) 0 bis 10 V DC,12 Bit
	XIOC-8AI-U2	Spannungseingang (Kanäle 0 bis 7) –10 bis +10 V DC, 12 Bit
	XIOC-4T-PT	PT100/1000-Eingang (Kanäle 0 bis 3) 15 Bit mit Vorzeichen
	XIOC-4AI-T	4 Analog-Eingänge für Thermoelemente (Kanäle 0 bis 3) 15 Bit mit Vorzeichen
Analog-Ausgangsmodul	XIOC-2AO-U1-2AO-I2	Spannungsausgang (Kanäle 0 bis 1) 0 bis 10 V DC, Stromausgang (Kanäle 2 bis 3) 4 bis 20 mA, 12 Bit
	XIOC-2AO-U2	Spannungsausgang (Kanäle 0 bis 1) –10 bis 10 V DC
	XIOC-4AO-U2	Spannungsausgang (Kanäle 0 bis 3) –10 bis 10 V DC
	XIOC-4AO-U1	Spannungsausgang (Kanäle 0 bis 3) 0 bis 10 V DC
Analog-Ein-/ Ausgangsmodul	XIOC-4AI-2AO-U1	Spannungseingang (Kanäle 0 bis 3) 0 bis 10 V DC, 14 Bit Spannungsausgang (Kanäle 0 bis 1) 0 bis 10 V DC, 12 Bit
	XIOC-2AI-1AO-U1	Spannungseingang (Kanäle 0 bis 1) 0 bis 10 V DC, 14 Bit Spannungsausgang (Kanal 0) 0 bis 10 V DC, 12 Bit
	XIOC-4AI-2AO-U1-I1	Spannungseingang (Kanäle 0 bis 3) 0 bis 10 V DC, 14 Bit oder Stromeingang (Kanäle 0 bis 3) 0 bis 20 mA, 14 Bit Spannungsausgang (Kanäle 0 bis 1) 0 bis 10 V DC, 12 Bit oder Stromausgang (Kanäle 0 bis 1) 0 bis 20 mA, 12 Bit
	XIOC-2AI-1AO-U1-I1	Spannungseingang (Kanäle 0 bis 1) 0 bis 10 V DC, 14 Bit oder Stromeingang (Kanäle 0 bis 1) 0 bis 20 mA, 14 Bit Spannungsausgang (Kanal 0) 0 bis 10 V DC, 12 Bit oder Stromausgang (Kanal 0) 0 bis 20 mA, 12 Bit
Counter-Modul	XIOC-1CNT-100kHz	1 Kanal, Eingang für schnellen Zähler, Maximal-Frequenz von 100 kHz, 1/2-phasig schaltbar, 2 Open-Collector-Ausgänge
	XIOC-2CNT-100kHz	2 Kanäle, Eingang für schnellen Zähler, Maximal-Frequenz von 100 kHz, 1/2-phasig schaltbar, 2 Open-Collector-Ausgänge je Kanal
Counter-Analog-Modul	XIOC-2CNT-2AO-INC	Eingang für schnellen Zähler; Maximal-Frequenz von 400 kHz; 2 Kanäle, Ausgang –10 bis +10 V
Serielles Schnittstellen- modul	XIOC-SER	serielle Schnittstelle, wählbar: RS232, RS422, RS485, SUCONET- K-Modus (Slave)
Fernwirkbaugruppe	XIOC-TC1	Transparent, MODBUS, Master/Slave, SUCOM-A, DNP3

Zubehör

Bezeichnung	Тур	Bemerkungen
Federzugklemmen	XIOC-TERM-18T	Für Digital- und Analog-
Schraubklemmen	XIOC-TERM-18S	Ein-/Ausgangsmodule
Stecker/Kabel	XIOC-TERM32	Für 32-polige Digital-Ein-/ Ausgangsmodule

Aufbau

Abbildung 1: Aufbau eines Signalmoduls

- ① Verriegelung
- (2) LED-Umschalter für XIOC-32DI/XIOC-32DO; die Module sind mit 16 LEDs zur Zustandanzeige der Ein-/Ausgänge (E/A) ausgerüstet. Je nach Position des Umschalters zeigen die LEDs die E/A 0 – 15 (Schalter vorne) oder 16 – 31 (Schalter hinten) an. Die mit "+" gekennzeichnete LED leuchtet, wenn die E/A 16 – 31 angezeigt werden.
- ③ LED-Anzeige
- (4) E/A-Abdeckung
- (5) Klemmenblock

Anschluss an SPS

Die XIOC-Module sind die E/A-Module für die SPS-Typen XC-CPU100/200. Die folgenden Bilder zeigen den Aufbau von XIOC-Modulen, die an einer SPS angeschlossen sind.

Hinweis zur Projektierung

Anordnung der Module

Abbildung 3: Erlaubte (✓) und unerlaubte (×) Anordnung von XIOC-Signalmodulen

Tabelle 1:

Hitachi Code	Modultyp ①
-	XIOC-SER
-	XIOC-TC1
-	XIOC-NET-SK-M

Tabelle 2:

Hitachi Code	Modultyp (2)
EH-AX8I	XIOC-8AI-I2
EH-AX8V	XIOC-8AI-U1
EH-AX8H	XIOC-8AI-U2
EH-AY22	XIOC-2AO-U1-2AO-I2
EH-AY4V	XIOC-4AO-U1
EH-AY4H	XIOC-4AO-U2
EH-AY2H	XIOC-2AO-U2

Anordnung der Module nach Strombedarf

Die CPU versorgt aus ihrem integrierten Netzteil weitere XIOC-Module. Generell sind diese Module so anzuordnen, dass Module mit hohem internen Stromverbrauch (z. B. XIOC 2CNT-...) an der CPU beginnend gesteckt werden. Dann folgen die Module mit niedrigem Stromverbrauch.

Anordnung der Module bei erhöhter Umgebungstemperatur

Erfolgt der Einsatz bei Umgebungstemperaturen > 40° C oder eingeschränkter Konvektion (z. B. geschlossenem CI-Gehäuse), so sind Maßnahmen zu treffen, die einen übermäßigen Anstieg der Verlustwärme verhindern. Dies wird durch ein Derating bestimmter Module erreicht.

	Technisches Merkmal	Grenzwert bei	
Modultyp		< 40 °C	> 40 °C
XIOC-16DI-AC	Gleichzeitigkeitsfaktor	1	0,75
XIOC-16DO	Bemessungsstrom pro gemeinsamer Potenzial- klemme	8 A	8 A
XIOC-16DX	Gleichzeitigkeitsfaktor	1	0,5
	Modulanordnung	beliebig	1)

1) Platzierung nicht unmittelbar neben CPU und nicht direkt neben weiteren XIOC-16DX

Weitere Angaben zur Projektierung finden Sie in den Handbüchern:

- XC-CPU100: MN05003004Z-DE (vormals AWB2724-1453D)
- XC-CPU200: MN05003001Z-DE (vormals AWB2724-1491D)

Steckplatzbelegung im Baugruppenträger

Die XIOC-Module werden auf Baugruppenträger gesteckt, die die Verbindung zur SPS herstellen. Über die Baugruppenträger werden die Module auch untereinander verbunden.

Das integrierte Bussystem stellt die störsichere Signalübertragung zwischen den einzelnen Bussteckplätzen her. Zudem versorgt das Bussystem die einzelnen Module mit der erforderlichen Spannung für die interne Signalverarbeitung.

Die Versorgungsspannung der Ein-/Ausgangselektronik erfolgt direkt an den entsprechenden E-/A-Modulen.

Es stehen vier Baugruppenträger zur Verfügung: Es stehen fünf Baugruppenträger zur Verfügung:

Grundsätzlich ist der erste Baugruppenträger, der die CPU XC-CPU100/200 aufnimmt, ein Basis-Baugruppenträger. An seiner rechten Seite können Sie mehrere Erweiterungs-Baugruppenträger anfügen. Die Baugruppenträger sind so aneinander zu reihen, dass für den Grundausbau ein CPU-Modul und max. sieben XIOC-Signalmodule projektiert werden können (→ Abb. 5).

Durch Einsatz der Buserweiterung können Sie dem Grundausbau, bestehend aus CPU und 5, 6 oder 7 E-/A-Modulen, noch weitere Baugruppenträger hinzufügen. Die Buserweiterung hat den gleichen Aufbau und die gleichen Abmessungen wie der Erweiterungsbaugruppenträger XIOC-BP-3. Sie hat jedoch zusätzliche Bauelemente zur Verstärkung der Bussignale. Die Anordnung der Buserweiterung im Grundausbau ist fest vorgegeben (→ Abb. 5). Der maximale Ausbau kann 15 XIOC-E-/A-Module aufnehmen.

- Wenn Sie einen bestehenden Grundausbau mit 6 oder 7 E-/A-Modulen erweitern wollen, müssen Sie einen bestehenden Baugruppenträgerträger (XIOC-BP-2/ XIOC-BP-3) durch die Buserweiterung (XIOC-BP-EXT) ersetzen. Die Buserweiterung darf nur an die in Abbildung 5 gezeigte Position gesetzt werden.
 - In der Steuerungskonfiguration ist das 7. Element "EXTENSION-SLOT[SLOT]" mit der Funktion "Element ersetzen" durch das Element "EXTENSION-SLOT" zu ersetzen. Es werden insgesamt 15 Slots dargestellt.

Baugruppenträger	Steckplät	ze	
	1	2	3
XIOC- BP- XC (Basis-Baugruppenträger)	CPU mit Netzteil CPU mit Netzteil E-/A-Modul		_
XIOC- BP-XC1 (Basis-Baugruppenträger)			E-/A-Modul
XIOC-BP-2 (Erweiterungs- Baugruppenträger)			-

Baugruppenträger	Steckplätze					
	1	2	3			
XIOC-BP-3 (Erweiterungs- Baugruppenträger)	E-/A-Modul					
XIOC-BP-EXT (Buserweiterung)	E-/A-Modul zur Erweiterung					

- Abbildung 4: loben: erweiterbare Basisbaugruppenträger oben: Erweiterungs-Baugruppenträger
- 1 Steckplatz 1
- ② Steckplatz 2
- ③ Steckplatz 3
- ④ Buserweiterungsstecker (Buchse)
- (5) Buserweiterungsstecker (Stifte)

	CPU	1	2	3	4	5	6	7							
Maximaler Grund- ausbau	XIOC-BP-XC	XIOC	-BP-2	XIOC	BP-2	XIOC	C-BP-3								
	XIOC-BP-X	C1	XIO	C-BP-3	3	XIOC	-BP-3								
	CPU	1	2	3	4	5	6	7	8	9	10 11	12	13	14	15
Maximaler Gesamtausbau	XIOC-BP-XC	XIOC	-BP-2	XIC	C-BP-3	3	XIO	C-BP-E	XT	XIO	C-BP-3	XIO	C-BP-2	XIOC	C-BP-2
		C1	VIOC	_RD_7	XIOC	RP-7	XIO	C-BP-I	EYT		C-RP-3	VIO	C_8P_2	VIOC	_RD_2

Abbildung 5: Maximaler Ausbau von E/A-Modulen ohne und mit XIOC-Buserweiterung

Wie Sie die Buserweiterung softwaremäßig im Steuerungskonfigurator der easySoft-CoDeSys durchführen, ist ab Seite 21 beschrieben.

Montage der Baugruppenträger

Die Baugruppenträger können Sie sowohl auf die Hutschiene aufschnappen als auch direkt auf die Montageplatte schrauben.

Warnung!

Ziehen oder stecken Sie die Erweiterungs-Baugruppenträger nur im spannungslosen Zustand. Entfernen Sie zunächst die auf dem Baugruppenträger gesteckte CPU- bzw. E-/A-Module. Entladen Sie sich, bevor Sie elektronische Baueinheiten berühren. Spannungsspitzen am Busstecker können zu Störungen oder Schäden an Modulen führen.

 \rightarrow

/!`

Die Montage der Steuerungen ist beschrieben in:

- MN05003004Z-DE (vormals AWB2724-1453D) für XC-CPU100
- MN05003001Z-DE (vormals AWB2724-1491D) für XC-CPU200

Montage auf der Hutschiene

- ► Ziehen Sie mit einem Schraubendreher den Verriegelungsschieber bis die Verriegelungslasche einrastet. Der Verriegelungsschieber wird in dieser Position arretiert ①.
- Setzen Sie das Gerät so auf die Hutschiene, dass die Oberkante der Hutschiene in die Nut greift und bringen Sie den Baugruppenträger in die gewünschte Position 2.
- Drücken Sie die Verriegelungslasche des Schiebers nach unten. Der Schieber rastet hinter der Hutschiene ein. Prüfen Sie, ob das Gerät fest sitzt 3.
- ► Falls Sie einen Erweiterungs-Baugruppenträger montieren: Schieben Sie diesen so weit nach links, bis Sie die Bussteckerleiste des Erweiterungs-Baugruppenträgers in die Bussteckerleiste des Basis- oder Erweiterungs-Baugruppenträgers stecken können. Achten Sie darauf, dass die Bussteckerleisten der Baugruppenträger vollständig zusammengefügt sind, um eine sichere Kontaktgabe zu erreichen.

Montage auf der Montageplatte

Die aus dem Baugruppenträger nach hinten ragenden Kontaktfedern sind zur Erdung des Moduls vorgesehen. Sie müssen eine sichere Verbindung zur Montageplatte haben.

Achten Sie darauf, dass die Verbindungsstellen korrosionsgeschützt sind und – wenn lackierte Montageplatten eingesetzt werden – die Verbindungsstellen von der Lackschicht befreit sind.

Stecken Sie die Bussteckerleiste des Erweiterungs-Baugruppenträgers in die Bussteckerleiste des Basis- oder Erweiterungs-Baugruppenträgers. Achten Sie darauf, dass die Bussteckerleisten der Baugruppenträger vollständig zusammengefügt sind, um eine sichere Kontaktgabe zu erreichen.

Demontage des Baugruppenträgers

- Ziehen Sie mit einem Schraubendreher den Verriegelungsschieber bis die Verriegelungslasche einrastet.
 Der Verriegelungsschieber wird in dieser Position arretiert 1.
- Nur bei Erweiterungs-Baugruppenträger: Verschieben Sie den Erweiterungs-Baugruppenträger auf der Hutschiene nach rechts, bis die Busverbindungsstecker getrennt sind.
- ▶ Nehmen Sie den Baugruppenträger von der Hutschiene.

① 35-mm-Hutschiene

Siehe auch Abmessungen auf Seite 22.

Montage der Signalmodule

- ► Stecken Sie die Lasche an der Unterseite des Moduls in das Loch des Baugruppenträgers 1.
- Drücken Sie die Oberseite des Moduls in den Baugruppenträger, bis Sie ein Klicken hören 2.

Abbildung 7: Montage der Module

Demontage der Signalmodule

- ► Drücken Sie den Verriegelungsknopf 1.
- Ziehen Sie bei gedrücktem Knopf das Oberteil des Moduls nach vorne 2.
- ► Heben Sie das Modul an und ziehen Sie es heraus ③.

Abbildung 8: Demontage der Module

Befestigung des Klemmenblocks

- Stecken Sie den unteren Teil des Klemmenblocks auf die Modulleiterplatte. Drehen Sie die Befestigungsschrauben etwas an
 1.
- Drücken Sie den oberen Teil des Klemmenblocks in Richtung des Moduls, bis er hörbar einrastet 2.
- ► Halten Sie den oberen Teil des Klemmenblocks fest und ziehen Sie die Schraube an ③.
- Ziehen Sie testweise am oberen Teil des Klemmenblocks, um sicherzustellen, dass er fest sitzt und sich nicht lösen kann 4.

Abbildung 9: Befestigung des Klemmenblocks

Verdrahtung der Ein-/Ausgangs-Signale

Verdrahtung des Schraubklemmenblocks

Abbildung 10: Verdrahtung des Schraubklemmenblocks

→ Bitte beachten Sie die folgenden Hinweise:

- Die Schrauben für alle Klemmen haben die Größe M3.
- Ziehen Sie die Schrauben mit 0,71 bis 1,02 Nm fest.
- Sollen Kabelschuhe zum Einsatz kommen, sind solche mit einem äußeren Durchmesser von höchstens 6 mm zu verwenden.
- Benutzen Sie maximal zwei Kabelschuhe pro Klemme.
- Verwenden Sie ein Kabel mit maximal 0,75 mm² Querschnitt bzw. ein Kabel mit 0,5 mm², falls zwei Kabelschuhe an der selben Klemme befestigt werden sollen.

Verdrahtung des Federzugklemmenblocks

Der Aufbau des Federzugklemmenblocks entspricht dem Aufbau des Schraubklemmenblocks. Der Unterschied besteht in der Art des Leitungsanschlusses.

Achtung!

Die Adern sind ohne Aderendhülsen oder Kabelschuhe in die Klemmen einzuführen.

Anschlussquerschnitte der Klemmenblocks

\bigtriangledown Achtung!

Bei UL-Applikationen müssen die Versorgungsleitungen der Module XIOC-8DO, -16DO, -12DO-R, -16DX einen Querschnitt von AWG16 (1,3 mm²) haben.

Leiter	Schraub- anschluss	Federzug- anschluss
eindrähtig	0,5 bis 2,5 mm ²	0,14 bis 1,0 mm ²
feindrähtig mit Aderendhülse	0,5 bis 1,5 mm ²	Die Adern sind ohne Aderend- hülsen oder Kabelschuhe in die Klemmen einzuführen.
feindrähtig	-	0,34 bis 1,0 mm ²

Verdrahtung des Digital-Eingangsmoduls (24 V DC)

Abbildung 11: Beispiel für eine externe Verdrahtung des DC-Eingangs XIOC-8DI/16DI/32DI (hier 16 DI)

- Wenn alle Eingangsklemmen EIN-Signal führen, fließt ein Strom von typ. 4 mA über die Eingangskontakte.
- Sensoren wie z.B. N\u00e4herungsschalter oder photoelektrische Schalter k\u00f6nnen direkt angeschlossen werden, sofern es Stromtypen (Open-Collector) sind. Schlie\u00dfen Sie Sensoren, die einen Spannungsausgang haben, \u00fcber einen Transistor an die Eing\u00e4nge an.
- Verwenden Sie Kabel mit einer Länge von höchstens 30 m.

Verdrahtung der Digital-Ausgangsmodule (24 V DC)

Verdrahtung des Relais-Ausgangsmoduls

Abbildung 12: Externe Verdrahtung des Relais-Ausgangs XIOC-12DO-R

- ① Sicherung
- (2) Filter für Spannungsspitzen oder Diode

Filter für Spannungsspitzen

Schließen Sie bei einer induktiven Last einen Filter für Spannungsspitzen (Kondensator 0,1 μF und Widerstand von ca. 100 Ω) parallel zur Last an. Für Gleichstromlasten sind Freilaufdioden zu verwenden.

Sicherung

Im Modul befindet sich keine Sicherung. Installieren Sie eine 6-A-Sicherung im Strompfad (Common), um ein Durchbrennen der externen Verdrahtung zu verhindern.

Versorgungsspannung zur Steuerung der Relais

Beachten Sie die Polarität des 24-V-DC-Anschlusses. Ein falscher Anschluss kann die internen Schaltkreise beschädigen.

Abbildung 13: Diagramm für die Lebensdauer der Relaiskontakte

Die Lebensdauer des Kontakts ist umgekehrt quadratisch proportional zum Strom. Durch auftretende Überströme oder direkt angeschlossene kapazitive Lasten kann deshalb die Lebensdauer eines Relais drastisch reduziert werden.

Für Schaltvorgänge mit hohen Frequenzen ist das Transistor-Ausgangsmodul vorzuziehen.

Verdrahtung des Transistor-Ausgangsmoduls

Abbildung 14: Externe Verdrahtung des Transistor-Ausgangs XIOC-8DO/-16DO/32DO, hier: 16DO (positive Logik, Source-Typ)

1 Diode

Freilaufdiode

 Schließen Sie bei induktiven Lasten eine Freilaufdiode parallel an.

S- und C-Klemmen

Schließen Sie immer die S- und C-Klemmen an. Wenn das Modul ohne Anschluss dieser Klemmen betrieben wird, kann die interne Freilaufdiode ihre Funktion nicht aufnehmen, und es besteht die Gefahr, dass das Modul nicht richtig funktioniert oder beschädigt wird.

Verdrahtung des Eingangsmoduls XIOC-32DI und des Ausgangsmoduls XIOC-32DO

Die Module haben einen 40-poligen Steckverbinder. Über den Stecker mit angeschlossenem Kabel (XIOC-TERM32) verbinden Sie das Modul mit externen Klemmen. Die Nummer der Steckerstifte geht aus der folgenden Skizze hervor. Prüfen Sie die Zuordnung Ader – Steckerstift (Nummer). Der Querschnitt der Adern beträgt 0,4 mm.

Abbildung 15: Kabel mit Stecker (XIOC-TERM32)

Nr.	Aderfarbe	Signalname	Signalname
		XIOC-32DI	XIOC-32DO
21	weiß/blau	16	16
22	braun/blau	17	17
23	weiß/rot	18	18
24	braun/rot	19	19
25	weiß/ schwarz	20	20
26	braun/ schwarz	21	21
27	grau/grün	22	22
28	gelb/grau	23	23
29	rosa/grün	C	C
30	gelb/rosa	24	S
31	grün/blau	25	24
32	gelb/blau	26	25
33	grün/rot	27	26
34	gelb/rot	28	27
35	grün/ schwarz	29	28
36	gelb/ schwarz	30	29
37	grau/blau	31	30
38	rosa/blau	C	31
39	grau/rot		C
40	rosa/rot		S

XIOC-32DI XIOC-32DO 1 weiß 0 0 2 braun 1 1 3 grün 2 2 4 gelb 3 3 5 grau 4 4 6 pink 5 5 7 blau 6 6 8 rot 7 7 9 schwarz C C 10 purpur 8 S 11 grau/rosa 9 8 12 blau/rot 10 9 13 weiß/grün 11 10 14 braun/grün 12 11 15 weiß/gelb 13 12 16 gelb/braun 14 13 17 weiß/grau 15 14 18 grau/braun C 15 19 weiß/braun S	Nr.	Aderfarbe	Signalname	Signalname
1 weiβ 0 0 2 braun 1 1 3 grün 2 2 4 gelb 3 3 5 grau 4 4 6 pink 5 5 7 blau 6 6 8 rot 7 7 9 schwarz C C 10 purpur 8 S 11 grau/rosa 9 8 12 blau/rot 10 9 13 weiß/grün 11 10 14 braun/grün 12 11 15 weiß/gelb 13 12 16 gelb/braun 14 13 17 weiß/grau 15 14 18 grau/braun C 15 19 weiß/rosa S			XIOC-32DI	XIOC-32DO
2 braun 1 1 3 grün 2 2 4 gelb 3 3 5 grau 4 4 6 pink 5 5 7 blau 6 6 8 rot 7 7 9 schwarz C C 10 purpur 8 S 11 grau/rosa 9 8 12 blau/rot 10 9 13 weiß/grün 11 10 14 braun/grün 12 11 15 weiß/gelb 13 12 16 gelb/braun 14 13 17 weiß/grau 15 14 18 grau/braun C 15 19 weiß/rosa S	1	weiß	0	0
3 grün 2 2 4 gelb 3 3 5 grau 4 4 6 pink 5 5 7 blau 6 6 8 rot 7 7 9 schwarz C C 10 purpur 8 S 11 grau/rosa 9 8 12 blau/rot 10 9 13 weiß/grün 11 10 14 braun/grün 12 11 15 weiß/grau 15 14 18 grau/braun C 15 19 weiß/rosa C 20 rosa/braun S	2	braun	1	1
4 gelb 3 3 5 grau 4 4 6 pink 5 5 7 blau 6 6 8 rot 7 7 9 schwarz C C 10 purpur 8 S 11 grau/rosa 9 8 12 blau/rot 10 9 13 weiß/grün 11 10 14 braun/grün 12 11 15 weiß/grau 14 13 16 gelb/braun C 14 18 grau/braun C 15 19 weiß/rosa C 20 rosa/braun S	3	grün	2	2
5 grau 4 4 6 pink 5 5 7 blau 6 6 8 rot 7 7 9 schwarz C C 10 purpur 8 S 11 grau/rosa 9 8 12 blau/rot 10 9 13 weiß/grün 11 10 14 braun/grün 12 11 15 weiß/gelb 13 12 16 gelb/braun 14 13 17 weiß/grau 15 14 18 grau/braun C 15 19 weiß/rosa C 20 rosa/braun S	4	gelb	3	3
6 pink 5 5 7 blau 6 6 8 rot 7 7 9 schwarz C C 10 purpur 8 S 11 grau/rosa 9 8 12 blau/rot 10 9 13 weiß/grün 11 10 14 braun/grün 12 11 15 weiß/gelb 13 12 16 gelb/braun 14 13 17 weiß/grau 15 14 18 grau/braun C 15 19 weiß/rosa C 20 rosa/braun S	5	grau	4	4
7 blau 6 6 8 rot 7 7 9 schwarz C C 10 purpur 8 S 11 grau/rosa 9 8 12 blau/rot 10 9 13 weiß/grün 11 10 14 braun/grün 12 11 15 weiß/gelb 13 12 16 gelb/braun 14 13 17 weiß/grau 15 14 18 grau/braun C 15 19 weiß/rosa C 20 rosa/braun S	6	pink	5	5
8 rot 7 7 9 schwarz C C 10 purpur 8 S 11 grau/rosa 9 8 12 blau/rot 10 9 13 weiß/grün 11 10 14 braun/grün 12 11 15 weiß/gelb 13 12 16 gelb/braun 14 13 17 weiß/grau 15 14 18 grau/braun C 15 19 weiß/rosa C 20 rosa/braun S	7	blau	6	6
9 schwarz C C 10 purpur 8 5 11 grau/rosa 9 8 12 blau/rot 10 9 13 weiß/grün 11 10 14 braun/grün 12 11 15 weiß/gelb 13 12 16 gelb/braun 14 13 17 weiß/grau 15 14 18 grau/braun C 15 19 weiß/rosa C 20 rosa/braun S	8	rot	7	7
10 purpur 8 S 11 grau/rosa 9 8 12 blau/rot 10 9 13 weiß/grün 11 10 14 braun/grün 12 11 15 weiß/gelb 13 12 16 gelb/braun 14 13 17 weiß/grau 15 14 18 grau/braun C 15 19 weiß/rosa C 20 rosa/braun S	9	schwarz	C	С
11 grau/rosa 9 8 12 blau/rot 10 9 13 weiß/grün 11 10 14 braun/grün 12 11 15 weiß/gelb 13 12 16 gelb/braun 14 13 17 weiß/grau 15 14 18 grau/braun C 15 19 weiß/rosa C 20 rosa/braun S	10	purpur	8	S
12 blau/rot 10 9 13 weiß/grün 11 10 14 braun/grün 12 11 15 weiß/gelb 13 12 16 gelb/braun 14 13 17 weiß/grau 15 14 18 grau/braun C 15 19 weiß/rosa C 20 rosa/braun S	11	grau/rosa	9	8
13 weiß/grün 11 10 14 braun/grün 12 11 15 weiß/gelb 13 12 16 gelb/braun 14 13 17 weiß/grau 15 14 18 grau/braun C 15 19 weiß/rosa C 20 rosa/braun S	12	blau/rot	10	9
14 braun/grün 12 11 15 weiß/gelb 13 12 16 gelb/braun 14 13 17 weiß/grau 15 14 18 grau/braun C 15 19 weiß/rosa C 20 rosa/braun S	13	weiß/grün	11	10
15 weiß/gelb 13 12 16 gelb/braun 14 13 17 weiß/grau 15 14 18 grau/braun C 15 19 weiß/rosa C 20 rosa/braun S	14	braun/grün	12	11
16 gelb/braun 14 13 17 weiß/grau 15 14 18 grau/braun C 15 19 weiß/rosa C 20 rosa/braun S	15	weiß/gelb	13	12
17 weiß/grau 15 14 18 grau/braun C 15 19 weiß/rosa C 20 rosa/braun S	16	gelb/braun	14	13
18 grau/braun C 15 19 weiß/rosa C 20 rosa/braun S	17	weiß/grau	15	14
19weiβ/rosaC20rosa/braunS	18	grau/braun	C	15
20 rosa/braun S	19	weiß/rosa		С
	20	rosa/braun		S

Verdrahtung der Analogmodule

Verdrahtung der Analogmodule

- Verwenden Sie f
 ür den Anschluss externer Ger
 äte nur abgeschirmte Leitungen.
- Verlegen Sie die Leitungen getrennt von Netzleitungen oder Signalleitungen mit Differenzspannungen.
- ► Je nachdem, welche elektromagnetischen Verhältnisse vorherrschen, sollten beide Enden der Abschirmung geerdet oder nur an einem Ende geerdet werden.
- Verlegen Sie die Leitungen der AC-Versorgungsspannung und die Signal- bzw. Datenleitungen in getrennten Kabelkanälen.
- Verlegen Sie die Signal- und Datenleitungen so nah wie möglich entlang der geerdeten Oberfläche des Schaltschrankes.

Signalumschaltung bei den Analogmodulen

Bei den Analogmodulen XIOC-2AI-1AO-U1-I1 und XIOC-4AI-1AO-U1-I1 können Sie die Signalart "Spannung" oder "Strom" für jeden Ein- und Ausgang einstellen. Die Einstellung erfolgt über den 6-poligen DIP-Schalter. Im Auslieferungszustand sind die Schalter aller Ein- und Ausgänge so eingestellt, dass Spannungssignale verarbeitet werden können. Die Eigensschaften der Ein- und Ausgänge gehen aus den Technischen Daten hervor, → Seite 106.

Abbildung 16: DIP-Schalter zur Einstellung der Signalart "Spannung" (U) oder "Strom" (I)

In der Abbildung ist der Auslieferungszustand "Spannung" dargestellt.

Signalleitungen anschließen

Abbildung 17: Abschirmung von Signalleitungen, Übersicht

- (1) Schirmerdung für Hutschiene
- (2) Schirmerdung für Montageplatte
 - -> Detailansicht in Abbildung 18

Abbildung 18: Schirmerdung für Hutschiene (oben) oder Montageplatte (unten) mit Kontaktschelle oder Klemmbügel, Detailansicht

Abschluss der geschirmten Leitungen:

 Streifen Sie den Schirm am Ende der Leitungen zurück und isolieren Sie ihn z. B. mit einem Schrumpfschlauch.

- Entfernen Sie den Kabelmantel im Bereich der Kontaktschelle.
- Legen Sie je eine Kontaktschelle um den abisolierten Teil der Signalleitungen oder drücken Sie den abisolierten Teil in die Schnappbefestigung des Klemmbügels.
- Verbinden Sie die Kontaktschelle bzw. den Klemmbügel niederimpedant mit der Hutschiene bzw. Montageplatte.
- Befestigen Sie die Hutschiene auf der Montageplatte.
- Achten Sie darauf, daß alle Verbindungsstellen korrosionsgeschützt sind und – wenn lackierte Montageplatten eingesetzt werden – die Verbindungsstellen von der Lackschicht befreit sind.
- ► Erden Sie die Hutschiene breitflächig.

Erweiterung des XIOC-Bus in der easySoft-CoDeSys

Die Buserweiterung mit dem Baugruppenträger XIOC-BP-EXT auf maximal 15 Steckplätze erfolgt softwaremäßig im Steuerungskonfigurator der easySoft-CoDeSys.

In der Summe sind maximal 15 Steckplätze bei einer XC100/XC200-Steuerung möglich, → Abbildung 5 auf Seite 12.

Beim Anlegen einer Neu-Konfiguration werden die ersten 7 Steckplätze als EMPTY-SLOT angelegt. Der Steckplatz 7 kann durch einen EXTENSION-SLOT ersetzt werden. Hierdurch wird ein neuer Knoten geöffnet, der die Erweiterung auf bis zu 15 EMPTY-SLOT ermöglicht.

Der Erweiterungsbaugruppenträger wird wie folgt eingebunden:

- ► Öffnen Sie den Steuerungskonfigurator
- ► Klicken Sie mit der rechten Maustaste in den letzten EMPTY-SLOT.
- ▶ Wählen Sie den Befehl "Element ersetzen".
- ▶ Wählen Sie im neuen Fenster durch einen Doppelklick **EXTENSION-SLOT** aus.

Abbildung 19:Konfiguration Baugruppenträgererweiterung

Die nachfolgende Abbildung zeigt die maximale Konfiguration der E/A-Slots.

D- @Configu	ration XC-CPU101-C128K-8DI-6DO
0-N AT	%IB0_BYTE, (* Local Inputs *) (CHAN-
8-1 A	%OB0: BYTE; (* Local Outputs *) [CH-
- a EN	IPTY-SLOT[SLOT]
- @ EN	PTY-SLOT[SLOT]
B EN	IPTY-SLOT[SLOT]
- ĝ EN	IPTY-SLOT(SLOT)
- g EN	PTY-SLOT[SLOT]
EN EN	PTY-SLOT(SLOT)
B-EXTEN	ISION-SLOT[SLOT]
	EMPTY-SLOTISLOTI
	EMPTY-SLOTISLOT
	EMPTY-SLOTISLOT
	EMPTY-SLOTISLOTI
	EMPTY-SLOTISLOT
	EMPTY-SLOTISLOT
	EMPTY-SLOTISLOT
	EMPTY-SLOT(SLOT)
	EMPTY-SLOTISLOT

Abbildung 20:Maximal-Konfiguration XC100

Abmessungen

Signalmodule

Abbildung 21: Signalmodule

Abbildung 22: XIOC-32DI, XIOC-32DO mit Stecker XIOC-TERM32

Baugruppenträger

Abbildung 23: Abmessungen der Baugruppenträger XIOC-BP-XC, XIOC-BP-2

Abbildung 24: Baugruppenträger XIOC-BP-XC1, XIOC-BP-3, XIOC-BP-EXT

Abbildung 25: Abmessungen der Baugruppenträger

2 Temperaturerfassungsmodule

XIOC-4T-PT

Eigenschaften

An das Temperaturerfassungsmodul XIOC-4T-PT können Widerstandsthermometer vom Typ PT100 (IEC751) oder PT1000 angeschlossen werden.

Es stehen drei Temperaturbereiche zur Verfügung, die über DIP-Schalter eingestellt werden können.

Abbildung 25: Lage der DIP-Schalter zur Temperatureinstellung (1) DIP-Schalter

Typ des Widerstands- thermometers	Temperatur- Messbereich (°C)	Genauigkeit (°C)	DIP-Schalter
Pt100	-20 bis + 40	± 0.5	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Pt100	-50 bis + 400	± 3	$ON \qquad \qquad$
Pt1000	-50 bis + 400	± 6	$ \begin{array}{c} ON\\ OFF \\ 1 \\ 2 \\ 3 \\ 4 \\ 7 = ON \end{array} $

Tabelle 3: Einstellung der Temperaturbereiche

Verdrahtung

Abbildung 26: Verdrahtungsbeispiel

- Verbinden Sie die Klemmen von nicht genutzten Eingängen (in der Grafik b2-B2-A2). Nicht benutzte Eingänge sind undefiniert. Der Wert beträgt 7FFFhex.
- (2) In Abhängigkeit der Störeinflüsse kann eine einseitige oder beidseitige Erdung des Kabels durchgeführt werden.
- ③ Externe Spannungsversorgung 24 V DC

RTD = Resistance Temperature Detector

NC = Not connected/nicht benutzt

Datenauswertung

1. Bereich: -50 bis +400 °C (PT100/PT1000)

Die Temperatur wird in einen 15 Bit-Wert mit Vorzeichen umgewandelt. Die Wertigkeit der Bit geht aus der folgenden Skizze hervor.

Beispiel 1

Wenn Sie die Bitwerte in die obige Tabelle übertragen, ergibt sich folgender Wert:

(-800 + 400 + 200 + 100 + 50) °C = -50 °C

Beispiel 2

(25 + 12,5) °C = 37,5 °C

Ist der gemessene Temperaturwert außerhalb des Bereichs (< -51 °C oder > 410 °C), wird als Datenwert 7FFF_{hex} angezeigt.

Das Verhältnis zwischen Temperatur und dem Messwert geht aus der folgenden Formel und dem Diagramm hervor.

Abbildung 27: Temperatur-Messwert-Diagramm

2. Bereich: -20 bis +40 °C (PT100)

Die Temperatur wird in einen 15 Bit-Wert mit Vorzeichen umgewandelt. Die Wertigkeit der Bit geht aus der folgenden Skizze hervor.

Beispiel 1

Wenn Sie die Bitwerte in die obige Tabelle übertragen, ergibt sich folgender Wert:

(−80 + 40 + 20) °C = −20 °C

Beispiel 2

(2,5 + 1,25) °C = 3,75 °C

Ist der gemessene Temperaturwert außerhalb des Bereichs (< -25 °C oder > 45 °C), wird als Datenwert 7FFF_{hex} angezeigt.

Das Verhältnis zwischen Temperatur und dem Messwert geht aus der folgenden Formel und dem Diagramm hervor.

Abbildung 28: Temperatur-Messwert-Diagramm

Konvertierungstabellen

Temperatur (°C) ¹⁾	Dezimal- wert	Hexadezimal- wert	Pt100-Wider- stand (Ω)
-25	55296	D800	90.19
-20	57344	E000	92.16
-15	59392	E800	94.12
-10	61440	F000	96.09
-5	63488	F800	98.04
0	0	0000	100.00
5	2048	0800	101.95
10	4096	1000	103.90
15	6144	1800	105.85
20	8192	2000	107.79
25	10240	2800	109.73
30	12288	3000	111.67
35	14336	3800	113.61
40	16384	4000	115.54
45	18432	4800	117.47

1) Die Technischen Daten beziehen sich auf den Bereich von -20 bis 40 °C.

Temperatur (°C) ¹⁾	Dezimalwert	Hexadezimal- wert	Pt100-Wider- stand (Ω) ²⁾
-60	63078	F666	72.33
-55	63283	F733	78.32
-50	63488	F800	80.31
-45	63693	F8CC	82.29
-40	63898	F999	84.27
-35	64102	FA66	86.25
-30	64307	FB33	88.22
-25	64512	FC00	90.19
-20	64717	FCCC	92.16
-15	64922	FD99	94.12
-10	65126	FE66	96.09
-5	65331	FF33	98.04
0	0	0000	100.00
5	205	00CC	101.95
10	410	0199	103.90
15	614	0266	105.85
20	819	0333	107.79
25	1024	0400	109.73
30	1229	04CC	111.67
35	1434	0599	113.61
40	1638	0666	115.54
45	1843	0733	117.47
50	2048	0800	119.40
55	2253	08CC	121.32
60	2458	0999	123.24
65	2662	0A66	125.16
70	2867	0B33	127.07
75	3072	0C00	128.98
80	3277	0CCC	130.89
85	3482	0D99	132.80
90	3686	0E66	134.70
95	3891	0F33	136.60
100	4096	1000	138 50

Tabelle 5:	Konvertierungstabelle für Pt100/PT1000 (-50 bis +400 °C)
rubene bi	

Temperatur (°C) ¹⁾	Dezimalwert	Hexadezimal- wert	Pt100-Wider- stand (Ω) ²⁾
110	4506	1199	142.29
120	4915	1333	146.06
130	5325	14CC	149.82
140	5734	1666	153.58
150	6144	1800	157.31
160	6554	1999	161.04
170	6963	1B33	164.76
180	7373	1CCC	168.46
190	7782	1E66	172.16
200	8192	2000	175.84
210	8602	2199	179.51
220	9011	2333	183.17
230	9421	24CC	186.82
240	9830	2666	190.45
250	10240	2800	194.07
260	10650	2999	197.69
270	11059	2B33	201.29
280	11469	2CCC	204.88
290	11878	2E66	208.45
300	12288	3000	212.02
310	12698	3199	215.57
320	13107	3333	219.12
330	13517	34CC	222.65
340	13926	3666	226.17
350	14336	3800	229.67
360	14746	3999	233.17
370	15155	3B33	236.65
380	15565	3CCC	240.13
390	15974	3E66	243.59
400	16384	4000	247.04
410	16794	4199	250.48
4) D' T I '			

 Die Technischen Daten beziehen sich auf den Bereich von –50 bis +400 °C des Pt100.

2) Widerstandswert Pt1000 = $10 \times$ Widerstandswert PT100

Fehlersuche

Im Folgenden werden einige Fehlermöglichkeiten beschrieben und Hinweise zur Beseitigung aufgeführt.

Fehler, die sich auf einen Kanal beziehen

Wenn der gemessene Wert instabil ist, die Genauigkeit nicht einhält, oder der Wert 7FFF_{hex} beträgt:

- Überprüfen Sie, ob die Verdrahtung des fehlerhaften Kanals ordnungsgemäß ist.
- Überprüfen Sie, ob das Kabel vom Modul zum Sensor nicht in der Nähe von Starkstromleitungen liegt.
- ▶ Überprüfen Sie, ob die Klemmverbindung einen festen Sitz hat.
- ► Überprüfen Sie, ob die Daten des eingesetzten PT100/1000 mit denen der IEC751 übereinstimmen.
- Überprüfen Sie den Widerstand der externen Verdrahtung (< 400 Ω).
- ► Überprüfen Sie, ob die zu messende Temperatur im Bereich des XIOC-4T-PT liegt.

Fehler, die sich auf mehrere Kanäle beziehen

Alle Kanäle zeigen den Wert 7FFF_{hex} an:

- ► überprüfen Sie, ob die externe Spannungsversorgung richtig angeschlossen ist
- ► überprüfen Sie, ob die Kapazität der externen Spannungsversorgung ausreichend ist (≥1 A).

XIOC-4AI-T

Eigenschaften

Das Temperaturerfassungsmodul XIOC-4AI-T wird zur Anschaltung von Thermoelementen und zur Spannungsmessung verwendet.

Bei der Temperaturmessung ist der Anschluss von Thermoelementen vom Typ B, E, J, K, N, R, S, T möglich. Die Darstellung erfolgt in 1/10 °C oder 1/10 °F. Das Modul erkennt eine Bereichsunterschreitung oder -überschreitung und einen Drahtbruch der Temperaturfühler. Das Modul besitzt eine integrierte Kaltstellenkompensation sowie Störspannungsunterdrückung.

Anschluss

Abbildung 29: Anschluss des Moduls

Nicht gekennzeichnete Klemmen dürfen nicht beschaltet werden!

Konfiguration und Parametrierung

Die Konfiguration und Parametrierung des Moduls erfolgt wie gewohnt in der Gerätekonfiguration des Programmiersystems. Nach Auswahl des Moduls steht dort für jeden Kanal ein Integerwert für die Verwendung im Anwenderprogramm zur Verfügung. Für die Auswertung von Diagnoseinformation ist ein Diagnosewort vorhanden, welches die Anzeige von Messbereichsfehlern beinhaltet.

Messparameter festlegen

Für jeden Messkanal können Sie folgende Parameter festlegen:

- Thermoelementtyp
- Skalierung
- Kanal aktiv/inaktiv
- Störspannungsunterdrückung 50/60 Hz

Abbildung 30: Parameterdialogt

In der Betriebsart "Spannung" hat der Einfluss des Parameters "Skalierung" keine Bedeutung.

Messbereich

• Thermoelemente

Je nach verwendetem Thermoelement sind verschiedene Temperaturbereiche messbar. Die Messwertdarstellung erfolgt als vorzeichenbehafteter Dezimalwert in 1/10 Grad C oder 1/10 Grad F Auflösung.

Der Dezimalwert 545 entspricht somit 54,5 Grad bei Einstellung 1/10 °C.

Tabelle 6: Thermoelemente mit Temperaturbereichen

Element	Temperaturbereich								
В	+100°C	+212°F		+1800°C	+ 3272°F				
E	–270°C	-454°F		+1000°C	+1832°F				
J	-210°C	-346°F		+1200°C	+2192°F				
K	-270°C	-454°F		+1370°C	+2498°F				
N	–270°C	-454°F		+1300°C	+2372°F				
R	–50°C	-58°F		+1760°C	+3200°F				
S	-50°C	-58°F		+1540°C	+2804°F				
Т	-200°C	-328°F		+400°C	+752°F				

• Spannungsmessung

Ist ein Spannungsmessbereich (U1 = \pm 50 mV, U2 = \pm 100 mV, U3 = \pm 500 mV), U4 = \pm 1000 mV) vorgewählt, entspricht der Messwert einem vorzeichenbehafteten Integerwert (16 Bit). Die Parametrierung der Einheit °C/°F sowie die Messung der Kaltstelle bleibt in dieser Messung ohne Auswirkung.

Messwer	t [mV] bei Spa	abgebildeter Wert				
±50 mV	±100 mV	±500 mV	±1000 mV	dez.	hex.	
-50,000	-100,000	-500,000	-1000,000	-32768	0x8000	
-49,998	-99,997	-499,985	-999,969	-32767	0x8001	
-0,002	-0,003	-0,015	-0,031	-1	0xFFFF	
0,000	0,000	0,000	0,000	0	0x0000	
0,002	0,003	0,015	0,031	1	0x0001	
49,998	99,997	499,985	999,969	32766	0x7FFE	
50,000	100,000	500,000	1000,000	32767	0x7FFF	

Tabelle 7: Abbildung der Spannungsmessung (16 Bit signed Integer)

Tabelle 8: Auflösung bei Spannungsmessung

Auflösung [μ V] bei Spannungsbereich							
±50 mV	±100 mV	±500 mV	±1000 mV				
1,526 μV	3,052 μV	15,259 μV	30,519 μV				

Diagnose

Das Statuswort enthält die Diagnoseinformationen aller 4 Kanäle.

Für jeden Kanal werden Messwertüberschreitung, Messwertunterschreitung sowie Drahtbruch angezeigt. Bei einem Fehler leuchtet zusätzlich auf dem Modul die entsprechende ERROR-LED.

Bit 15	Bit 14	Bit13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Kanal	3			Kanal	2			Kana	1			Kana	0		
D33	D32	D31	D30	D23	D22	D21	D20	D13	D12	D11	D10	D03	D02	D01	D00

Tabelle 9: Belegung der Diagnose-Informationen

Dx0	Bereichsunterschreitung: Messwert < Messbereichanfangswert – (1% \pm 0,5%) × Messbereich Für Elemente mit einem Temperaturbereich ab –270 °C gilt: Messwert < Messbereichanfangswert
Dx1	Bereichsüberschreitung (Messwert > Messbereichsendwert + $(1\% \pm 0,5\%) \times$ Messbereich)
Dx2	Drahtbruch (nur bei Temperaturmessung)
Dx3	Reserviert

 $x = Kanal 0 \dots 3$

3 Counter-Module XIOC-...CNT-100kHz

Aufbau

Das Counter-Modul XIOC-1CNT-100kHz stellt einen Kanal, das XIOC-2CNT-100kHz zwei Kanäle mit je einem Eingang für Impulse bis 100 kHz, einem Referenz-Eingang und zwei Digital-Ausgängen zur Verfügung.

Sie können einphasige und zweiphasige Inkrementalgeber (zweiphasige ohne/mit Vierfachauswertung) anschließen. Die Zählerart (Linear- oder Ring-Zähler) stellen Sie mit Hilfe von DIP-Schaltern ein.

Abbildung 31: Aufbau des Counter-Moduls

Nr.	Bezeichnung	Bemerkungen
1	Verriegelung	
2	LED-Anzeige	→ Seite 31
3	RESET-Taster	Setzt die Parameter auf "0". → Seite 31
4	Anschluss für Impulsgeber	30-poliger Anschluss (15 Pins × 2) für Stecker XIOC-TERM30-CNT4 → Seite 34, 35
5	Mode- Schalter (DIP)	Mit diesem Schalter stellen Sie den Modus/die Betriebsart ein. → Seite 32

RESET-Taster auf dem Modul

Mit dem RESET-Taster (mit einem spitzen Gegenstand) setzen Sie die Parameter in Grundstellung. Beim Drücken des Tasters leuchtet die ERROR-LED auf der LED-Anzeige rot auf.

LED-Anzeige

Die LEDs haben folgende Bezeichnung:

1A	1B	1M	PW	
2A	2B	2M	ER	
0	1	2	3	
XIOC-2CNT-100KHZ				

LED	Bedeutung						
1A, 1B	Signal des Gebers, Phase A, B; Kanal 1						
2A, 2B	Signal des Gebers, Phase A, B; Kanal 2						
1M, 2M	Referenz-Signal (Marker-Signal) des Gebers; Kanal 1, 2. Die LED leuchtet, wenn am Eingang Spannung anliegt, unabhängig von einer Invertierung der Signale.						
PW	Zeigt die Spannungsversorgung des Moduls an:						
	an: ok						
	 blinkt: Nach Eingabe falscher Parameter Bei Zählerart "Ring-Zähler" blinkt die LED, wenn Sie Spannung an die SPS gelegt haben. Nachdem Sie den Vorgabewert (WRITEPRESETVALUE) und den Vergleichs- wert (WRITESETTINGVALUE2) gesetzt haben, leuchtet die LED kontinuierlich. 						
	aus: Hardwarefehler						
ER	Fehler						
	 an: Nach Betätigung des RESET-Tasters auf dem Modul Hardwarefehler 						
0, 1, 2, 3	Ausgänge Y						

Programmierung

Die Programmierung erfolgt mit Hilfe der folgenden Funktionsbausteine:

- CounterControl
- ReadCounter
- WriteCounter
- CounterControl
- XIOC_IncEncoder.

Eine ausführliche Beschreibung finden Sie im Handbuch "Funktionsbausteine zur easySoft-CoDeSys". Dieses Handbuch ist als PDF-Datei verfügbar und kann unter <u>http://www.eaton.com/moeller</u> → Support heruntergeladen werden. Für ein schnelles Auffinden geben Sie als Suchbegriff "05010002" ein.

Die Funktionsbausteine sind in den Bibliotheksdateien "Counter.lib" (XC100) und "XC200_Counter.lib" enthalten.

Mode-/Betriebsartenschalter

ON									
1	2	3	4	5	6	7	8	9	10

Abbildung 32: Mode-/Betriebsartenschalter (Auslieferungszustand)

\rightarrow	Für die Einstellungen per DIP-Schalter müssen Sie das
	Modul ausbauen. Schalten Sie dazu die Versorgungs-
	spannung aus!

	Schalter	Position	Funktion	Kanal
Art des Zähler-Eingangs				
Mode 1	1	OFF	2-Phasen-Zähler, max. 100 kHz	1 + 2
	2	OFF		
Mode 2	1	ON	1-Phasen-Zähler, (Impulswechsel)	1 + 2
	2	OFF		
Mode 3	1	OFF	1-Phasen-Zähler, (Polaritätswechsel)	1 + 2
	2	ON		
Mode 4	1	ON	2-Phasen-Zähler mit 4-fach-Auswertung, max. 25 kHz	1 + 2
	2	ON		
Polarität des Referenz-Eingangs (Marker-Eingang)				
	3/4	OFF	Spannung am Eingang führt zum "O"-Signal	1/2
		ON	Spannung am Eingang führt zum "1"-Signal	
CPU-Stop → Counter				
	5/6	OFF	CPU-STOP → Counter STOP	1/2
		ON	CPU-STOP → Counter RUN	
Linear-/Ring-Zähler				
	7/8	OFF	Linear-Zähler	1/2
		ON	Ring-Zähler	

Abbildung 33: Mode 1 (2-phasig)

Phase A $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ Phase B $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ Phase B $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ Istwert $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $\begin{pmatrix} 2 \\ 3 \end{pmatrix}$ $\begin{pmatrix} 3 \\ 2 \end{pmatrix}$ $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ $\begin{pmatrix} 2 \\ 3 \end{pmatrix}$ $\begin{pmatrix} 2 \\ 3 \end{pmatrix}$ $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ $\begin{pmatrix} 2 \\ 3 \end{pmatrix} \\\begin{pmatrix} 2 \\ 3 \end{pmatrix} \\\begin{pmatrix} 2 \\ 3 \end{pmatrix} \\\begin{pmatrix} 2 \\ 3 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \end{pmatrix} \begin{pmatrix}$

Abbildung 34: Mode 2 (1-phasig)

Abbildung 35: Mode 3 (1-phasig)

Abbildung 36: Mode 4 (2-phasig mit 4-fach-Auswertung)

9/10

OFF

nicht belegt

-
Inkrementalgeber an den Counter-Eingang anschließen

Das Counter-Modul hat eine Eingangsbeschaltung, die den Anschluss von verschiedenen Inkrementalgebern zulässt. Es kann ein Geber mit einem differentiellen Ausgang (+/- 5 V DC) oder einem Open-Collector-Ausgang (12 bis 24 V DC) angeschlossen werden. In den folgenden Beispielen werden die verschiedenen Anschlussmöglichkeiten aufgezeigt.

Zwei Inkrementalgeber

Abbildung 37: Anschluss von zwei Inkrementalgebern (Beispiel)

① Encoder mit **12 bis 24 V DC** Open-Collector-Ausgängen

(2) Encoder mit +/– 5 V DC Differentialausgängen

Klemmen-Anordnung	Nr.	CH2	Nr.	CH1		Bedeutung der Signale
		XIOC-2CNT		XIOC-2CNT/ XIOC-1CNT		
	16	V _{IN} A	1	V _{IN} A	Phase A	Bei Verwendung des Spannungseinganges Anschluss an 12- bis 24-V-DC-Versorgungsspannung.
	17	A (+)	2	A (+)		Bei Verwendung des Differenzeinganges Anschluss an positive Polarität.
CH2 CH1	18	A ()	3	A ()		Bei Verwendung des Spannungseinganges Anschluss an das Open-Collector-Signal. Bei Verwendung des Differenzeinganges Anschluss an negative Polarität.
	19	V _{IN} B	4	V _{IN} B	Phase B	Bei Verwendung des Spannungseinganges Anschluss an 12- bis 24-V-DC-Versorgungsspannung.
CN1 000 000 000	20	B (+)	5	B (+)		Bei Verwendung des Differenzeinganges Anschluss an positive Polarität.
30	21	B (—)	6	B ()		Bei Verwendung des Spannungseinganges Anschluss an das Open-Collector-Signal. Bei Verwendung des Differenzeinganges Anschluss an negative Polarität.
	22	V _{IN} M	7	V _{IN} M	Marker (Referenz)	Bei Verwendung des Spannungseinganges Anschluss an 12- bis 24-V-DC-Versorgungsspannung.
	23	M (+)	8	M (+)		Bei Verwendung des Differenzeinganges Anschluss an positive Polarität.
	24	M ()	9	M (–)		Bei Verwendung des Spannungseinganges Anschluss an das Open-Collector-Signal. Bei Verwendung des Differenzeinganges Anschluss an negative Polarität.
	25 bis 27	nicht belegt	10 bis 12	nicht belegt		Hier darf nichts angeschlossen werden.
	28	Y2	13	Y0	Ausgang	Vergleich-Ausgang
	29	Y3	14	Y1		
	30	Com2	15	Com1		(–) Bezugspotential f ür die Ausg änge Y. F ür XIOC-2CNT gilt: Bezugspotential 1 und 2 sind unabh ängig.

Anm.: Die für die XIOC-1CNT-100 kHz und XIOC-2CNT-100 kHz definierten Pin-Nummern stimmen nicht mit denen des Stecker-Herstellers überein.

Abbildung 38: Encoder mit Differenzausgängen

Abbildung 39: Encoder mit Spannungsausgängen

Kabel mit Stecker für das Counter-Modul

Abbildung 40: Kabel mit Stecker (XIOC-TERM30-CNT4)

Nr.	Kanal 2	Farbe	Nr.	Kanal 1	Farbe	Bedeutu	ng der Signale
16	Vin A	rot/weiß	1	Vin A	schwarz		12 bis 24 V DC (offener Kollektor)
17	A(+)	orange/schwarz	2	A(+)	braun		(+) Differential-Ausgang
18	A()	grün/weiß	3	A()	rot		() Differential-Ausgang (offener Kollektor)
19	Vin B	blau/weiß	4	Vin B	orange	Phase B	12 bis 24 V DC (offener Kollektor)
20	B(+)	gelb/schwarz	5	B(+)	gelb		(+) Differential-Ausgang
21	B()	violett/weiß	6	B()	grün		(–) Differential-Ausgang (offener Kollektor)
22	Vin M	grau/schwarz	7	Vin M	blau	Refe-	12 bis 24 V DC (offener Kollektor)
23	M(+)	pink/ schwarz	8	M(+)	violett	renz (Marker)	(+) Differential-Ausgang
24	M(–)	blau/ schwarz	9	M(-)	grau	(maricer)	(–) Differential-Ausgang (offener Kollektor)
25	-	grün/ schwarz	10	-	weiß		-
26	-	pink/rot	11	-	pink		
27	-	pink/blau	12	-	blau		
28	Y2	pink/grün	13	Y2	hellgrün	Ausgang	offener Kollektor
29	Y3	rot/ schwarz	14	Y3	schwarz/weiß		offener Kollektor
30	Com2	orange/weiß	15	Com2	braun/weiß		0 V (offener Kollektor)

Inkrementalgeber mit differentiellen Ausgang

Abbildung 41: Inkrementalgeber mit differentiellen Ausgang anschließen (Beispiel)

Inkrementalgeber mit NPN-Transistor-Ausgang

Abbildung 42: Inkrementalgeber mit NPN-Transistor-Ausgang anschließen (Beispiel)

Inkrementalgeber mit NPN-Transistor-Ausgang (Open-Collector)

Abbildung 43: Inkrementalgeber mit NPN-Transistor-Ausgang (Open-Collector) anschließen (Beispiel)

Inkrementalgeber mit PNP-Transistor-Ausgang (Open-Collector)

Abbildung 44: Inkrementalgeber mit PNP-Transistor-Ausgang (Open-Collector) anschließen (Beispiel)

Geräte an den Ausgängen Y anschließen

Das Counter-Modul hat je Kanal zwei Transistor-Ausgänge (Open collector). Aus der Abbildung geht hervor, wie ein Fremdgerät anzuschließen ist.

Achtung!

Setzen Sie zum Schutz der internen Verdrahtung eine 0,5-A-Sicherung ein (siehe Abbildung).

Abbildung 45: Fremdgeräte an den Vergleichsausgang anschließen

Funktionsübersicht

Je nach Einstellung des Mode-/Betriebsartenschalters am Modul hat ein Zählerkanal die Funktion eines Linear-Zählers oder Ring-Zählers.

Linear-Zähler

Der Zählbereich des Linear-Zählers beginnt mit dem Startwert "0" und endet mit dem Endwert 4294967295 (FFFFFFFF_{hex}). Wird der Zähler freigeschaltet, startet er mit "0" und zählt alle eintreffenden Impulse – je nach Zählrichtung vorwärts oder rückwärts. Nach Überschreitung des Endwertes beginnt der Zähler wieder mit "0".

Abbildung 46: Zählbereich des Linear-Zählers

Vergleichswert parametrieren, Modulausgänge setzen

Um in Abhängigkeit eines definierten Zählerstands eine Aktion auszuführen, können Sie einen Vergleichswert setzen. Er wird ständig mit dem Istwert verglichen. Bei Gleichheit können zwei Arten von Ausgängen angesteuert werden. Zur schnellen Reaktion sind die Ausgänge am Modul herausgeführt.

Der "Latch"-Ausgang (=), Equal Flag:

Der "Latch"-Ausgang wird bei Gleichheit gesetzt. Er wird durch das "="-Zeichen definiert. Als interner Merker des "Latch"-Ausgangs dient das Equal Flag. Ausgang und Flag bleiben so lange gesetzt, bis Sie sie zurücksetzen.

Der "Level"-Ausgang (>):

Der "Level"-Ausgang wird auf "1" gesetzt, wenn der Istwert größer als der Vergleichswert ist. Sinkt der Istwert wieder unter den Vergleichswert, wird er auf "0" gesetzt. Der "Level"-Ausgang wird durch das Zeichen ">" dargestellt.

Sie können den Vergleichswert zu Beginn oder während des Betriebs am "CounternEnable"-Eingang setzen. Dies ist unabhängig von der Freischaltung des Zählers.

Beispiel:

- Zählrichtung: vorwärts
- Vergleichswert: 4294967200

* <u>198</u> * <u>199</u> * <u>200</u> * = 4294967	*201 *295	0 1 2
1 Latch-Ausgang (=) Equal Flag 0		
¹ Level-Ausgang (>) 0		
¹ Overflow Flag 0		

Abbildung 47: Modulausgänge setzen

Overflow Flag

Das Overflow Flag wird gesetzt, wenn der Istwert von FFFFFFF $_{hex}$ auf "0" erhöht wird. Mit dem Befehl CLEAROVERFLOW setzen Sie es zurück.

Istwert ändern

Den Istwert können Sie während des Zählvorgangs ändern. Dies ist unabhängig von der Freigabe des Zählers möglich.

Anwendung des Referenz-Eingangs

Inkrementalgeber senden pro Umdrehung ein Referenzsignal. Dieses kann dazu benutzt werden, den aktuellen Istwert mit einem parametrierten Vorgabewert zu überschreiben. Um das Referenzsignal zu verarbeiten, ist der Referenz-Eingang freizuschalten.

Beispiel für einen Linear-Zähler mit den Funktionen:

- Vergleichswert und Referenzsignal abfragen
- Ausgänge rücksetzen.

Abbildung 48: Beispiel für einen Linear-Zähler mit den Funktionen "Vergleichswert und Referenzsignal abfragen" und "Ausgänge rücksetzen"

Ring-Zähler

Der Zählbereich wird durch den Start- und Endwert angegeben. Dabei muss der Startwert kleiner als der Endwert sein.

Sobald die Freigabe des Zählers erfolgt ist, wird der Startwert gesetzt und alle eintreffenden Impulse gezählt. Je nach Zählrichtung (vor- oder rückwärts) werden folgende Istwerte angezeigt.

Beispiel:

- Startwert = 10
- Endwert = 248

Abbildung 49: Zählbereich des Ring-Zählers

Bei einem vorwärts getakteten Zähler wird bis zum Endwert + 1 gezählt, dann vom Startwert wieder vorwärts. Wird rückwärts getaktet, ist der nächste Wert der Startwert – 1, dann folgt der Endwert.

Generell gilt: Min. Startwert = 0; max. Endwert = FFFFFFF_{hex}.

Vergleichswert parametrieren, Modulausgang setzen Um in Abhängigkeit eines definierten Zählerstands eine Aktion auszuführen, können Sie einen Vergleichswert setzen. Der Vergleichswert muss zwischen dem parametrierten Startwert und Endwert liegen. Er wird ständig mit dem Istwert verglichen. Bei Gleichheit kann ein "Latch"-Ausgang (=) gesetzt werden. Zur schnellen Reaktion ist er am Modul herausgeführt. Als interner Merker des "Latch"-Ausgangs dient das Equal Flag. Ausgang und Flag bleiben so lange gesetzt, bis Sie sie zurücksetzen.

Sie können den Vergleichswert zu Beginn oder während des Betriebs setzen. Dies ist unabhängig von der Freischaltung des Zählers am "CounternEnable"-Eingang. Beispiel:

- Zählrichtung: vorwärts
- Parameter: Startwert: 0, Endwert: 294, Vergleichswert: 200

Abbildung 50: Modulausgang (Latch) setzen

Istwert ändern

Den Istwert können Sie während des Zählvorgangs ändern. Dies ist unabhängig von der Freigabe des Zählers möglich.

Voraussetzung: Startwert \leq Istwert \leq Endwert.

Beispiel für einen Ring-Zähler mit den Funktionen:

- Vergleichswert und Referenzsignal abfragen
- Ausgänge rücksetzen
- Istwert setzen.
- → Abbildung 51

Abbildung 51: Beispiel für einen Linear-Zähler mit den Funktionen "Vergleichswert und Referenzsignal abfragen" und "Ausgänge rücksetzen"

Weitere Funktionen für Linear- und Ring-Zähler

Unabhängig von der Art des Zähler-Eingangs (Mode 1 bis 4) können Sie für jeden Kanal die Zählerart (Linear- oder Ring-Zähler) am Mode-/Betriebsartenschalters des Moduls einstellen → Seite 32. Der Zählerart können Sie noch weitere Funktionen zuordnen, die Sie über die Schalter einstellen:

Zähler RUN/STOP bei CPU im STOP

- Zähler RUN: Nimmt die CPU den Stopp-Zustand an, können die Geber-Impulse weiter gezählt werden.
- Zähler STOP: Im Stopp-Zustand der CPU werden keine Impulse gezählt

Polarität des Referenz-Eingangs

Diese Funktion ist nur beim Linear-Zähler aktiv.

- Schalter OFF: Spannung am Eingang führt zum "O"-Signal.
- Schalter ON: Spannung am Eingang führt zum "1"-Signal.

Zählereigenschaften konfigurieren

Tabelle 10: Konfigurationsmöglichkeiten

	Betrifft	Linear-Zähler	Ring-Zähler
	Startwert	0	beliebig
	Endwert	FFFFFFF _{hex}	beliebig
hlers	Overflow Flag	",1", wenn Istwert von FFFFFFFF \rightarrow 0 springt	0
des Zä	Underflow Flag	",1", wenn Istwert von $0 \rightarrow FFFFFFFF$ springt	0
ıkeiten	Overflow Flag löschen	Overflow Flag "0" setzen	-
möglich	Underflow Flag löschen	Underflow Flag "0" setzen	-
rage	Zähler freigeben	TRUE am Eingang Counte	ernEnable
Abfi	Zähler sperren	False am Eingang Counte	ernEnable
	Ausgang (=)/ Equal Flag	TRUE, wenn Istwert = Ve \rightarrow Abbildung 52	rgleichswert
	Ausgang (>)	TRUE, wenn Istwert > Vergleichswert → Abbildung 53	-
ichswert	Ausgang (=)/ Equal Flag löschen	Ausgang (=) und Equal F	lag "0" setzen
Verglei	Ausgang (=) frei /sperren	Eingang CompareOutput	nEnable
	Referenz- Eingang = 1	Vorgabewert über- schreibt Istwert → Abbildung 53	-
Eingang	Referenz- Eingang frei/ sperren	Eingang "Reference- MarkernEnable"	-
Referenz-	Referenz- Eingang Signal invertieren	Mit DIP-Schalter	

Die Abbildung zeigt für den Linear-und Ring-Zähler den Zustand des Latch-Ausgangs (=) in Abhängigkeit der Zählfolge:

Abbildung 52: Vergleichswertabfrage

Die Abbildung zeigt für den Linear-Zähler

- den Zustand des Level-Ausgangs (>) in Abhängigkeit der Zählfolge
- die Übernahme des Vorgabewertes P, gesteuert vom Referenzsignal.

Abbildung 53: Vergleichswertabfrage und Referenz-Signalabfrage

Ablauf der Befehle

Nachfolgend sind die Befehle in der Reihenfolge beschrieben, die den Ablauf nach dem Start der Steuerung widerspiegelt. Diese Reihenfolge sollten Sie auch bei der der Programmierung einhalten. Je nach Anwendung sind nicht alle Befehle erforderlich. Bei Befehlen, die nur für den Linear-Zähler oder den Ring-Zähler gelten, ist dies erwähnt. Der Zählbereich beim Linear-Zähler liegt zwischen Startwert "O" und Endwert "FFFFFFF_{hex}".

Die Eingangswerte an den Bausteinen "CounterControl", "WriteCounter" und "CounterFlags" werden mit einer positiven Flanke am Eingang "Strobe" übernommen.

Startwert setzen	Nur Ring-Zähler:
	 Tragen Sie am Eingang "Command" des Bausteins "WriteCounter" den Befehl WRITEPRESETVALUE und am Eingang "Data" den Startwert ein.
	Achten Sie darauf, dass die Bedingung "Startwert < Endwert" erfüllt wird.
Endwert setzen	Nur Ring-Zähler:
	 Tragen Sie am Eingang "Command" des Bausteins "WriteCounter" den Befehl WRITESETTINGVALUE1 und am Eingang "Data" den Endwert ein.
Vergleichswert setzen	Tragen Sie am Eingang "Command" des Bausteins "WriteCounter" den Befehl WRITESETTINGVALUE1 (Linear-Zähler) bzw. WRITESETTINGVALUE2 (Ring-Zähler) und am Eingang "Data" den Vergleichswert ein.
	Sie können jeden Kanal einzeln oder beide zusammen ansprechen.
	Den Vergleichswert können Sie zu Beginn oder während des Betriebs setzen. Dies ist unabhängig von der Freischaltung des Zählers am "CounternEnable"-Eingang des Funktionsbausteins "CounterControl".
	Wenn der Istwert mit dem Vergleichswert übereinstimmt, werden die Modul-Ausgänge gesetzt. Das mit dem Ausgang verbundene Equal Flag wird ebenfalls gesetzt. Sie können das Flag mit dem Befehl READFLAGS am Baustein "CounterFlags" abfragen.
	Das Equal Flag behält den Zustand, wenn der Status der CPU von RUN $ ightarrow$ STOP bzw. STOP $ ightarrow$ RUN wechselt.
Modulausgänge dem Vergleichswert 1/2 zuordnen	Dem Vergleichswert 1 (Linear-Zähler) bzw. Vergleichswert 2 (Ring-Zähler) können Sie mehrere Modul- ausgänge (Yn, n = 1, 2, 3, 4) und die Bedingungen "=" und/oder ">", die zum Setzen der Ausgänge führen, zuordnen (bei Ring-Zähler ist nur die Bedingung "=" möglich).
	 Dazu erzeugen Sie eine Bitkombination (16 Bit), z. B. 0021_{hex}, die am Eingang "OutputSpecification" des Bausteins "CounterFlags" angelegt wird (nähere Informationen hierzu finden Sie bei der Beschreibung des Funktionsbausteins "CounterFlags" im Handbuch "Funktionsbausteine zur easySoft-CoDeSys", MN05010002Z-DE; frühere Bezeichnung AWB2786-1456D). Legen Sie am Eingang "Command" den Befehl SPECIFYOUTPUT und am Eingang "Strobe" ein "1"-Signal an.
	Der "CounterEnable"-Eingang (Flag) darf nicht gesetzt sein. Mit der Bitkombination "0021" wird der (Latch-) Ausgang Y0 auf "1" gesetzt, wenn die Bedingung "Istwert = Vorgabewert" erfüllt wird. Er bleibt so lange gesetzt, bis Sie ihn am Eingang "ClearEqualn" des Bausteins "CounterControl" zurücksetzen.
	Nur Linear-Zähler: Der (Level-) Ausgang Y1 wird auf "1" gesetzt, wenn die Bedingung "Istwert > Vorgabewert" erfüllt wird. Verringert sich der Istwert, bis er kleiner als der Vergleichswert 2 ist, wird der Ausgang automatisch auf "0" gesetzt.
Modulausgang freigeben	Modulausgänge sind der "Latch"-Ausgang (=) und der "Level"-Ausgang (>). Den Level-Ausgang besitzt nur der Linear-Zähler.
	 Zur Freigabe der Ausgänge legen Sie an den Eingang "CompareOutputnEnable" des Bausteins "CounterControl" ein "1"-Signal an.

Eine Sperrung des Ausgangs wirkt sich nicht auf das Equal Flag aus.

Vorgabewert setzen	Nur Linear-Zähler:
	Der Befehl wird ausgeführt, wenn der Eingang "CounternEnable" des Bausteins "CounterControl" "0"-Signal führt.
	 Tragen Sie am Eingang "Command" des Bausteins "WriteCounter" den Befehl WRITEPRESETVALUE und am Eingang "Data" den Vorgabewert ein.
	Sendet der Geber ein Referenz-Signal, überschreibt der Vorgabewert den Istwert.
Referenz-Eingang	Nur Linear-Zähler:
freigeben	Legen Sie an den Eingang "ReferenceMarkernEnable" (n = 1, 2) des Bausteins "CounterControl" ein "1"-Signal an, um die Referenzsignale des Gebers zu empfangen.
Zähler-Eingang freigeben	 Legen Sie an den Eingang "CounternEnable" des Bausteins "CounterControl" ein "1"-Signal an, um die Signale des Gebers zu empfangen.
	Beim Ring-Zähler kann die Freigabe erst erfolgen, nachdem Sie Start- und Endwert gesetzt haben.
Neuen Istwert setzen	► Tragen Sie am Eingang "Command" des Bausteins "WriteCounter" den Befehl WRITECURRENTVALUE und am Eingang "Data" den Istwert ein.
Latch-Ausgang und Equal Flag (EQ) rücksetzen	► Legen Sie an den Eingang "ClearEqualn" des Bausteins "CounterControl" ein "1"-Signal an, um den Ausgang und das EqualFlag auf "0"-Signal zu setzen.
	Ausgang und Flag können erst wieder gesetzt werden, wenn Sie ein "0"-Signal an den Eingang anlegen.
Startwert rücklesen	Nur Ring-Zähler:
	► Tragen Sie am Eingang "Command" des Bausteins "ReadCounter" den Befehl READPRESETVALUE ein.
	Sobald Sie den Befehl eingetragen haben, werden die Werte an den Ausgängen "DataLowChanneln" bzw. "DataHighChanneln", "Outputn_UDINT" und "Outputn_DINT" angezeigt.
	Der Befehl gilt für beide Kanäle.
Endwert rücklesen	Nur Ring-Zähler:
	 Tragen Sie am Eingang "Command" des Bausteins "ReadCounter" den Befehl READSETTINGVALUE1 ein.
	Sobald Sie den Befehl eingetragen haben, werden die Werte an den Ausgängen "DataLowChanneln" bzw. "DataHighChanneln", "Outputn_UDINT" und "Outputn_DINT" angezeigt.
	Der Befehl gilt für beide Kanäle.
Vergleichswert rücklesen	► Tragen Sie am Eingang "Command" des Bausteins "ReadCounter" den Befehl READSETTINGVALUEn ein.
	Sobald Sie den Befehl eingetragen haben, werden die Werte an den Ausgängen "DataLowChanneln" bzw. "DataHighChanneln", sowie "Outputn_UDINT" und "Outputn_DINT" angezeigt.
	Der Befehl gilt für beide Kanäle.
Vorgabewert rücklesen	Nur Linear-Zähler:
	► Tragen Sie am Eingang "Command" des Bausteins "ReadCounter" den Befehl READPRESETVALUE ein.
	Sobald Sie den Befehl eingetragen haben, werden die Werte an den Ausgängen "DataLowChanneln" bzw. "DataHighChanneln", sowie "Outputn_UDINT" und "Outputn_DINT" angezeigt.
	Der Befehl gilt für beide Kanäle.

Aktuellen Istwert lesen	 Tragen Sie am Eingang "Command" des Bausteins "ReadCounter" den Befehl READCURRENTVALUE ein.
	An den Ausgängen "DataLowChanneln" bzw. "DataHighChanneln", sowie "Outputn_UDINT" und "Outputn_DINT" wird kontinuierlich der aktuelle Istwert angezeigt.
	Der Befehl gilt für beide Kanäle.
Flags rücklesen	Dieser Befehl wird auf Seite 44 ausführlich beschrieben!
Overflow-Flag löschen	Nur Linear-Zähler:
	Tragen Sie am Eingang "Command" des Bausteins "CounterFlags" den Befehl CLEAROVERFLOW ein, um das Flag zu löschen.
	Das Flag wird gesetzt, wenn der Istwert von FFFFFFF _{hex} auf 00000000 _{hex} wechselt.
	Den Zustand des Flags fragen Sie mit dem Befehl READFLAGS am Baustein "CounterFlags" ab. Am Ausgang "StatusChanneln" des Bausteins "CounterControl" werden 16 Bit angezeigt.
	Bit 9 (OF) zeigt den Zustand des Overflow-Flags an.
Underflow-Flag löschen	Nur Linear-Zähler:
	 Tragen Sie am Eingang "Command" des Bausteins "CounterFlags" den Befehl CLEARUNDERFLOW ein, um das Flag zu löschen.
	Das Flag wird gesetzt, wenn der Istwert von 0000000_{hex} auf FFFFFFF $_{hex}$ wechselt.
	Den Zustand des Flags fragen Sie mit dem Befehl READFLAGS am Baustein "CounterFlags" ab. Am Ausgang "StatusChanneln" des Bausteins "CounterControl" werden 16 Bit angezeigt.
	Bit 8 (UF) zeigt den Zustand von dem Underflow-Flag an.

Flags rücklesen

Legen Sie am Eingang "Command" des Bausteins "CounterFlags" den Befehl READFLAGS an, um die Bausteinausgänge "Outputs", "StatusChanneln", OutputsChanneln" zu aktualisieren. Zur Ausführung des Befehls muss am "Strobe"-Eingang eine positive Flanke anliegen.

Ihre Zustände werden eingefroren, bis eine erneute Flanke auftritt.

Die Zustände von "StatusChanneln" und "OutputsChanneln" werden für die Kanäle "1" und "2" angezeigt.

• Outputs: Von den 16 Bit haben nur Bit "0" bis 3 eine Bedeutung:

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Wert	0	0	0	0	0	0	0	0	0	0	0	0	Y3	Y2	Y1	Y0

Bedeutung der Bit: Y0 bis Y3: 0: Ausgang "0"-Signal

1: Ausgang "1"-Signal

• StatusChanneln

Bit	1 5	1 4	1 3	1 2	1 1	10	9	8	7	6	5	4	3	2	1	0
Wert	0	0	0	0	0	U/ D	0 F	U F	0	0	0	E Q	E C	O E	M E	C E

Bedeutung der Bit:

Die Zustände der Bit (außer EC) bleiben bei einem CPU-Zustandswechsel RUN \rightarrow Stop oder STOP \rightarrow RUN erhalten.

CE	Zustand Zähler (Defaultwert = 0) 0: keine Freigabe 1: Freigabe erfolgt
ME	Zustand Referenz-Eingang (Defaultwert = 0) 0: keine Freigabe 1: Freigabe erfolgt
OE	Zustand Ausgang Y (Defaultwert = 0) 0: keine Freigabe 1: Freigabe erfolgt
EC	Equal Flag löschen aktiv (Defaultwert = 0) Wird die Funktion (Eingang) "ClearEqualn" des Bausteins CounterControl auf TRUE gesetzt, ist EC = FALSE. Wird sie auf FALSE gesetzt, ist EC = TRUE.
EQ	Zustand Equal Flag Es wird gesetzt, wenn Istwert = Vergleichswert. Es bleibt gesetzt, bis am Eingang "ClearEqualn" des Bausteins "CounterControl" ein "1"-Signal angelegt wird.
UF	Zustand Underflow Flag Es wird gesetzt, wenn der Istwert von "0" auf "4294967296" (FFFFFFFhex) wechselt. Es bleibt gesetzt, bis am Eingang "Command" des Bausteins "CounterFlags" der Befehl CLEARUNDERFLOW eingetragen wird. Die Ausgangs- worte "Outputs", "StatusChanneln", "OutputsChanneln" werden auf "0" gesetzt.
OF	Zustand Overflow Flag Es wird gesetzt, wenn der Istwert von 4294967296 (FFFFFFFF _{hex}) auf "0" wechselt. Es bleibt gesetzt, bis am Eingang "Command" des Bausteins "CounterFlags" der Befehl CLEAROVERFLOW eingetragen wird. Die Ausgangs- worte "Outputs", "StatusChanneln", "OutputsChanneln" werden auf "0" gesetzt.
U/D	Zustand Up/Down 0: wenn der Istwert von "n" auf "n – 1" gewechselt hat 1: wenn der Istwert von "n" auf "n + 1" gewechselt hat.

• OutputsChanneln

Die im Wort enthaltenen Bit zeigen an, von welcher Bedingung ein Ausgang abhängig ist.

Bedeutung der Bit:

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Wert	0	0	>	=	0	0	>	=	0	0	>	=	0	0	>	=
Ausgang	Y3				Y2				Y1				Y0			

Beispiel:

0021_{hex} (0000 0000 0010 0001) zeigt an, dass

- der Ausgang Y1 gesetzt wird, wenn der Istwert > Sollwert ist
- der Ausgang Y0 gesetzt wird, wenn der Istwert = Sollwert ist.

Zustandsanzeige in der Steuerungskonfiguration

In der Steuerungskonfiguration zeigt das Zählermodul in 5 Worten seine Zustände an:

- 1. Wort: Status
- 2. Wort: Eingangsdaten Low-Wort, Kanal 1
- 3. Wort: Eingangsdaten High-Wort, Kanal 1
- 4. Wort: Eingangsdaten Low-Wort, Kanal 2
- 5. Wort: Eingangsdaten High-Wort, Kanal 2

Das Statuswort setzt sich aus den folgenden Bits zusammen:

Kanal					Kana	Kanal 2		Kanal 1		2			Kanal 1			
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bedeutung	0	0	0	0	OF2	UF2	OF1	UF1	EQ2	OE2	ME2	CE2	EQ1	OE1	ME1	CE1

Bedeutung der Bit:

Die Zustände der Bit (außer EC) bleiben bei einem CPU-Zustandswechsel RUN \rightarrow Stop oder STOP \rightarrow RUN erhalten.

CE	Zustand Zähler (Defaultwert = 0) 0: keine Freigabe 1: Freigabe erfolgt
ME	Zustand Referenz-Eingang (Defaultwert = 0) 0: keine Freigabe 1: Freigabe erfolgt
OE	Zustand Ausgang Y (Defaultwert = 0) 0: keine Freigabe 1: Freigabe erfolgt
EQ	Zustand Equal Flag 0: keine Aktion 1: wenn Istwert = Vergleichswert Es bleibt gesetzt bis am Eingang "CompareOutputn Enable" des Bausteins "CounterControl" ein "0"-Signal angelegt wird.
UF	Zustand Underflow Flag Es wird gesetzt, wenn der Istwert von "O" auf "4294967296" (FFFFFFFhex) wechselt. Es bleibt gesetzt, bis Sie am Eingang "Command" des Bausteins "CounterFlags" den Befehl CLEARUNDERFLOW eintragen. Die Ausgangsworte "Outputs", "StatusChanneln", "OutputsChanneln" werden auf "O" gesetzt.
OF	Zustand Overflow Flag Es wird gesetzt, wenn der Istwert von 4294967296 (FFFFFFFhex) auf "O" wechselt. Es bleibt gesetzt, bis Sie am Eingang "Command" des Bausteins "CounterFlags" den Befehl CLEAROVERFLOW eintragen. Die Ausgangsworte "Outputs", "StatusChanneln", "OutputsChanneln" werden auf "O" gesetzt.

FLAG-Übersicht

Im Folgenden werden alle Flags und ihre Bedeutung aufgeführt

Flag	Bezeichnung	Bedeutung
CE	CounterEnable	Impulseingänge sind freigegeben (1)/ gesperrt (0) ¹⁾
ME	ReferenceMarker- Enable	Referenz-Eingang ist freigegeben (1)/ gesperrt (0) ¹⁾
OE	OutputEnable	Latch-Ausgang (=) freigegeben (1)/ gesperrt (0) ¹⁾
EQ	Equal Flag	Equal Flag wird gesetzt, wenn lstwert = Vergleichswert. ¹⁾
EC	ClearEqual	Clear Equal Flag: Nach dem Setzen ("1"-Signal) setzt es den Latch-Ausgang (=) auf "0"-Signal. Das EC-Flag muss zurückgesetzt werden ("0"-Signal).
UF	Underflow	Es wird gesetzt, wenn der lstwert von "0" auf 4294967296 (FFFFFFFF _{hex}) wechselt. Es bleibt gesetzt, bis der Befehl CLEAROVERFLOW am Baustein "CounterFlags" eingetragen wird.
OF	Overflow	Es wird gesetzt, wenn der lstwert von 4294967296 (FFFFFFF _{hex}) auf "0" wechselt. Es bleibt gesetzt, bis der Befehl CLEAROVERFLOW am Baustein "CounterFlags" eingetragen wird.

1) Defaultwert = 0

Alle Flags (außer EC) behalten ihren Zustand bei, wenn der Zustand der CPU von RUN \rightarrow STOP bzw. STOP \rightarrow RUN wechselt.

Funktionsablauf zur Impulsverarbeitung (Beispiel)

Aus den folgenden Beispielen geht der Funktionsablauf zur Impulsverarbeitung hervor.

Aktionen, die Sie selber ausführen müssen, sind mit dem Symbol ▶ gekennzeichnet. Das Ausführen der Funktionen erfolgt mit Befehlen, die Sie an den Baustein-Eingängen eintragen, oder durch das Anlegen von "0"-/"1"-Signalen an den Eingängen des Bausteins "CounterControl". Befehle sind mit Großbuchstaben, Eingänge mit Normalschrift aufgeführt. Die in den Klammern stehenden Werte geben den Eingangszustand an.

Linear-Zähler

Funktion	Befehl/Eingänge
Vergleichswert1 setzen	WRITESETTINGVALUE1
 Ausgangsspezifikation setzen (zur Erstellung der Spezifikation sind die Modulausgänge dem Vergleichswert1 zuzuordnen) 	SPECIFYOUTPUT
 Vorgabewert setzen (bei Referenzierung) 	WRITEPRESETVALUE
 Zählereingänge freigeben¹⁾ 	CounternEnable (1)
► Latch-/Level-Ausgänge freigeben ¹⁾	CompareOutputnEnable (1)
Zum Referenzieren	
► Referenz-Eingänge freigeben ¹⁾	ReferenceMarkernEnable (1)
Referenziervorgang einleiten	

Wird das Referenzsignal empfangen, überschreibt der Vorgabewert den Istwert, z. B. Istwert = 0.

► Referenz-Eingänge sperren ReferenceMarkernEnable (0)

Zählvorgang starten (Impulse werden gezählt)

- Wenn lstwert = Vergleichswert1:
- Latch-Ausgang (=) wird auf "1"-Signal gesetzt
- Equal Flag wird auf "1"-Signal gesetzt
- Zählvorgang stoppen
- Wenn lstwert > Vergleichswert1:
- Level-Ausgang (>) wird auf ".1"-Signal gesetzt

 Latch-Ausgang und Equal Flag rück- setzen: ClearEqual-Flag setzen (Equal-Flag wird auf "0"-Signal gesetzt, Latch- Ausgang (=) wird auf "0"-Signal gesetzt) 	Clear Equaln (1)			
ClearEqual-Flag rücksetzen	ClearEqualn (0)			
Neuen Vergleichswert1 setzen	WRITESETTINGVALUE1			
Zählerstand wechselt von FFFFFFF _{hex} \rightarrow 0: Overflow Flag wird gesetzt				
 Overflow Flag rücksetzen 	CLEAROVERFLOW			
Zählerstand wechselt von $0 \rightarrow FFFFFFF_{her}$	_x : Underflow Flag wird gesetzt			
Underflow Flag rücksetzen	CLEARUNDERFLOW			
4) Konne alstabes tata asta sta sur lasarda a	Church a Element of			

 Kann gleichzeitig, mit einem Impuls am Strobe-Eingang ("CounterControl"-Baustein), erfolgen.

Ring-Zähler

Funktion	Befehl/Eingänge			
► Startwert setzen	WRITEPRESETVALUE			
► Endwert setzen	WRITESETTINGVALUE1			
► Vergleichswert2 setzen	WRITESETTINGVALUE2			
 Ausgangsspezifikation setzen (zur Erstellung der Spezifikation sind die Modulausgänge dem Vergleichswert2 zuzuordnen) 	SPECIFYOUTPUT			
 Zählereingänge freigeben¹⁾ 	CounternEnable (1)			
► Latch-Ausgang freigeben ¹⁾	CompareOutputnEnable (1)			
Zählvorgang starten (Impulse werden	n gezählt)			
 Wenn Istwert = Vergleichswert2: Latch-Ausgang (=) wird auf "1"-Signal Equal Flag wird auf "1"-Signal gesetzt Zählvorgang stoppen 	gesetzt			
 Latch-Ausgang und Equal Flag rück- setzen: ClearEqual-Flag setzen (Equal-Flag wird auf "0"-Signal gesetzt, Latch- Ausgang (=) wird auf "0"-Signal gesetzt) 	Clear Equaln (1)			
ClearEqual-Flag rücksetzen	ClearEqualn (0)			
► Neuen Vergleichswert2 setzen	WRITESETTINGVALUE2			

•••

1) Kann gleichzeitig, mit einem Impuls am Strobe-Eingang ("CounterControl"-Baustein), erfolgen.

4 Counter-Analog-Modul XIOC-2CNT-2AO-INC

Eigenschaften

Das Counter-Analog-Modul stellt zwei Kanäle zum Vor- und Rückwärtszählen mit je einem Referenzeingang und einem Analog-Ausgang (\pm 10 V) zur Verfügung.

Die Zähleingänge und der Referenzeingang können 5-V-DC-Differenzsignale (RS422) eines Inkrementalgebers verarbeiten. Die Inkrementalgeber werden über den Klemmblock XIOC-TERM-18T oder XIOC-TERM-18S mit dem Modul verbunden. Die Geber können von dem Modul versorgt werden. Die Versorgung wird aus dem Netzteil der CPU gespeist.

 \rightarrow

Kontrollieren Sie den Stromverbrauch aller Module.

Das Modul ist ein Standard-IO-Modul. Es kann auf allen I/O-Steckplätzen verwendet werden.

Abbildung 54: Anschlüsse des Zählermoduls

LEDs

Das XIOC-2CNT-2AO-INC besitzt acht LEDs zur Statusanzeige. Diese sind wie folgt belegt:

Kennzeichnung	Bedeutung	Farbe
ER	Error	Rot
A	Signal A	Grün
В	Signal B	Grün
R	Referenzsignal	Grün

Die Error-LED leuchtet, wenn die Flanken der Signale A und B gleichzeitig ansteigen oder abfallen.

Programmieren und Konfigurieren

Zur Abfrage der Moduleingänge und zur Ansteuerung der Analog-Ausgänge können Sie wählen zwischen:

- Direkter Zugriff über das Ein-/Ausgangsabbild
- Zugriff über Funktionsbausteine.

Die Funktionsbausteine sind in der Bibliotheksdatei "Counter_Analog.lib" enthalten und haben folgende Funktion:

XIOC_2CNT2AO_INCReferenzierung und Abfragen der Zählerwerte

XIOC_2CNT2AO_ANALOGSetzen der Analog-Ausgänge

Zusätzlich müssen Sie im Konfigurator der easySoft-CoDeSys folgende Parameter angeben:

- Referenzwert
- 1-, 2-, 4-Flanken-Auswertung
- Anzahl der Referenzierungen (einmal, permanent)

Informationsaustausch über das Ein-/Ausgangsabbild

Über das Eingangsabbild erhalten Sie folgende Informationen:

- Zustände der Signale A, B, R
- Error-Meldung (Error)
- Referenzzustand (Referenced)
- Nulldurchgangserkennung (Zero Crossing)
- Rückmeldung "Referenzieren aktiviert" (Referencing Activated)
- Zählerstand.

Über das Ausgangsabbild können Sie folgende Informationen steuern:

- Sperren der Zählimpulse (Hold)
- Referenzieren aktivieren (Activate Referencing)
- Reset ausführen (Reset)
- Nulldurchgang quittieren (Zero Crossing Acknowledge)
- Error-Meldung quittieren (Error Acknowledge)
- Analogwert schreiben.

Eingangsabbild

Ein Kanal belegt folgende Eingangsbit und -worte, die Sie abfragen können:

IWn:	Zustandsmeldungen Kanal 0 und 1, \rightarrow Tabelle 11			
IWn+2:	Zählerwert, lower Word, Kanal 0			
IWn+4:	Zählerwert, higher Word, Kanal 0			
IWn+6:	Zählerwert, lower Word, Kanal 1			
IWn+8:	Zählerwert, higher Word, Kanal 1			
("n" ergibt sich aus der Konfiguration/Steckplatz)				

Tabelle 11: IWn: Zustandsmeldungen Kanal 0 und 1

Kanal	Kanal (Channel) 1								Kanal (Channel) 0							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bedeutung	tbd	RefAc1	ZC1	Ref1	Error1	R1	B1	A1	tdb	RefAc0	ZC0	Ref0	Error0	RO	B0	A0

Bedeutung der Bit:

Bit	Bezeichnung	Zustand	Bedingung
0/8	Signal A	1	$A = 1^{"}$ und $IA = 0^{"}$
0/0	Signal / Y	0	$\Delta = 0^{\prime\prime} \text{ und } \Delta = 1^{\prime\prime}$
	<u> </u>	0	
1/9	Signal B	1	B = "1" und B = "0"
		0	B = "0" und $BO = "1"$
2/10	Signal R	1	R = "1" und $!R = "0"$
		0	R = "0" und $!R = "1"$
3/11	Error	1	Interner Fehler (A und B Flanken gleichzeitig)
		0	o.k.
4/12	Ref (Referenced)	1	Referenziert
		0	Nicht referenziert
5/13	ZC (Zero Crossing)	1	Zählerwert = 0
		0	Zählerwert ≠ 0
6/14	RefAc (Referencing Activated)	1	Referenzieren aktiviert (Setzen mit AcRef)
		0	Referenzieren nicht aktiviert
7	tbd	Х	Nicht definiert

ZC = Zero Crossing (Nulldurchgangsbit) Das Nulldurchgangsbit wird gesetzt, wenn der Zählerwert = 0 ist. Wenn Sie im Programm des Ausgangsbit ZCA auf "1" setzen, wird das ZC-Bit zurückgesetzt.

Ausgangsabbild

Jeder Kanal hat folgende Ausgangsbit und -worte, die Sie setzen können:

QWn:	Funktionen steuern, Kanal 0 und 1, → Tabelle 12
QWn+2:	Bit 0 bis 11: Analog Ausgang, Kanal 0
QWn+4:	Bit 0 bis 11: Analog Ausgang, Kanal 1

("n" ergibt sich aus der Konfiguration/Steckplatz)

Tabelle 12: Funktionen steuern, Kanal 0 und 1

Kanal	al Kanal (Channel) 1								Kanal (Channel) 0							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bedeu -tung	tbd	tbd	tbd	ErAck1	ZCA1	Reset1	AcRef1	Hold1	tbd	tbd	tbd	ErAck0	ZCA0	Reset0	AcRef0	Hold0

Tabelle 13: Bedeutung der Bit:

Bit	Bezeichnung	Zustand	Bedingung
0/8	Hold	0	Freigabe der Eingangszählimpulse (Signale A +B)
		1	Sperren der Eingangszählimpulse
1/9	AcRef ¹⁾ (Activate Referencing)	1	Referenzieren aktivieren
		0	Referenzieren nicht aktivieren
02/10	Reset	0 →1	Asynchroner Reset (Zählerwert wird auf den Referenzwert gesetzt) (L \rightarrow H-Flanke)
		0	-
03/11	ZCA (Zero Crossing Acknowledge)	0 →1	Rücksetzen des Nulldurchgangsbit (L \rightarrow H-Flanke)
		0	-
04/12	ErAck (Error Acknowledge)	0 →1	Rücksetzen des Fehlerbit (L \rightarrow H-Flanke)
		0	-
	tbd	Х	Nicht definiert

1) Activate Referencing (AcRef): Referenzieren für das Referenzsignal des Gebers aktivieren/deaktivieren

Konfiguration der Basisparameter

- ► Öffnen Sie die easySoft-CoDeSys und erstellen Sie eine Konfiguration mit dem Modul XIOC-2CNT-2AO-INC.
- ► Klicken sie in der "Steuerungskonfiguration" das Modul an.
- Öffnen Sie das Register "Weitere Parameter" und geben Sie die Werte ein für:
 - Flankenauswertung,
 - Anzahl der Referenzierungen,
 - Referenzwert.

Flanken-Auswertung der Zählimpulse 1-, 2- oder 4-fach

Abbildung 55: Flankenauswertung

- 1) CV = Counter value/ Zählerwert
- (2) 1 × = einfach, 2 × = zweifach, 4 × = vierfach

Anzahl der Referenzierungen (einmal, permanent)

Nachdem der Ausgang "Activate Referencing" gesetzt wurde, werden die Referenzimpulse des Gebers vom Modul verarbeitet. Trifft ein Referenzimpuls ein (Signal R: $0 \rightarrow 1$), wird der Zählerwert mit dem Referenzwert überschrieben. Dies erfolgt einmalig oder mit jedem neuen Referenzimpuls (permanent).

Referenzwert: Es ist ein Wert von 0 bis 4294967295 möglich.

Tabelle 14: Bedeutung der Signale

RS	Reference encoder signal	Referenzsignal vom Geber	
AcRef	Activate Referencing	Referenzieren aktivieren	
Ref	Referenced	Referenziert	
RefAc	Referencing activated	Referenzieren aktiviert	
CV	Counter value	Zählerwert	
RV	Reference value	Referenz Wert	
CV=RV	Der Referenzwert überschreibt den Zählwert bei Einstellung (1x/nx): einmalig oder permanent (nx): permanent		

Erklärung:

Es gibt die Möglichkeit, die Referenzierung einmalig oder permanent vorzunehmen. Zur Erfassung des Referenzsignals ist generell das Ausgangsbit "Activate Referencing (AcRef)" zu setzen. Das Modul reagiert, indem es das Eingangsbit "Referencing Activated (RefAc)" setzt. Dieses Bit können Sie abfragen. Trifft ein Referenzimpuls ein, wird das Eingangsbit "RefAc" auf "O"-Signal gesetzt und der Zählerwert vom Referenzwert überschrieben. Trifft ein weiterer Referenzimpuls ein, wird der Zählerwert nur dann vom Referenzwert überschrieben, wenn Sie in der Steuerungskonfiguration unter <Anzahl der Referenzierungen → Weitere Parameter> die Einstellung "permanent" vorgenommen haben.

Abbildung 57: Signalübersicht

Ausgabe des analogen Wertes

Der digitale Wert des Ausgangswortes QWn (n geht aus der Konfiguration hervor) wird in eine analoge Spannung umgewandelt. Der Wertebereich ist in folgender Abbildung dargestellt:

Abbildung 58: Wertebereich der analogen Ausgänge

Tabelle 15: Wertebereich

Digitaler Wert (hex.)	Digitaler Wert (dez.)
0	0
7FF	2047
800	2048
FFF	4095

Verhalten des Moduls bei RUN/STOP der CPU

Die CPU übergibt die Parameter bei jedem STOP \rightarrow RUN-Wechsel an das Modul.

Beim "RUN \rightarrow STOP-Wechsel" werden die Zählerstände auf "0" zurückgesetzt. Außerdem werden sämtliche Parameter gelöscht und die Analogausgänge abgeschaltet (0 V DC). Die Baugruppe zählt keine weiteren Impulse, wenn sich die CPU im Zustand "STOP" befindet.

5 Serielles Schnittstellen-Modul XIOC-SER

Eigenschaften

Das Modul wird in Verbindung mit der XC100- oder XC200-CPU eingesetzt. Es verfügt über zwei Betriebsarten:

- Transparentmodus
 - Zur Kommunikation mit anderen Geräten, die über eine serielle Schnittstelle verfügen. Hierzu stellt es eine Schnittstelle in den Ausführungen RS232, RS422 und RS485 zur Verfügung.
- Suconet-K-Modus (Slave) Als Suconet-K-Slave zur Kommunikation mit dem PS4-Steuerungssystem (ab XIOC-SER Version 02).

An einer XC100 können maximal zwei Module (COM-Schnittstellen), an einer XC200 maximal vier Module (COM-Schnittstellen) betrieben werden. Da die Module XIOC-SER und XIOC-NET-SK-M über die COM-Schnittstellen angesprochen werden, bezieht sich die Angabe der Modulanzahl (COM-Schnittstellen) in der Steuerung auf beide Module.

① RS232								
SUB-	SUB-D							
9	_	Ľ						
8	CTS	_	Clear To 2	Send				
7	RTS		Request 7	To Send				
6	DSR		Data Set	Ready				
5	SGND		Signal Gr	ound				
4	DTR	_	Data Terr	ninal Read	ły			
3	TxD	_	Transmit	Data				
2	RxD		Receive D	Data				
1	DCD		Data Car	rier Detect				
(2) RS485 (2) RS422								
COM	IBICON				C	OMBICON		
6		_			6		Rx–	
5		-		-	5		Rx+	-
3, 4		-		-	3,	4	-	
2		T)	⟨—/Rx—		2		Tx-	
1		T)	(+/Rx+		1		Tx+	

Die RS485/-422-Schnittstelle ist galvanisch vom Bus getrennt. Die RS232 bietet keine galvanische Trennung.

(3) Schalter für Busabschlusswiderstände

Abbildung 59: Schnittstellen RS232, RS422, RS485

LED-Anzeige

LED-Anzeige	LED-Funktion	Modul
PW (Power)	ein	eingeschaltet
ER (Error)	ein/aus	anwenderspezifisch
DTR	ein	Data Terminal Ready
DCD	ein	Data Carrier Detect
TxD	blinkend	Daten werden gesendet
RxD	Blinkend	Daten werden empfangen

Aufbau der RS422-/RS485-Schnittstelle

Abbildung 60: RS422-/RS485-Schnittstelle

S = Schalter für die Busabschlusswiderstände

Modul im Konfigurator der easySoft-CoDeSys auswählen

- ▶ Öffnen Sie den Steuerungskonfigurator.
- Klicken sie mit der rechten Maustaste auf den gewünschten Steckplatz.
- ▶ Wählen Sie den Befehl "Element ersetzen".
- Wählen Sie im neuen Fenster durch einen Doppelklick XIOC-SER aus.
- → Die Zuordnung zwischen dem Steckplatz des Moduls und der Programmansprache COM... stellen Sie im Konfigurator her: Aktivieren Sie das Register "Weitere Parameter" und wählen Sie dort im Listenfeld "Serielle Schnittstelle" COM2, 3, 4 oder 5 aus, → Abbildung 62.

Abbildung 61: Modul einbinden, hier: XIOC-SER

Schnittstelle konfigurieren

Nach der Auswahl des Moduls kann im Register "Weitere Parameter" die Betriebsart (Busstatus) "Transparent" oder "Suconet K (Slave)" angeklickt werden. Die Betriebsart wird nach dem Einschalten der CPU aktiv. Zum Wechsel ist nach der Auswahl die Spannungsversorgung aus- und wieder einzuschalten.

Betriebsart "Transparentmodus"

In dieser Betriebsart kann die RS232-, RS485- oder RS422-Schnittstelle zum Senden und Empfangen von Daten benutzt werden.

Die RS232-Schnittstelle wird über einen 9-poligen SUB-D-Stecker (Stifte) nach außen geführt, die RS485-/RS422-Schnittstelle über einen 6-poligen Federzugklemmenblock (COMBICON).

Wählen Sie die RS422- oder RS485-Schnittstelle aus, so ist die Stellung der Schalter für die Busabschlusswiderstände wichtig (→ Abbildung 60).

In der Empfangsleitung der RS422-Schnittstelle Rx-/Rx+ sind die Widerstände integriert. In der Sendeleitung der RS422- sowie der RS485-Schnittstelle können sie zugeschaltet (Defaultstellung) oder abgeschaltet werden.

Beide Schalter müssen sich in gleicher Stellung befinden, um eine einwandfreie Kommunikation zu gewährleisten.

Ein Beispiel für die Parametereinstellung im Transparentmodus zeigt Abbildung 62. Die Parameter können Sie durch einen Klick auf die Pfeiltaste verändern.

Abbildung 62: Default-Parameter im Transparentmodus

Serielle Schnittstelle:

Hier wählen sie den logischen Namen für Ihre Schnittstelle aus. Unter diesem Namen können Sie im Anwenderprogramm die serielle Baugruppe ansprechen.

Gap-Time einstellen:

In der Grundeinstellung ist die Funktion nicht aktiviert. Die Gap-Time dient dazu, mögliche Pausen beim Empfang von Telegrammzeichen (Telegrammlücken) zu tolerieren.

Betriebsart "Suconet K (Slave)"

In dieser Betriebsart werden Datenblöcke variabler Länge zwischen dem Modul XIOC-SER (Suconet-K-Slave) und einem Suconet-K-Master des PS4-Systems übertragen.

- Stellen Sie dazu im Konfigurator der easySoft-CoDeSys im Register "Weitere Parameter" die Betriebsart (Busstatus) auf "Suconet K" ein und passen Sie die Parameter an:
 - Geben Sie die Slave-Adresse, die im Konfigurator der Sucosoft S40 f
 ür den Slave angezeigt wird, in das Feld "Suconet K Adresse" ein.
 - Legen Sie die Anzahl der Sende- und Empfangsdaten fest (maximal120 Byte). Die Anzahl der Sendedaten des Slaves (XIOC-SER) muss mit der Anzahl der Empfangsdaten im Master übereinstimmen. Gleiches gilt für die Sendedaten (Master) → Empfangsdaten (Slave).
 - Serielle Schnittstelle: Hier wählen Sie den logischen Namen für Ihre Schnittstelle aus. Unter diesem Namen können Sie im Anwenderprogramm die serielle Baugruppe ansprechen.
 - Legen Sie den Suconet-K-Gerätetyp fest. Jeder Teilnehmer am Suconet-K-Strang wird durch einen Gerätetyp eindeutig identifiziert. Der Gerätetyp für die XIOC-SER ist standardmäßig auf SIS-TYP-A0EF eingestellt, kann aber auf jeden beliebigen Gerätetyp eingestellt werden. Damit kann eine XIOC-SER auch als Ersatz für einen ehemaligen Suconet-K-Teilnehmer (z. B. eine PS4-341-MM1) konfiguriert werden. Das PS40-Programm braucht dann nicht modifiziert werden.

Abbildung 63: Kommunikationsparameter für die Betriebsart Suconet K

Verbindung Master ↔ XIOC-SER

In der Betriebsart Suconet K ist die RS485-Schnittstelle aktiv.

Master TA/RA------ Tx/Rx+ XIOC-SER TB/RB ----- Tx/Rx-

Busabschlusswiderstände einstellen

Stellen Sie die Busabschlusswiderstände ein. Ist das Modul der physikalisch erste oder letzte Teilnehmer eines Stranges, so bringen Sie die beiden Schalter S (→ Abb. 60) in Stellung "ON" (Defaultstellung). In einer anderen Position am Strang sind beide Schalter in Stellung "OFF" zu setzen. Beide Schalter müssen sich in gleicher Stellung befinden, um eine einwandfreie Kommunikation zu gewährleisten.

In der Sucosoft S40 konfigurieren

Im Konfigurator der Sucosoft S40 erweitern Sie den Master mit dem Modul XIOC-SER, indem Sie das Modul aus einer Liste auswählen. Verwenden Sie den gleichen Gerätetyp, den Sie im Konfigurationsdialog der XIOC SER im Listenfeld "Gerätetyp" ausgewählt haben. Nach der Auswahl wird im Parameterfenster die Adresse angezeigt. Tragen Sie in die Felder "Sendedaten" und "Empfangsdaten" die Anzahl der Daten ein.

Diagnose im Master

Im Programm des Masters kann das Diagnosebyte des Slave (XIOC-SER) abgefragt werden. Die Abfrage des Diagnosebyte ist der Dokumentation des Masters zu entnehmen. Das Diagnosebyte im Master hat folgenden Aufbau:

Bit	Bedeutung
0	reserviert
1	0 = Teilnehmer im "RUN"
	1= Teilnehmer im "Halt"
2	0 = ok
	1 = Längenfehler der Empfangsdaten
3	reserviert
4	reserviert
5	reserviert
6	0 = ok
	1 = keine Verbindung
7	0 = ok
	1 = falscher Gerätetyp

Diagnose im Slave

Die Diagnose wird durch den Funktionsbaustein "Suconet K-Slave" durchgeführt. Am Baustein können Sie die beiden Ausgänge "xMasterDiscon" und "xMasterStop" abfragen. Sie enthalten folgende Meldungen:

Den Funktionsbaustein "Suconet K-Slave" finden sie in der Bibliothek "Suconet K.lib". Er ist in der Dokumentation MN05010002Z-DE (frühere Bezeichnung AWB2786-1456D) (Funktionsbausteine zur easySoft-CoDeSys) beschrieben.

xMasterDiscon	0 = Master angekoppelt
	1 = Master abgekoppelt
xMasterStop	0 = Master im RUN
	1 = Master im STOP

Zugriff auf die Empfangs- und Sendedaten

Der Zugriff vom Anwenderprogramm auf die Daten des XIOC-SER-Moduls erfolgt im Tranparentmodus mit Hilfe von Funktionen aus der Bibliothek xSysCom100.lib, von SysLibCom.lib oder xSysCom200.lib.

Die Funktionen werden in den Dokumenten MN05003004Z-DE (frühere Bezeichnung AWB2724-1453D) (XC100) und MN05003001Z-DE (frühere Bezeichnung AWB2724-1491D) (XC200) beschrieben

In der Betriebsart Suconet K setzen Sie den Funktionsbaustein "Suconet K-Slave" ein.

Den Funktionsbaustein "Suconet K-Slave" finden sie in der Bibliothek "Suconet K.lib". Er ist in der Dokumentation MN05010002Z-DE (frühere Bezeichnung AWB2786-1456D) (Funktionsbausteine zur easySoft-CoDeSys) beschrieben.

6 Fernwirkbaugruppe XIOC-TC1

Eigenschaften

Die Baugruppe wird in Verbindung mit der XC200-CPU eingesetzt. Über eine Schnittstelle in den Ausführungen RS232, RS422 und RS485 kommuniziert sie mit anderen Geräten, die über eine serielle Schnittstelle verfügen.

Abbildung 64: Schnittstellen RS232, RS422, RS485

LED-Anzeige

LED-Anzeige	LED-Funktion	Modul
PW (Power)	ein	eingeschaltet
ER (Error)	ein/aus	anwenderspezifisch
DTR	ein	Data Terminal Ready
DCD	ein	Data Carrier Detect
TxD	blinkend	Daten werden gesendet
RxD	Blinkend	Daten werden empfangen

Aufbau der RS422-/RS485-Schnittstelle

Abbildung 65: RS422-/RS485-Schnittstelle

S = Schalter für die Busabschlusswiderstände

Modul im Konfigurator der easySoft-CoDeSys auswählen

- ▶ Öffnen Sie den Steuerungskonfigurator.
- Klicken sie mit der rechten Maustaste auf den gewünschten Steckplatz.
- ▶ Wählen Sie den Befehl "Element ersetzen".
- Wählen Sie im neuen Fenster durch einen Doppelklick XIOC-TC1 aus.
- → Die Zuordnung zwischen dem Steckplatz des Moduls und der Programmansprache COM... stellen Sie im Konfigurator her: Aktivieren Sie das Register "Weitere Parameter" und wählen Sie dort im Listenfeld "Serielle Schnittstelle" COM2, 3, 4 oder 5 aus, → Abbildung 66.

Abbildung 66: Modul einbinden, hier: XIOC-TC1

Schnittstelle konfigurieren

Nach der Auswahl der Baugruppe kann im Register "Weitere Parameter" die Betriebsart (Busstatus) "Transparent" oder "Suconet K (Slave)" angeklickt werden. Die Betriebsart wird nach dem Einschalten der CPU aktiv. Zum Wechsel ist nach der Auswahl die Spannungsversorgung aus- und wieder einzuschalten.

Betriebsart "Transparentmodus"

In dieser Betriebsart kann die RS232-, RS485- oder RS422-Schnittstelle zum Senden und Empfangen von Daten benutzt werden.

Die RS232-Schnittstelle wird über einen 9-poligen SUB-D-Stecker (Stifte) nach außen geführt, die RS485-/RS422-Schnittstelle über einen 6-poligen Federzugklemmenblock (COMBICON).

Wählen Sie die RS422- oder RS485-Schnittstelle aus, so ist die Stellung der Schalter für die Busabschlusswiderstände wichtig (→ Abbildung 65).

In der Empfangsleitung der RS422-Schnittstelle Rx-/Rx+ sind die Widerstände integriert. In der Sendeleitung der RS422- sowie der RS485-Schnittstelle können sie zugeschaltet (Defaultstellung) oder abgeschaltet werden.

Beide Schalter müssen sich in gleicher Stellung befinden, um eine einwandfreie Kommunikation zu gewährleisten.

Ein Beispiel für die Parametereinstellung im Transparentmodus zeigt Abbildung 67. Die Parameter können Sie durch einen Klick auf die Pfeiltaste verändern.

Abbildung 67: Default-Parameter im Transparentmodus

Serielle Schnittstelle:

Hier wählen sie den logischen Namen für Ihre Schnittstelle aus. Unter diesem Namen können Sie im Anwenderprogramm die serielle Baugruppe ansprechen

Gap-Time einstellen:

In der Grundeinstellung ist die Funktion nicht aktiviert. Die Gap-Time dient dazu, mögliche Pausen beim Empfang von Telegrammzeichen (Telegrammlücken) zu tolerieren.

Zugriff auf die Empfangs- und Sendedaten

Der Zugriff vom Anwenderprogramm auf die Daten des XIOC-SER-Moduls erfolgt im Tranparentmodus mit Hilfe von Funktionen aus der Bibliothek xSysCom200.lib. Die Funktionen werden im Dokument MN05003001Z-DE (frühere Bezeichnung AWB2724-1491D) (XC200) beschrieben.

Kommunikationsbibliothek für das DNP3-Protokoll V1.1

Das DNP3-Protokoll (DNP= Distributed Network Protocol) realisiert eine sichere Übertragung von Daten zwischen zwei Kommunikationspartnern. Das Protokoll wurde für das Steuerungssystem XC200 in Verbindung mit der Fernwirkbaugruppe XIOC-TC1 realisiert. Es stellt aus DNP3-Sicht eine Outstation dar (Outstation ist die DNP3-Bezeichnung für "Slave") und beantwortet entsprechende Datenanfragen des DNP3-Masters.

Die Funktionen der DNP3-Bibliothek, die für die Steuerung XC200 und das Programmiersystem CoDeSys entwickelt wurde, werden nachfolgend beschrieben. Die Bibliothek realisiert die Funktionalität nach DNP3-Interoperabilitätslevel 2 (DNP3-L2) gemäß der DNP3-Spezifikation, Teil 8. Referenzierte DNP3-Dokumente entsprechen dem Stand vom 15.12.2007.

Voraussetzungen

Mindestvoraussetzungen für die Verwendung sind:

- Steuerung: XC200
- Betriebssystem: Ab Version 1.05.03
- XIOC-TC1
- easySoft-CoDeSys: Version V2.3.9 + Servicepack
- Bibliothek: DNP3.lib

DNP3-Kommunikations- und Datenmodell

DNP realisiert eine sichere Datenverbindung zwischen Master und Outstation. Die Kommunikation wird dabei über fünf Datenobjekte geführt:

- Binary Inputs
- Binary Outputs
- Analog Inputs
- Analog Outputs
- Counter

Diese werden über Indizes angesprochen. Daten werden dabei immer aus Sicht des Masters betrachtet:

Binary Inputs liest der Master; Die Outstation schreibt also auf das Binary Input Datenobjekt. Die vollständige Kommunikationsbeziehung ist der folgenden Abbildung zu entnehmen.

Abbildung 68: Datenobjekte und Datenfluss DNP3-Master-Outstation

Funktionsübersicht

Folgende Funktionen sind für die Benutzung des DNP3-Protokolls implementiert:

Serverfunktionen		→ Seite
DNP3_Create	Anlegen des DNP3-Servers	64
DNP3_Destroy	Löschen des DNP3-Servers	64
DNP3_Execute	Aufruf der DNP3-Zustandsmaschine	64
DNP3_OpenCom	Anbinden an Kommunikationsschnittstelle	65
DNP3_CloseCom	Stoppen der Kommunikationsverbindung	65
Daten lesen, schreiben		
DNP3_SetBl	Digitale Eingänge (des Masters) schreiben	65
DNP3_SetAl	Analoge Eingänge (des Masters) schreiben	66
DNP3_SetCl	Zähler Eingänge (des Masters) schreiben	66
DNP3_GetAO	Analoge Ausgänge (des Masters) lesen	68
DNP3_GetBO	Digitale Ausgänge (des Masters) lesen	68
DNP3_GetBI	Digitale Eingänge in der Outstation lesen (Rücklesen der selbst geschriebenen Eingänge)	67
DNP3_GetAl	Analoge Eingänge der Outstation lesen (Rücklesen der selbst geschriebenen Eingänge)	67
DNP3_GetCl	Zähler Eingänge der Outstation lesen (Rücklesen der selbst geschriebenen Eingänge)	68
Ereignisgesteuerte Daten schreiben		
DNP3_Set_BlwEvent	Event-Digitale Eingänge (des Masters) schreiben	66
DNP3_Set_AlwEvent	Event-Analoge Eingänge (des Masters) schreiben	67
DNP3_Set_ClwEvent	Event-Zähler Eingänge (des Masters) schreiben	67
Testfunktion		
DNP3_SetDbgLevel	Debuglevel setzen	68

Die Datenrichtung ist hierbei immer aus Sicht des Masters zu sehen. Schreiben des digitalen Eingangs aus Sicht der Outstation bedeutet also Schreiben des digitalen Master-Eingangs.

Die Funktionen verwenden als Returnwert Werte aus dem Aufzählungstyp DNP3Result.

Die möglichen Fehlerursachen sind in der folgenden Darstellung insgesamt aufgelistet. Bei der danach folgenden Beschreibung der Funktionen sind die jeweils relevanten aufgeführt.

```
TYPE DNP3RESULT :
(
     DNP3RES_OK := 0,
(* Data Link Layer *)
     DNP3DLLRES InvalidEventForState := 20, (* internal usage *)
     DNP3DLLRES InvalidStateCode := 21, (* internal usage *)
(* TransportFunction *)
     DNP3TFRES SenderBusy := 40, (* internal usage *)
(* Application Layer *)
     DNP3ALRES_WrongIndex := 60, (* wIndex exeeds array bounds *)
     DNP3ALRES InvalidFunctionCode := 61, (* internal usage *)
     DNP3ALRES InvalidGroup := 62, (* internal usage *)
     DNP3ALRES InvalidVariation := 63, (* internal usage *)
     DNP3ALRES_InvalidQualCode := 64, (* internal usage *)
     DNP3ALRES InvalidRangeValue := 65, (* internal usage *)
     DNP3ALRES InvalidTimeValue := 66, (* internal usage *)
     DNP3ALRES_CommonTimeOfOccurenceNotSet := 70, (* internal usage *)
(* PLC level *)
     DNP3PLCRES WrongHandle := 80, (* dwDNP3Handle invalid*)
     DNP3PLCRES CantUseSysComDll := 81, (* can't create xSysCOM *)
     DNP3PLCRES_CantOpenComPort := 82, (* can't open COM port *)
     DNP3PLCRES ComPortNotOpened := 83, (* COM not opened *)
     DNP3PLCRES CantCreateDNP3 := 84, (* allocatiobn of internal memory failed *)
     DNP3PLCRES_ArraySizeToHigh := 85, (* one or more of the array sizes is to high *)
     DNP3PLCRES_ArraySizeNotSet := 86, (* one or more of the array sizes is zero *)
     DNP3PLCRES NotAllowedNullArg := 87, (* one of used call arguments is a NULL-Pointer *)
(* Execute events *)
     DNP3PLCRES_DataChangedByMaster := 100,(* not used *)
     DNP3RES FORCE DWORD:=4294967295
);
END TYPE
```

Funktion DNP3_Create

; *)
. *)

Mit der Funktion DNP3_Create wird eine DNP3-Serverstruktur in der XC200-Steuerung angelegt. Übergeben wird die DNP3-Outstation Adresse sowie die Größe der Bereiche für die Datenfelder. Diese werden im Speicher des Betriebssystems reserviert, benötigen also keinen Speicherplatz im Anwenderprogramm-Speicherbereich der Steuerung.

Die Funktion liefert über die Variable phDNP3 eine Referenz auf den DNP3-Server, der im weiteren Verlauf von den anderen Zugriffsfunktionen verwendet wird.

Zur Übergabe der Größe der für die Kommunikation verwendeten Datenfelder wird die Struktur DNP3APPDFATACFG benötigt. Hier wird für jedes der 5 Datenfelder die Anzahl der Einträge festgelegt, die zwischen der OutStation und dem DBP3-Master Daten ausgetauscht werden kann.

```
TYPE DNP3APPDATACFG :
STRUCT

WBISize : WORD:=0; (* Size of Binary-Input array. Must be
set to 1..1024 *)
WAISize : WORD:=0; (* Size of Analog-Inputs array. Must be
set to 1..1024 *)
WBOSize : WORD:=0; (* Size of Counter-Input array. Must be
set to 1..1024 *)
WBOSize : WORD:=0; (* Size of Binary-Output array. Must be
set to 1..1024 *)
WAOSize : WORD:=0; (* Size of Analog-Output array. Must be
set to 1..1024 *)
END_STRUCT
END_TYPE
```

Weitere Information zur Konfiguration der DNP3-Bibliothek erfolgen über die Struktur DNP3EXTCFG. Sie enthält zur Zeit Einträge zu folgenden Themen:

- Timeout
- Unsolicited Response

Die Funktion DNP3CREATE liefert das Ergebnis des Funktionsaufrufes über die allgemeine Ergebnisstruktur DNP3RESULT. Mögliche Fehler sind:

()	⁴ Create/Initialize DNP3 interface and allocate all arrays
	DNP3RES_OK - no errors
	DNP3PLCRES_CantAllocDNP3 - allocation of internal memory failed
	DNP3PLCRES_NotAllowedNullArg - one of used arguments is a NULL-Pointer
	$\ensuremath{DNP3PLCRES}\xspace_{\ensuremath{ArraySizeToHigh}\xspace$ one or more of the array sizes is >1024
	$\ensuremath{DNP3PLCRES_ArraySizeNotSet}$ - one or more of the array sizes is zero
٢)	

Funktion DNP3_Destroy

FUNCTION DNP3_Destroy:DNP3RESULT		
VAR_INPUT		
dwDNP3Handle : DWORD;	DNP3 handle to DNP3 interface	
END_VAR		

Die Funktion schließt einen angelegten DNP3-Server und gibt alle angelegten Speicherbereiche wieder frei.

Returnwert:

DNP3RES_OK	No errors
DNP3PLCRES WrongHandle	Invalid dwDNP3Handle

Funktion DNP3_Execute

UNCTION DNP3_Execute:DNP3RESULT		
VAR_INPUT		
dwDNP3Handle : DWORD;	DNP3 handle to DNP3 interface	
END_VAR		

Die Funktion startet die DNP3-Zustandsmaschine. Diese Funktion muss zyklisch aufgerufen werden. Die Funktion liest anstehende Daten von der XIOC-TC1-Baugruppe und führt die dadurch bedingten Aufträge aus.

DNP3RES_OK	No errors
DNP3PLCRES_WrongHandle	Invalid dwDNP3Handle
DNP3PLCRES_ComPortNotOpened	COM not opened
DNP3PLCRES_CantUseSysComD11	SysCom missing
Funktion DNP3 OpenCom	

FUNCTION DNP3_OpenCom : DNP3RESULT

VAR_INPUT	
dwDNP3Handle : DWORD;	DNP3 handle to DNP3 interface
wPortNr : WORD;	COM port number. See xSysCom200 library
wBaudrate : WORD;	See xSysCom200 library
wStopbits : WORD;	See xSysCom200 library
wParity : WORD;	See xSysCom200 library
wDataLength : WORD;	See xSysCom200 library
END_VAR	

Die Funktion stellt die Verbindung zwischen dem erzeugten DNP3-Server und der Baugruppe XIOC-TC1 her. Bei der Parametrierung der Baugruppe im CoDeSys Steuerungskonfigurator wurde dieser eine logische COM Nummer zugewiesen (COM2,3,4,5). Diese logische Nummer wird nun an wPortNr übergeben.

Die Definitionen für die Parametrierung der Schnittstelle sind in der Bibliothek XsysCom200.lib enthalten.

Beispiel für die Port Nummer wPortMr:

Funktion DNP3_CloseCom

FUNCTION DNP3_CloseCom:DNP	3RESUL1
VAR_INPUT	
dwDNP3Handle : DWORD;	DNP3 handle to DNP3 interface
END VAR	

Die Funktion löst die Verbindung zwischen angelegtem DNP3-Server und Kommunikationsbaugruppe. Eine Kommunikation über DNP3_Execute ist nicht mehr möglich.

Die Verbindung kann mit DNP3_OpenComm() wieder aktiviert werden.

Returnwert:

DNP3RES_OK	No errors
DNP3PLCRES_WrongHandle	Invalid dwDNP3Handle is used
DNP3PLCRES_ComPortNotOpened	COM not opened
DNP3PLCRES_CantUseSysComD11	SysCom missing

Funktion DNP3_SetBI

FUNCTION DNP3_SetBI:DNP	3RESULT
VAR_INPUT	
dwDNP3Handle : DWORD;	DNP3 handle to DNP3 interface
wIndex : WORD;	Index of element
bValue : BYTE;	Value that will be written to array element
END_VAR	

Die Funktion beschreibt ein Element im Bereich digitale Eingänge. Die Angabe wIndex 0 beschreibt das erste Element. Der höchste Index ist durch die Angabe der Variable wBISize beim Funktionsaufruf DNP3_Create definiert worden, die Angabe ist also hier wBIsize-1.

Beim Beschreiben sind die besonderen DNP3-Konventionen beim Aufbau der digitalen Daten zu beachten:

Binäre Werte werden über ein Byte repräsentiert. Der Aufbau entspricht dabei der Definition gemäß DNP3-Object Library (DNP3 Specification, Volume 6, Part 2 (Binary Input with flags)

Bit	Flag Bedeutung
0	Online (0 inactive, 1 active)
1	Restart (0, normal, 1 Variable in Initialstatus)
2	Comm_Lost (0, normal, 1 Value represents last valid data)
3	Remote_Forced (0, normal, 1 Value forced by external device)
4	Local_Forced 0, normal, 1 forced by local device e.g. HMI)
5	Chatter_Filter
6	Reserved (always 0)
7	State : 0,1 representing the state of physical or logical input

Die genaue Beschreibung der Flags ist in der DNP3-Spezifikation (Volume 6 Part1, Basics P. 21ff) enthalten.

DNP3RES_OK	No errors
DNP3ALRES_WrongIndex	When the wIndex exceed array bounds
DNP3PLCRES_WrongHandle	Invalid dwDNP3Handle

Funktion DNP3_SetAI

FUNCTION DNP3_SetAI:DNP3RESULT	
VAR_INPUT	
dwDNP3Handle : DWORD;	DNP3 handle to DNP3 interface
wIndex : WORD;	Index of element
wValue : WORD;	Value that will be written to array element
bFlags:Byte;	Flags that will be written to array element
END_VAR	

Die Funktion beschreibt ein Element im Bereich Analog-Eingänge. Die Angabe wIndex 0 beschreibt das erste Element. Der höchste Index ist durch die Angabe der Variable wAISize beim Funktionsaufruf DNP3_Create definiert worden, die Angabe ist also hier wAlsize-1.

Die Definition der Flags entspricht fast der für die Binären Daten (Bit 7 ist hier immer 0).

Bit	Flag Bedeutung
0	Online (0 inactive, 1 active)
1	Restart (0, normal, 1 Variable in Initialstatus)
2	Comm_Lost (0, normal, 1 Value represents last valid data)
3	Remote_Forced (0, normal, 1 Value forced by external device)
4	Local_Forced 0, normal, 1 forced by local device e.g. HMI)
5	Chatter_Filter
6	Reserved (always 0)
7	0

Aufbau und Bedeutung des Flag-Byte

Returnwert:

DNP3RES_OK	No errors
DNP3ALRES_WrongIndex	wIndex exceeds array bounds
DNP3PLCRES_WrongHandle	Invalid dwDNP3Handle

Funktion DNP3_SetCl

FUNCTION DNP3_SetCI:DNP3RESULT	
VAR_INPUT	
dwDNP3Handle : DWORD;	DNP3 handle to DNP3 interface
wIndex : WORD;	Index of element
dwValue : DWORD;	Value that will be written to array element
bFlags:Byte;	Flags that will be written to array element
END_VAR	

Die Funktion beschreibt ein Element im Bereich Zähler. Die Angabe wlndex 0 beschreibt das erste Element. Der höchste Index ist durch die Angabe der Variable wCISize beim Funktionsaufruf DNP3_Create definiert worden, die Angabe ist also hier wCIsize-1.

Zu Aufbau und Definition der Flags siehe Seite 69.

Returnwert:

DNP3RES_OK	No errors
DNP3ALRES_WrongIndex	wIndex exceeds array bounds
DNP3PLCRES WrongHandle	Invalid dwDNP3Handle

Funktion DNP3_SetBlwEvent

FUNCTION DNP3_SetBlwEvent:DNP3RESULT

VAR_INPUT	
dwDNP3Handle : DWORD;	DNP3 handle to DNP3 interface
wIndex : WORD;	Index of element
bValue : BYTE;	Value that will be written to array element

END_VAR

Die Funktion beschreibt ein Element im Bereich der digitalen Eingänge. Die Angabe wIndex 0 beschreibt das erste Element. Der höchste Index ist durch die Angabe der Variable wBISize beim Funktionsaufruf DNP3_Create definiert worden, die Angabe ist also hier wBIsize-1.

Im Gegensatz zur Funktion DNP3_SetBI kann der Master auf Datenveränderungen gezielt abfragen. Eine Änderung der Daten mit der Funktion DNP3_SETBIwEvent in der Outstation wird also beim Master direkt als Änderung registriert. Ansonsten müsste der Master ja immer zwischen alten und neuen Werten vergleichen, um Unterschiede festzustellen.

Beim Beschreiben sind die besonderen DNP3-Konventionen beim Aufbau der digitalen Daten zu beachten:

Binäre Werte werden über ein Byte repräsentiert. Der Aufbau entspricht dabei der Definition gemäß DNP3-Object Library (DNP3 Specification, Volume 6, Part 2 (Binary Input with flags)

Zu Aufbau und Definition der Flags siehe Seite 69.

DNP3RES_OK	No errors
DNP3ALRES_WrongIndex	When the wIndex exceed array bounds
DNP3PLCRES_WrongHandle	Invalid dwDNP3Handle

Funktion DNP3_SetAlwEvent

FUNCTION DNP3_SetAIwEvent:DNP3RESULT		
VAR_INPUT		
dwDNP3Handle : DWORD;	DNP3 handle to DNP3 interface	
wIndex : WORD;	Index of element	
wValue : WORD;	Value that will be written to array element	
bFlags:Byte;	Flags that will be written to array element	
END_VAR		

Die Funktion beschreibt ein Element im Bereich der analogen Eingänge. Die Angabe wIndex 0 beschreibt das erste Element. Der höchste Index ist durch die Angabe der Variable wAISize beim Funktionsaufruf DNP3_Create definiert worden, die Angabe ist also hier wAIsize-1.

Im Gegensatz zur Funktion DNP3_SetAI kann der Master auf Datenveränderungen gezielt abfragen. Eine Änderung der Daten mit der Funktion DNP3_SETAIwEvent in der Outstation wird also beim Master direkt als Änderung registriert. Ansonsten müsste der Master ja immer zwischen alten und neuen Werten vergleichen, um Unterschiede festzustellen.

Zu Aufbau und Definition der Flags siehe Seite 69.

Returnwert:

DNP3RES_OK	No errors
DNP3ALRES_WrongIndex	wIndex exceeds array bounds
DNP3PLCRES_WrongHandle	nvalid dwDNP3Handle

Funktion DNP3_SetClwEvent

FUNCTION DNP3_SetCI:DNP3RESULT	
VAR_INPUT	
dwDNP3Handle : DWORD;	DNP3 handle to DNP3 interface
wIndex : WORD;	Index of element
dwValue : DWORD;	Value that will be written to array element
bFlags:Byte;	Flags that will be written to array element
END VAR	

Die Funktion beschreibt ein Element im Bereich Zähler. Die Angabe wIndex 0 beschreibt das erste Element. Der höchste Index ist durch die Angabe der Variable wCISize beim Funktionsaufruf DNP3 Create definiert worden, die Angabe ist also hier wCIsize-1.

Im Gegensatz zur Funktion DNP3_SetCI kann der Master auf Datenveränderungen gezielt abfragen. Eine Änderung der Daten mit der Funktion DNP3_SETCIwEvent in der Outstation wird also beim Master direkt als Änderung registriert. Ansonsten müsste der Master ja immer zwischen alten und neuen Werten vergleichen, um Unterschiede festzustellen.

Zu Aufbau und Definition der Flags siehe Seite 69.

Returnwert:

DNP3RES_OK	No errors
DNP3ALRES_WrongIndex	wIndex exceeds array bounds
DNP3PLCRES_WrongHandle	Invalid dwDNP3Handle

Funktion DNP3_GetBI

FUNCTION DNP3_GetBI:DNP3RESULT	
VAR_INPUT	
dwDNP3Handle : DWORD;	DNP3 handle to DNP3 inter- face
wIndex : WORD;	Index of element
pbValue : Pointer to BYTE;	Pointer to variable that will be filled with requested value
END VAR	

Die Funktion liest ein Element im Bereich digitale Eingänge. Damit können die mit DNP3_SetBI geschriebenen Daten rückgelesen werden. Die Angabe wIndex 0 beschreibt das erste Element. Der höchste Index ist durch die Angabe der Variable wBISize beim Funktionsaufruf DNP3_Create definiert worden, die Angabe ist also hier wBIsize-1.

Bei der Interpretation der Werte sind die Anmerkungen zum Aufbau der digitalen Daten zu beachten.

Returnwert:

DNP3RES_OK	No errors
DNP3ALRES_WrongIndex	wIndex exceeds array bounds
DNP3PLCRES_WrongHandle	Invalid dwDNP3Handle is used

Funktion DNP3_GetAl

FUNCTION DNP3_GetAI:DNP3RESULT	
VAR_INPUT	
dwDNP3Handle : DWORD;	DNP3 handle to DNP3 interface
wIndex : WORD;	index of element
pwValue : Pointer to WORD;	Pointer to variable that will be filled with requested value
pbFlags: Pointer to Byte;	Pointer to variable that will be filled with requested flags
END VAR	

Die Funktion liest ein Element im Bereich analoge Eingänge. Damit können die mit DNP3_SetAI geschriebenen Daten rückgelesen werden. Die Angabe wIndex 0 beschreibt das erste Element. Der höchste Index ist durch die Angabe der Variable wAISize beim Funktionsaufruf DNP3_Create definiert worden, die Angabe ist also hier wAIsize-1. Die Daten für Wert und Flags werden über zwei Pointer zurückgegeben. Zum Aufbau der Flags siehe

Zu Aufbau und Definition der Flags siehe Seite 69.

DNP3RES_OK	No errors
DNP3ALRES_WrongIndex	wIndex exceeds array bounds
DNP3PLCRES_WrongHandle	Invalid dwDNP3Handle is used

Funktion DNP3_GetCl

FUNCTION DNP3_GetCI:DNP3RESULT

VAR_INPUT

///	
dwDNP3Handle : DWORD;	DNP3 handle to DNP3 interface
wIndex : WORD;	index of element
pdwValue : Pointer to DWORD;	Pointer to variable that will be filled with requested value
pbFlags: Pointer to Byte;	Pointer to variable that will be filled with requested flags
END_VAR	

Die Funktion liest ein Element im Bereich Zähler. Damit können die mit DNP3_SetCl geschriebenen Daten rückgelesen werden. Die Angabe wIndex 0 beschreibt das erste Element. Der höchste Index ist durch die Angabe der Variable wCISize beim Funktionsaufruf DNP3_Create definiert worden, die Angabe ist also hier wCIsize-1.

Returnwert:

DNP3RES_OK	No errors
DNP3ALRES_WrongIndex	wIndex exceed array bounds
DNP3PLCRES_WrongHandle	Invalid dwDNP3Handle

Funktion DNP3_GetBO

FUNCTION	
DNP3_GetB0:DNP3RESULT	
VAR_INPUT	
dwDNP3Handle : DWORD;	DNP3 handle to DNP3 interface
wIndex : WORD;	Index of element
pbValue : Pointer toByte;	Pointer to variable that will be filled with requested value

END_VAR

Die Funktion liest ein Element im Bereich digitale Ausgänge (Ausgang des Masters = Input für den Outstation). Die Angabe wIndex 0 verweist auf das erste Element. Der höchste Index ist durch die Angabe der Variable wBoSize beim Funktionsaufruf DNP3_Create definiert worden, die Angabe ist also hier wBosize-1.

Bei der Interpretation der Werte sind die Anmerkungen zum Aufbau der digitalen Daten zu beachten.

Returnwert:

DNP3RES_OK	No errors
DNP3ALRES_WrongIndex	wIndex exceed array bounds
DNP3PLCRES_WrongHandle	Invalid dwDNP3Handle is used

Funktion DNP3_GetAO

FUNCTION DNP3_SetAO:DNP3RESULT	
VAR_INPUT	
dwDNP3Handle : DWORD;	DNP3 handle to DNP3 interface
wIndex : WORD;	index of element
pwValue : WORD;	Pointer to variable that will be filled with requested value
pbValue : Byte;	requested flagsvalue
END_VAR	

Die Funktion liest ein Element im Bereich der Analog-Ausgänge (Ausgang des Masters = Input für den Outstation). Die Angabe wIndex 0 verweist auf das erste Element. Der höchste Index ist durch die Angabe der Variable wAOSize beim Funktionsaufruf DNP3_Create definiert worden, die Angabe ist also hier wAOsize-1.

Returnwert:

DNP3RES_OK	No errors
DNP3ALRES_WrongIndex	wIndex exceed array bounds
DNP3PLCRES_WrongHandle	Invalid dwDNP3Handle

Funktion DNP3_SetDbgLevel

FUNCTION DNP3_SetDbgLevel	:	DNP3RESULT
VAR_INPUT		
nDbgLevel :DNP3DBGLEV;		
END_VAR		

Diese Funktion protokolliert interne Zustände der DNP3-Bibliothek. Dies erleichtert die Untersuchung von Kommunikationsproblemen zwischen Master und Outstation.

Mögliche Werte sind:

TYPE DNP3DBGLEV :	
(
DNP3DBGLEV_None:=0	Keine Aufzeichnung
DNP3DBGLEV_Error := 1,	Aufzeichnung von Fehlern
DNP3DBGLEV_Warning := 2,	Aufzeichnung von Warnungen
DNP3DBGLEV_Info := 3,	Aufzeichnung von Zusatzinfos
DNP3DBGLEV_Trace := 4,	Aufzeichnung von Funktions- aufrufen und Parametern
DNP3DBGLEV_Max := 5,	Aufzeichnung aller Debugaus- gaben
DNP3DBGLEV_FORCE_DWORD:=42949 67295	(* Intern *)
):= DNP3DBGLEV_None;	
END TYPE	

Die Protokolldatei wird temporär in der Steuerung unter \temp\dnp3plc.log abgelegt und muss vor dem Ausschalten der Steuerung per ftp auf einen Host gespeichert werden. Nach Wiedereinschalten der Steuerung existiert die Datei nicht mehr.
Programmierung

Die Programmierung erfolgt in folgenden Schritten:

- Erzeugen des Servers unter Angabe der Größen für die Datenfelder - DNP3_Create()
- Anbindung an die Kommunikationsbaugruppe XIOC-TC1 -DNP3_OpenCOM()
- Zyklischer Aufruf der Funktionen zum
 - Lesen der Daten (DNP3Get...)
 - Schreiben der Daten (DNP3SET...)
 - Aufruf der Funktion DNP3_Execute() zur Abarbeitung der DNP3-Zustandsmaschine.
- Abbau der Kommunikationsverbindung (DNP3_CloseComm()). Dies geschieht zweckmäßigerweise im Stop Event des SPS-Programms.
- Freigabe der Serverressourcen (DNP3_Destroy())

Unabhängig hiervon werden beim Übergang in den Halt der SPS automatisch alle seriellen Kommunikationsverbindungen abgebaut.

Definition der FLAGs bei DNP3

Flag-Definition binäre Datentypen

Bit	Flag Bedeutung
0	Online (0 inactive, 1 active)
1	Restart (0, normal, 1 Variable in Initialstatus)
2	Comm_Lost (0, normal, 1 Value represents last valid data)
3	Remote_Forced (0, normal, 1 Value forced by external device)
4	Local_Forced 0, normal, 1 forced by local device e.g. HMI)
5	Chatter_Filter
6	Reserved (always 0)
7	State : 0,1 representing the state of physical or logical input

Flag-Definition für nicht binäre Datentypen

Bit	Flag Bedeutung
0	Online (0 inactive, 1 active)
1	Restart (0, normal, 1 Variable in Initialstatus)
2	Comm_Lost (0, normal, 1 Value represents last valid data)
3	Remote_Forced (0, normal, 1 Value forced by external device)
4	Local_Forced 0, normal, 1 forced by local device e.g. HMI)
5	Chatter_Filter
6	Reserved (always 0)
7	0

Funktionscode nach DNP3-Level 2

DNP OBJECT GROUP & VARIATION			REQUEST (Master may issue and Outsta- tion must parse)		RESPONSE (Master must parse and Outstation may issue)	
Grp	Var	Description	Function Codes (dec)	Qualifier Codes (hex)	Function Codes (dec)	Qualifier Codes (hex)
1	0	Binary Input – Any Variation	1 (read)	06 (no range, or all)		
2	0	Binary Input Event – Any Variation	1 (read)	06 (no range, or all) 07, 08 (limited qty)		
2	1	Binary Input Event – Without time	1 (read)	06 (no range, or all) 07, 08 (limited qty)	129 (response) 130 (unsol. Resp)	17, 28 (index)
2	2	Binary Input Event – With absolute time	1 (read)	06 (no range, or all) 07, 08 (limited qty)	129 (response) 130 (unsol. Resp)	17, 28 (index)
2	3	Binary Input Event – With relative time	1 (read)	06 (no range, or all) 07, 08 (limited qty)	129 (response) 130 (unsol. Resp)	17, 28 (index)
10	0	Binary Output – Any Variation	1 (read)	06 (no range, or all)		
12	1	Binary Command – Control relay output block (CROB)	3 (select) 4 (operate) 5 (direct op) 6 (dir. op, no ack)	17, 28 (index)	129 (response)	echo of request
20	0	Counter – Any Variation	1 (read) 7 (freeze) 8 (freeze noack) 9 (freeze clear) 10 (frz. cl. noack)	06 (no range,or all)		
22	0	Counter Event – Any Variation	1 (read)	06 (no range, or all) 07, 08 (limited qty)		
30	0	Analog Input – Any Variation	1 (read)	06 (no range, or all)		
32	0	Analog Input Event – Any Variation	1 (read)	06 (no range, or all) 07, 08 (limited qty)		
40	0	Analog Output Status – Any Variation	1 (read)	06 (no range, or all)		
41	2	Analog Output – 16-bit	3 (select) 4 (operate) 5 (direct op) 6 (dir. op, no ack)	17, 28 (index)	129 (response)	echo of request
50	1	Time and Date – Absolute time	2 (write)	07 (limited $qty = 1$)		
60	1	Class Objects – Class 0 data	1 (read)	06 (no range, or all)		
60	2	Class Objects – Class 1 data	1 (read)	06 (no range, or all) 07, 08 (limited qty)		
60	3	Class Objects – Class 2 data	1 (read)	06 (no range, or all) 07, 08 (limited qty)		
60	4	Class Objects – Class 3 data	1 (read)	06 (no range, or all) 07, 08 (limited qty)		
80	1	Internal Indications – Packed format	2 (write)	00 (start-stop) index=7		
No Ol	oject (fur	nction code only)	13 (cold restart)			
No Ol	bject (fur	nction code only)	23 (delay meas.)			

7 Suconet-K-Modul (Master) XIOC-NET-SK-M

Eigenschaften

Das Modul wird in Verbindung mit der XC100- oder XC200-CPU eingesetzt. Es hat die Funktion des Masters am Suconet-K-Strang und kann 16 Slaves ansteuern. Es sind sowohl Suconet-K als auch Suconet-K1-Slaves möglich.

An einer XC100 können maximal zwei Module (COM-Schnittstellen), an einer XC200 maximal vier Module (COM-Schnittstellen) betrieben werden. Da die Module XIOC-SER und XIOC-NET-SK-M über die COM-Schnittstellen angesprochen werden, bezieht sich die Angabe der Modulanzahl (COM-Schnittstellen) in der Steuerung auf beide Module.

Abbildung 70: Suconet-K-Schnittstelle RS485

Die RS485-Schnittstelle ist galvanisch vom Bus getrennt.

LED-Anzeige

LED-Anzeige	LED-Funktion	Modul
PW (Power)	ein	eingeschaltet
ER (Error)	ein/aus	anwenderspezifisch
DTR	ein	betriebsbereit
DCD	ein	alle Teilnehmer angekoppelt
TxD	ein	Daten werden gesendet
RxD	ein	Daten werden empfangen

Aufbau der Suconet-K- (RS485-)Schnittstelle

Abbildung 71: Suconet-K-/RS485-Schnittstelle S = Schalter für die Busabschlusswiderstände

Modul im Konfigurator der easySoft-CoDeSys auswählen

- ▶ Öffnen Sie den Steuerungskonfigurator.
- Klicken sie mit der rechten Maustaste auf den gewünschten Steckplatz.
- ▶ Wählen Sie den Befehl "Element ersetzen".
- ► Wählen Sie im neuen Fenster durch einen Doppelklick das Modul aus.
 - Die Zuordnung zwischen dem Steckplatz des Moduls und der Programmansprache COM... stellen Sie im Konfigurator her: Aktivieren Sie das Register "Weitere Parameter" und wählen Sie dort im Listenfeld "Serielle Schnittstelle" COM2, 3, 4 oder 5 aus, -> Abbildung 73.

Abbildung 72: Modul einbinden, hier: XIOC-SER

Schnittstelle konfigurieren

Nach der Auswahl des Moduls können Sie im Register "Weitere Parameter" die Baudrate und die serielle Schnittstelle COM2, 3, 4 oder 5 einstellen.

Configuration XC-CPU2	Basisparameter Weitere Parameter
TAT %6X1.0: BOOL;	Anschlusseindellungen
- 2 AT %-0X1.7: BOOL	
- DIOC-NET-SK-MIS	per la companya de la

Abbildung 73: Parameter für Suconet-K-Master

Busabschlusswiderstände einstellen

Stellen Sie die Busabschlusswiderstände ein. Ist das Modul der physikalisch erste oder letzte Teilnehmer eines Stranges, so bringen Sie die beiden Schalter S (→ Abbildung 71) in Stellung ON (Defaultstellung). In einer anderen Position am Strang sind beide Schalter in Stellung "OFF" zu setzen. Beide Schalter müssen sich in gleicher Stellung befinden, um eine einwandfreie Kommunikation zu gewährleisten.

Zugriff auf die Empfangs- und Sendedaten

Der Zugriff vom Anwenderprogramm auf die Daten des XIOC-NET-SK-M-Moduls erfolgt mit Hilfe von Funktionsbausteinen aus der Bibliothek "SuconetK_Master.lib". Die Funktionsbausteine werden in MN05010002Z-DE (frühere Bezeichnung AWB2786-1456D), "Funktionsbausteine zur easySoft-CoDeSys", beschrieben.

8 PROFIBUS-DP-Module XIOC-NET-DP-M//XIOC-NET-DP-S

Die PROFIBUS-DP-Module XIOC-NET-DP-M (M = Master und XIOC-NET-DP-S (S = Slave) bilden die Schnittstelle zwischen der XC100-/XC200-CPU und dem PROFIBUS-DP, der dem genormten Industriestandard EN 50170 Vol.2 entspricht.

Das Mastermodul wird im Folgenden kurz DP-M-Modul genannt; das Slavemodul DP-S-Modul. Sofern die Beschreibung für beide Module gilt, heißt die Kurzschreibweise DP-Modul.

Ein DP-Modul können Sie auf die ersten drei Steckplätze (Slots) neben der CPU stecken. Dies müssen Sie auch bei der Konfiguration im Steuerungskonfigurator der easySoft-CoDeSys berücksichtigen.

Tabelle 16:	Maximale Anzahl und Steckplätze von DP-Modulen in
	Abhängigkeit vom Steuerungstyp

ХС	Slot	max. Anzahl	Kommentar
XC100	1, 2 oder 3	21)	→ Tabelle 20
XC200	1, 2 und 3	3	keine Lücken zwischen DP-Modulen! → Tabelle 21

1) Ab Betriebssystem-Version 3.10 ist ein DP-M- und ein DP-S-Modul möglich.

Das DP-M-Modul betreibt den Datenaustausch zwischen dem Anwenderprogramm und den angeschlossenen Slaves. Bis zu 31 Slaves kann es an einem Strangabschnitt ansprechen. Mit Hilfe von Repeatern können Sie mehrere Abschnitte aneinander koppeln, so dass maximal 124 Slaves angeschlossen werden können.

Das DP-S-Modul kann bis zu 244 Byte senden und empfangen.

Abbildung 74: Frontansicht XIOC-NET-DP-M (XIOC-NET-DP-S ist bis auf Typenbezeichnung identisch)

1 PROFIBUS-DP-Schnittstelle

(2) Busabschlusswiderstände

Hard- und Software-Voraussetzungen

Zum Einsatz des DP-Moduls müssen folgende Voraussetzungen erfüllt sein:

Tabelle 17: Hard- und Software-Voraussetzungen	Tabelle 17:	Hard- und Software-Voraussetzungen
--	-------------	------------------------------------

Hardware	Software DP-M	Software DP-S		
$XC100 \ge V04$	$BTS \ge V3.0$	$BTS \ge V3.10$		
$XC200 \ge V04$	$BTS \ge V1.02.00$	$BTS \geqq V1.03.02$		
BTS = Betriebssystem				

Eigenschaften

PROFIBUS-DP-Schnittstelle

Um das PROFIBUS-DP-Kabel an die potentialgetrennte RS485-Schnittstelle des Moduls anzuschließen, benötigen Sie den speziellen PROFIBUS-DP-Stecker ZB4-209-DS2. Er besitzt die notwendige Verdrahtung für den störungsfreien Betrieb bis 12 Mbit/s.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	PROFIBUS-DP	Pin	Bedeutung
	$ \begin{array}{c} 9 \\ \circ \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	3 4 5 6 8	RxD/TxD-P CNTR-P DGND VP (+5 V DC) RxD/TxD-N

Schalter für Busabschlusswiderstände

An beiden Enden des Kabels müssen Abschlusswiderstände vorhanden sein. Das DP-Modul verfügt über einschaltbare Busabschlusswiderstände und kann so auch am Ende eines Strangs eingesetzt werden.

Abbildung 75: Busabschlusswiderstände am DP-Modul (links eingeschaltet, rechts ausgeschaltet)

Abbildung 76: Busabschlusswiderstände am DP-Modul

→ An Modulen, die nicht mit Busabschlusswiderstände ausgerüstet sind, kann der PROFIBUS-DP-Stecker ZB4-209-DS2 verwendet werden. Er verfügt über einen Schiebeschalter, mit dem Sie die Widerstände zu- oder abschalten können.

Abbildung 77: Busabschlusswiderstände am PROFIBUS-DP-Stecker

Status- und Diagnoseanzeige (LEDs)

Die vier LEDs auf den DP-Modulen geben Auskunft über ihren Status. Sie können in den folgenden Kombinationen auftreten:

LED-Kombination			ion	Status Master
RUN	٠	0	ER	Kommunikation o.k.
RDY	٠	٠	STA	
RUN	0	0	ER	Hardwarefehler
RDY	\otimes	0	STA	
RUN	۲	•	ER	Alle Slaves fehlen oder kein Busanschluss
RDY	•	٠	STA	
RUN	٠	٠	ER	Mindestens ein Slave fehlt
RDY	•	•	STA	
LED-Kombination		on	Status Slave	
RUN	٠	0	ER	Kommunikation o.k.
RDY	•	•	STA	

	-	-	0.7.		
RUN	۲	0	ER	Verbindung zum Master unterbrochen oder	
RDY	•	0	STA	falsche Adresse vergeben	
RUN	\otimes	0	ER	Nicht konfiguriert	
RDY	•	0	STA		
• ein		Ø	blinkt zyk	klisch ⊗ blinkt unregelmäßig ○ aus	

DP-Modul betreiben

Verhalten nach Download

In einer Konfiguration mit einem oder mehreren DP-Modulen benötigt die CPU für den Warmstart nach einem Projektdownload mehrere Sekunden. In dieser Zeit zeigt die easySoft-CoDeSys-Oberfläche keine Veränderung der Parameter an und lässt keine Eingaben zu. In der Konfiguration erscheint hinter den Eingängen ein "?"

Verhalten nach Einschalten der Versorgungsspannung

Wenn Sie die Versorgungsspannung einschalten und die CPU enthält kein Anwenderprogramm, führt dies zu einer Fehlermeldung. Sie wird an den LEDs des DP-Moduls angezeigt: ER-, RDY-, STA-LED leuchten und die RUN-LED blinkt. Sobald Sie ein Programm geladen haben, erlischt die "Error"-Meldung und die Buskommunikation ist aktiv. Da die CPU im Zustand STOP ist, blinkt die RUN/STOP-LED auf der CPU. Ein Wechsel von STOP \rightarrow RUN bewirkt, dass die Daten über den Bus übertragen werden. Die LEDs haben dann diese Zustände: RUN-, RDY-, STA-LED leuchten und die ER-LED ist aus.

Verhalten nach RUN \rightarrow STOP-Wechsel

• Bei Konfiguration der XC200 mit DP-M-Modul Wenn Sie den CPU-Schalter von RUN in STOP umschalten, setzt der Master den Inhalt der zu sendenden Daten auf "0". Die Buskommunikation bleibt aktiv. Es werden jedoch keine Anwenderdaten übertragen.

In Slaves ohne Anwenderprogramm, wie z. B. in einer XI/ON-E/A-Einheit, werden dadurch die Ausgänge auf "0"-Signal" gesetzt. Die Slaves mit Anwenderprogramm erhalten die "0"-Information in den Empfangsdaten. Eine Reaktion auf die "0"-Daten muss vom Anwender programmiert werden.

Bei Konfiguration: XC200 mit DP-S-Modul

Nach dem RUN \rightarrow STOP-Wechsel setzt der Slave den Inhalt der Daten, die er an den Master sendet, auf "0". Eine Reaktion im Master auf die "0"-Daten muss von Ihnen programmiert werden. Die Kommunikation zum Master bleibt erhalten. Der Slave empfängt nach wie vor die aktuellen Daten vom Master.

Verhalten nach Unterbrechung des DP-Stranges

 \rightarrow Abschnitt "Konfiguration XIOC-NET-DP-S/M", Funktion "Auto Clear Mode"

• Bei Konfiguration der XC200 mit DP-M-Modul

Der Master erkennt, wenn die Verbindung zu einigen Slaves unterbrochen wird. In diesem Fall setzt er die Empfangsdaten, die die abgekoppelten Slaves senden, auf "0".

- Bei Konfiguration der XC200 mit DP-S-Modul
 - Voraussetzung: Watchdog aktiv
 Wird der Slave abgekoppelt, setzt der Slave die vom Master gesendeten Daten nach Ablauf der Watchdogzeit auf "0".
 Die Daten zum Master aktualisiert der Slave weiterhin.

 Voraussetzung: Watchdog nicht aktiv
 Nach dem Abkoppeln des Slave bleiben die zuletzt vom Master empfangenen Daten bestehen.

Ablaufanalyse

Zum Aufspüren der Ursachen von Fehlfunktionen stehen folgende Browser-Befehle zur Verfügung.

geteventlist	Ereignisliste
geterrorlist	Fehlerliste
plcload	Anzeige der CPU-Belastung in %. Sie sollte kleiner als 70 % sein.

Konfiguration XIOC-NET-DP-S/M

Die Konfiguration ist grundsätzlich im Handbuch zur Programmiersoftware (MN05010003Z-DE; frühere Bezeichnung AWB2700-1437D) beschrieben.

In der Konfiguration des Masters können Sie im Register "DP-Parameter" die Funktion "Auto Clear Mode" verändern:

- Nicht aktiv (Default): Wird ein Slave vom Bus getrennt, setzt der Master die Kommunikation mit den anderen Slaves fort.
- Aktiv: Wird ein Slave vom Bus getrennt, setzt der Master die Ausgänge aller Slaves am Bus in den sicheren Zustand und stellt die Kommunikation ein. Zum Start der Kommunikation müssen Sie die Spannung der CPU aus- und einschalten.

Die Funktion "Autostart" im Register "DP-Parameter" hat keine Bedeutung.

Die Konfiguration des XIOC-NET-DP-M geht aus dem Beispiel auf Seite 89 hervor.

Zur Konfiguration des XIOC-NET-DP-S sind einige Besonderheiten zu beachten. Die zu übertragenden Daten werden in Datenblöcke gepackt, die Sie im Register Ein-/Ausgänge auswählen können. Dort stehen zum Beispiel sowohl Blöcke wie "2 Byte input con (0x91)"für Eingänge (Datenempfang) zur Verfügung als auch "2 Byte output con (0x91)" für Ausgänge (Daten senden). Die Bezeichnung "con" steht für konsistent. Das bedeutet, dass die Daten, wie z. B. zwei Byte, konsistent sind. Damit wird sichergestellt, dass der Master die zwei Byte gleichzeitig verarbeitet.

Sowohl für die Master-Steuerung als auch für die Slave-Steuerung sind die gleichen Datenblöcke in der gleichen Reihenfolge zu konfigurieren. In der Konfiguration der Slave-Steuerung wird die Datenrichtung durch den Zusatz "IEC-Input (Datenempfang)" bzw. "IEC-Output (Datensenden)" festgelegt (—> Abbildung 89). Die Anzahl der übertragenen Daten in eine Richtung ist begrenzt auf:

- Datenblöcke: max. 24
- Byte: max. 244

Im Programm werden die Sende- und Empfangs-Daten mit den im Konfigurator angezeigten direkt dargestellten Variablen angesprochen.

Datenaustausch

PROFIBUS-DP- Modul (Master) ↔ Slaves

Der PROFIBUS-DP-Master (XIOC-NET-DP-M) unterstützt zwei Protokollarten:

- Zyklischer Datenaustausch (DP-V0-Dienste) Der Datenaustausch zwischen Master und Slaves wird beim PROFIBUS-DP-Bus zyklisch durchgeführt. Dabei kopiert der Master die Daten in das Ein-/Ausgangsabbild der CPU. Auf diese Daten greift das Anwenderprogramm zu.
- Asynchroner Datenaustausch (DP-V1-Dienste) Der asynchrone Datenaustausch dient zum azyklischen Lesen und Schreiben von Daten; z. B. zur Parametrierung eines Antriebs. Hierzu werden Funktionsbausteine verwendet (siehe MN05010002Z-DE; frühere Bezeichnung AWB278-1456D: Azyklische Datenzugriffsbausteine für PROFIBUS-DP).

PROFIBUS-DP-Master ↔ DP-S-Modul

Der DP-Master führt einen zyklischen Datenaustausch (DP-V0-Dienst) mit dem DP-S-Modul durch. Die Konfigurierung, Parametrierung und Programmierung der Steuerungen wird im Abschnitt "Beispiel: Datenübertragung XC200 (Master) ↔ XC100 (Slave)" auf Seite 79

XC100/XC200 ↔ DP-M-Modul

Die Empfangs- und Sendedaten der Slaves werden im Speicher des PROFIBUS-DP-Moduls (XIOC-NET-DP-M) gesammelt und mit den Daten des Ein-/Ausgangsabbildes der Steuerung ausgetauscht. Der zeitliche Ablauf des Austauschs ist abhängig vom Steuerungstyp und der Betriebsart.

Tabelle 18:	Betriebsarten	der XC100/XC200

	Betriebsart	
XC100	Ohne Taskverwaltung	zyklisch
XC200	Mit Taskverwaltung	periodisch (Monotasking)
		periodisch (Multitasking)

XC100: Zyklischer Datenaustausch

Bei der XC100 wird der Datenaustausch zwischen der CPU und dem DP-M-Modul vom Programmzyklus bestimmt.

Vor dem Beginn des Programmstarts werden die Daten der Slaves aus dem DP-M-Modul in das Eingangsabbild der CPU kopiert. Dann startet das Anwenderprogramm und gleichzeitig der PROFIBUS-DP-Zyklus (Datenaustausch DP-Master ↔ Slaves). Am Ende des Programmzyklus werden die Daten des Ausgangsabbilds in das DP-M-Modul kopiert. Die Buszykluszeit sollte kleiner als die Programmzykluszeit sein. Wenn sie größer ist (→ Abbildung 78), findet am Ende des Programmzyklus kein Datenaustausch statt; der Buszyklus wird fortgesetzt. Dies bedeutet, dass auch der nächste Programmzyklus mit den "alten" Daten aus dem vorherigen Buszyklus durchgeführt wird.

Abbildung 78: Datenaustausch zwischen XC100 und DP-M-Modul

XC200: Periodischer Datenaustausch (Monotasking)

Die XC200 arbeitet das Anwenderprogramm grundsätzlich periodisch ab.

Ohne Taskverwaltung wird das Default-Programm PLC_PRG mit einer Zykluszeit (Taskintervall) von 10 ms abgearbeitet. Dies entspricht einem Programm, das von einer einzelnen Task verwaltet und mit einem Taskintervall von 10 ms aufgerufen wird.

Der Datenaustausch zwischen der CPU und dem DP-M-Modul wird vom Taskintervall bestimmt. Am Ende des Taskintervalls findet der Datenaustausch zwischen dem Eingangs-/ Ausgangsabbild der CPU und dem DP-M-Modul statt.

Mit dem Start des nächsten Taskintervalls erfolgt der Programmstart und der DP-BUS-Zyklus (Datenaustausch DP-Master \leftrightarrow Slaves).

Das Taskintervall sollte größer als die Buszykluszeit sein, um eine Aktualisierung der Ein-/Ausgänge in jedem Programmzyklus zu garantieren. Ist das Taskintervall kleiner als die Buszykluszeit (→ Abb. 79), findet zu Beginn der folgenden Task kein Datenaustausch statt. Der Buszyklus wird fortgesetzt und die Aktualisierung der Ein-/Ausgänge findet im nächsten Zyklus statt.

Um die Zeit für das Taskintervall zu bestimmen, ermitteln Sie zuerst die Buszykluszeit in Abhängigkeit von der Baudrate.

Wählen sie die Zeit für das Taskinterval 5 % größer als die Buszykluszeit.

Grundsätzlich muss die Zeit für das Taskintervall im Bereich von 2 ms bis 500 ms liegen.

Abbildung 79: Datenaustausch bei periodischem Betrieb

Ermittlung der Busykluszeit:

Zur Ermittlung der Buszykluszeit greifen Sie auf die Target Rotation Time (TTR) des PROFIBUS-DP zurück. Sie ist etwas größer als die Buszykluszeit.

Die TTR können Sie den Busparametern aus dem Konfigurator der easySoft-CoDeSys entnehmen.

Sie wird in "tBit" = "Bit-Zeiten" angegeben:

- Klicken Sie im Steuerungskonfigurator den Ordner XIOC-NET-DP-M an.
- Öffnen sie das Register Busparameter und stellen Sie die Baudrate ein.

Entsprechend der Baudrate wird die Target-Rotation-Time angezeigt, z. B. beträgt sie bei einer Baudrate von 12 Mbit/s = 6647 tBit.

udrale (kBits/s): 💌 12000,00	🔽 Au	tomatisch op	x
Parameter	Wert	Einheit	L
Stot Time (TSL)	1000	tBit	
Min Station Delay (min TSDR)	11	tBit	
Max Station Delay (max TSDR)	800	tBit	
Quiet Time (TQUI)	9	tBit	
Setup Time (TSET)	18	tBit	
Target Rotation Time (TTR)	6647	tBit	
Gap Update Factor	10		
Max Retry Limit	4		
Min. Slave Interval	10	100 µs	
Poll Timeout	10	10 ms	
Data Control Time	1200	mis	
Watchdog Time (TWD)	1000	ms	

Abbildung 80: Einstellung der Busparameter

Um die TTR in ms zu erhalten berechnen Sie zunächst die Bitzeit [ns] für ein einzelnes Bit nach folgender Formel:

$$Bit-Zeit [ns] = \frac{1000000000}{Baudrate [Bit/s]}$$

Multiplizieren Sie Bit-Zeit mit der TTR [tBit], die im Konfigurator (\rightarrow Abb. 80) angegeben ist, so erhalten Sie die Target Rotation Time in ms.

Beispiel für eine Konfiguration bestehend aus einem PROFIBUS-DP-Strang mit zwei Teilnehmern:

Der Bus soll mit einer Baudrate von 12000000 Bit/s betrieben werden. Wie groß ist die TTR?

1000000000 120000000 = 83,33 ns (Zeit für ein Bit)

83 \times 6647 (tBit Konfig.) = 0,55 ms (TTR)

Addieren Sie 5 % hinzu, so erhalten Sie die Zeit für das Taskintervall = ca. 0,60 ms. In diesem Fall sind jedoch 2 ms einzutragen, da das kleinste Taskintervall 2 ms beträgt!

Wählt man für diese Konfiguration mit 2 Teilnehmern verschiedene Baudraten aus, so ergeben sich folgende TTR

 Baudrate
 1 tBit [ns]
 Konfig. [tBit]
 TTR [ms]

 12 Mbit/s
 83
 6647
 0,5539

5143

4449

4449

3416

2994

2994

2994

2994

0,8572

1,4830

2,9660

6,8320

15.9680

31,9360

155,9375

311,8750

166

333

666

2000

5333

10666

52038

104167

Eine Veränderung der Teilnehmeranzahl oder der Übertragungsdaten hat eine andere TTR zur Folge!

Taskkontrolle im Online-Betrieb

6 Mbit/s

3 Mbit/s

1,5 Mbit/s

500 Kbit/s

187,5 Kbit/s

93,75 Kbit/s

19,2 Kbit/s

9.6 Kbit/s

Im Online-Modus wird der Status einer Task im Konfigurationsbaum angegeben. Das zeitliche Verhalten einer Task können Sie mit Hilfe einer grafischen Darstellung verfolgen. Voraussetzung ist, dass die Lib-Funktionen "SysTaskInfo.lib" und "SysLibTime.lib" in der easySoft-CoDeSys eingebunden sind (→ MN05010003Z-DE, Kapitel "Resourcen", "Taskkonfiguration"). Mit dem Einfügen der "SysTaskInfo.lib" wird die "SysLibTime.lib" automatisch eingefügt.

Reaktionszeit am PROFIBUS-DP

Die Abbildung 81 zeigt den Verlauf von der Abfrage eines Eingangs an einem PROFIBUS-DP-Slave über die Bearbeitung bis zum Setzen eines Slave-Ausgangs.

Abbildung 81: Reaktionszeit am PROFIBUS-DP

Ablauf:

Voraussetzung: Buslaufzeit ist kleiner als das Taskintervall.

- An einem Slaveeingang wird Spannung angelegt. Dieses "1"-Signal wird während des Buszyklus erkannt.
- (2), (3) Zu Beginn des folgenden Taskintervalls werden die Eingangsdaten der Slaves in das Eingangsabbild der CPU kopiert. Der Eingang wird bearbeitet (2) und das Ergebnis auf einen Ausgang geführt (3). Am Ende des Taskintervalls werden die Ausgänge ins Ausgangsabbild kopiert.
- (4) Im folgenden Buszyklus wird der Ausgang des Slaves gesetzt.

XC200: Multitasking-Betrieb

Der Multitasking-Betrieb ist im Handbuch zur XC200 (MN05003001Z-DE; frühere Bezeichnung AWB2724-1491D) beschrieben. Es folgen einige Hinweise für den Einsatz des DP-Moduls.

Der Datenaustausch zwischen der CPU und dem DP-M-Modul wird vom Taskintervall bestimmt. Wenn Sie jedem konfigurierten DP-M-Modul eine TASK zugeordnet haben, überprüfen Sie, ob folgende Bedingungen erfüllt sind:

- Die Tasks müssen unterschiedliche Priotitäten haben!
- Die Ein- und Ausgänge der Slaves, die an einen Strang gekoppelt sind, sind auch in der zugeordneten Task referenziert worden!
- Die eingestellte Zeit für ein Taskintervall liegt im Bereich von 2 ms bis 500 ms.

XC100/XC200

Arbeiten unterschiedliche Tasks auf die Ein-/Ausgänge eines DP-Stranges, stößt die erste konfigurierte Task, in der ein Slave-Ausgang verwendet wird, den PROFIBUS-DP-Zyklus an.

Abbildung 82: Konfiguration mit drei Tasks

Wird z. B. in Task 1 kein Ausgang verwendet, jedoch in Task 2 und 3, wird der PROFIBUS-Zyklus mit Beginn der zweiten Task "Prog2" gestartet. Am Ende der Task findet der Datenaustausch statt.

XC100: Zustandsanzeige der PROFIBUS-DP-Slaves

Analoge und digitale Ein- und Ausgangszustände der PROFIBUS-DP-Slaves, die über das DP-M-Modul mit der XC100 verbunden sind, können Sie in der Zustandsanzeige sichtbar machen.

Voraussetzungen:

- Ein einfaches Programm (z. B.: a:=a) ist geladen und die CPU ist im STOP oder RUN.
- Die Ein-/Ausgänge sind konfiguriert.
- An den Eingängen ist Spannung/Strom angelegt.

Die Ausgänge der PROFIBUS-DP-Slaves können Sie zu Testzwecken im Konfigurator setzen, wenn folgende Voraussetzungen gegeben sind:

- Ein einfaches Programm (z. B.: a:=a) ist geladen und die CPU ist im RUN.
- Die Ein-/Ausgänge sind konfiguriert.
- Die Ausgänge im Steuerungskonfigurator sind angeklickt bzw. ein Wert ist vorgegeben.

Es ist weder eine Deklaration noch ein Programm mit Ansprache der Ein-/Ausgänge erforderlich.

Beispiel: Datenübertragung XC200 (Master) ↔ XC100 (Slave)

Das Beispiel zeigt die Konfiguration, Parametrierung und Programmierung der beiden Steuerungen. Jede Steuerung sendet 2 Byte und empfängt 1 Byte.

Der Aufbau der Steuerungen geht aus der Abbildung 83 hervor.

▶ Konfigurieren Sie zunächst die XC200 gemäß Abbildung 84.

Abbildung 84: Konfiguration XC200

Legen Sie die Parameter für den Master in der XC200 fest:

- Klicken Sie auf das Verzeichnis "XIOC-NET-DP-M" und wählen Sie folgende Einstellungen:
 - im Register DP-Parameter: Höchste Stationsadresse = 2
 - im Register Bus-Parameter: z. B. 1500,00
- ► Klicken Sie auf das Verzeichnis "XIOC-NET-DP-S".
- ▶ Wählen Sie im Register "Ein-/Ausgänge" (→ Abbildung 85) die Ein-/Ausgänge für den Slave so aus, dass die Auswahl der Abbildung 86 entspricht.

Configuration XC-CPU201 D O	Basisparameter DP Parameter	Ein-//	Autglänge
AT %IX1.0: BOOL; (* EI	Max Länge Input: Max Länge Butput Max Länge In-/Output: Max Modulanzaht	244 244 400 24	Byte Byte Dyte
BEMPTY-SLOTISLOTI BEMPTY-SLOTISLOTI BEMPTY-SLOTISLOTI BEMPTY-SLOTISLOTI BEMPTY-SLOTISLOTI	Eingabemodule Toyte input con (0 2 byte input con (0 3 byte input con (0 4 byte i	v30) v31) v32) v33)	Aun

Abbildung 85: Auswahl der Ein-/ Ausgänge

Einige Ein-/Ausgangsbezeichnungen haben den Zusatz "con". Das bedeutet, dass die Daten, wie z. B. zwei Byte, konsistent sind. Damit wird sichergestellt, dass der Master die zwei Byte gleichzeitug verarbeitet.

Max Lange Input:	244 Byte	Lange Input.	4 Byte
Max Länge Output	244 Byte	Länge Output:	1 Byte
Max Lange In-/Out	put. 498 Byte	Länge In-/Output:	5 Byte
Max. Modulanzahit	24	Anzahi Module:	3
Erigabemodule	Auguvalder ()	Ausgewählte Mo	dule
Ausgabemodule	1	- 2 byte input	con (0x31)
(i) Leeimodule	<< Enthemer	- 1 byte output	t con (DeAl

Abbildung 86: Parametrierung der Ein-/Ausgänge

Danach werden in der XC200-Steuerungskonfiguration unter XIOC-NET-DP-S die direkten E-/A-Adressen angezeigt, \rightarrow Abbildung 89.

▶ Erstellen Sie das Programm nach Abbildung 87.

Abbildung 87: Anwenderprogramm für XC200

Verfahren Sie ebenso mit der XC100-Steuerung.

Konfigurieren Sie die XC100 nach Abbildung 88:

- Stellen Sie im Register DP-Parameter die Stationsadresse "2" ein.
- Wählen Sie im Register Ein-/Ausgänge die Ein-/Ausgänge für den Slave aus.

Die Auswahl der Module inklusive Kennung (z. B. 0x91) und deren Reihenfolge muss der Auswahl im DP-M-/DP-S-Modul entsprechen, \rightarrow Abbildung 86.

Abbildung 88: E-/A-Konfiguration XC100

Danach zeigt die Steuerungskonfiguration unter XIOC-NET-DP-S die direkten E-/A-Adressen an. Vergleichen Sie die Ein-/Ausgangsangaben, z. B. "2 Byte Input con" der XC100 mit der XC200, werden Sie identische Angaben feststellen. Die zusätzliche Kennzeichnung "IEC-Output bzw. Input" gibt Auskunft über die wirkliche Datenrichtung. Die Angaben der direkten Adresse, wie IB/QB geben ebenfalls die wirkliche Datenrichtung an. So wird im Beispiel ein Datum der XC100 von QB2 (Ausgangsbyte) auf das IB6 (Eingangsbyte) der XC200 übertragen.

► Erstellen Sie das Programm nach Abbildung 90.

Abbildung 90: Anwenderprogramm für XC100

Diagnose der PROFIBUS-DP-Slaves

Die Diagnose im PROFIBUS-DP ist so organisiert, dass der Master die von den Slaves bereitgestellten Diagnosedaten abholt.

Abbildung 91: Diagnose am PROFIBUS-DP-Strang

Die Auswertung der Diagnosedaten können Sie mit Hilfe von Funktionsbausteinen programmieren. Dies kann nach zwei verschiedenen Verfahren erfolgen. Es können auch weiterhin beide Verfahren eingesetzt werden.

Verfahren für beste- hende Anwendungen	Verfahren für neue Anwendungen
Mit der Variablen vom Typ GETBUSSTATE und dem Funktionsbaustein DIAGGETSTATE.	Mit den Funktionsbausteinen xDiag_SystemDiag und xDiag_ModuleDiag. Softwarevoraussetzung (BTS-Version): XC100: 3.10 XC200: 1.03.02
Bibliothek: BusDiag.lib	Bibliothek: xSysDiagLib.lib
Das Verfahren wird im Anschluss erläutert	Das Verfahren wird in MN05010002Z-DE (frühere BezeichnungWB2768-1456), Kapitel "Diagnosebausteine: xSysDia- gLib", beschrieben.

Unabhängig davon kann ein Slave mit Hilfe des Funktionsbausteins "xDPS_SendDiag" selbst aktiv werden, z. B. um den Master beim Zustandswechsel RUN \rightarrow STOP bzw. STOP \rightarrow RUN zu informieren. In diesem Fall müssen Sie den Baustein mit der Interrupt-Funktion START/STOP programmieren. Die zu sendenden Informationen legen Sie in einem Array ab, auf das der Baustein zugreift, \rightarrow Abschnitt "Diagnose in der Slavesteuerung" auf Seite 86.

Diagnose durchführen

Zur Durchführung der Diagnose stellt die Bibliotheksdatei "BusDiag.lib" eine Struktur GETBUSSTATE und den Funktionsbaustein DIAGGETSTATE zur Verfügung. Im Abschnitt "Beispielprogramm zur Diagnose in der Mastersteuerung" ab Seite 89 erfahren Sie, wie Sie Struktur und Funktionsbaustein im Programm miteinander verknüpfen.

YPE GETBUSSTATE;	
STRUCT	
BOLDENABLE:	BOOL;
ENABLE:	BOOL;
DRIVERNAME:	POINTER TO STRING;
DEVICENUMBER:	INT;
READY:	BYTE;
STATE:	INT;
EXTENDEDINF0:	ARRAY[0129] OF BYTE;
END_STRUCT	
ND_TYPE	

Die Zuordnung zwischen DP-Modul und Diagnosebaustein erfolgt mit Hilfe einer Device-Nummer, die zusätzlich vom Steckplatz des Moduls abhängig ist, → Tabelle 20 bei Verwendung der Steuerung XC100 bzw. → Tabelle 21 bei der XC200:

Tabelle 20:Device-Nummer für XC100

Ε

XIOC-Slot	1	2	3
Modul	DP-M	DP-S	X-Modul
Device-No	0	1	-
Modul	DP-S	DP-M	X-Modul
Device-No	0	1	-
Modul	DP-M/S	X-Modul	X-Modul
Device-No	0	-	-
Modul	X-Modul	DP-M	DP-S
Device-No	-	0	1
Modul	X-Modul	DP-S	DP-M
Device-No	-	0	1
Modul	X-Modul	DP-M/S	X-Modul
Device-No	-	0	-
Modul	X-Modul	X-Modul	DP-M/S
Device-No	-	_	0

Tabelle 21: Device-Nummer für XC200

XI/OC-Slot	1	2	3	
Modul	DP-M/S	DP-M/S	DP-M/S	
Device-No	0	1	2	
Modul	DP-M/S	DP-M/S	X-Modul	
Device-No	0	1	-	
Modul	X-Modul	DP-M/S	DP-M/S	
Device-No	-	0	1	
Modul	DP-M/S	DP-M/S	DP-M/S	Konfigurations-
Device-No	0	-	2	fehler: Lücken unzulässig! ¹⁾
Modul	X-Modul	X-Modul	DP-M	
Device-No	-	-	0	

X-Modul: Kein PROFIBUS-DP-Modul

1) Der Konfigurator lässt diesen Aufbau zu, beim Übersetzen wird jedoch ein Fehler gemeldet.

Diagnosedaten auswerten

Zur Auswertung der Diagnosedaten müssen Sie eine Variable vom Typ GETBUSSTATE anlegen (die Vorgehensweise ist anschließend im Abschnitt "Grobdiagnose mit Variable vom Typ GETBUS-STATE" beschrieben). Die Variable stellt mit dem Array EXTEN-DEDINFO jedem Teilnehmer ein (Teilnehmer-) Byte zur Verfügung, dessen einzelne Bits über den Status der Kommunikation und des Slave informieren. Den Inhalt des Byte aktualsiert das Laufzeitsystem ständig (-> Tabelle 22 auf Seite 83).

Zur Grobdiagnose fragen Sie das Bit 2 dieses Teilnehmerbyte ab. Sendet der Slave eine Diagnosemeldung, wird in dem ihm zugeordneten Teilnehmerbyte das Bit 2 auf ".Signal gesetzt. Um die Meldung wieder zurückzusetzen (Bit $2 \rightarrow 0$ ".Signal, rufen Sie den Funktionsbaustein DIAGGETSTATE auf.

Zur detaillierten Diagnose fragen Sie das Ausgangsarray EXTENDEDINFO des Funktionsbausteins DIAGGETSTATE ab.

\rightarrow	Das Ausgangsarray EXTENDEDINFO vom Funktionsbau-
	stein DIAGGETSTATE ist nicht identisch mit dem Array
	EXTENDEDINFO der Variablen vom Typ GETBUSSTATE!

Weitere Informationen finden Sie im Abschnitt "Detaillierte Diagnose mit Funktionsbaustein DIAGGETSTATE" auf Seite 83).

Datenaustausch kontrollieren

Im Array EXTENDEDINFO der Variablen GETBUSSTATE enthält ein Teilnehmerbyte noch weitere Informationen, z. B. den Status des Datenaustausch zwischen dem Master und dem entsprechenden Teilnehmer. Fragen Sie dazu Bit 1 ab.

Funktioniert der Datenaustausch, hat Bit 1 ein "1"-Signal. Ein "0"-Signal zeigt an, dass der Datenaustausch z. B. durch einen Kabelbruch oder Geräteausfall unterbrochen ist. In diesem Fall kann der Slave keine Diagnose senden.

Grobdiagnose mit Variable vom Typ GETBUSSTATE

Variable vom Typ GETBUSSTATE anlegen

Voraussetzung zur Diagnose ist, dass die Datei "BusDiag.LIB" im Projekt eingebunden ist. Zur Abfrage der Diagnosedaten müssen Sie eine direkt adressierbare globale Variable vom Typ GETBUSSTATE anlegen. Sie ist im Steuerungskonfigurator unter der Bezeichnung "Diagnosadresse" aufgeführt.

 Klicken Sie im Steuerungskonfigurator den Ordner "XIOC-NET-DP-M" an.

Im Register "Basisparameter" wird die Variable unter "Diagnoseadresse" angezeigt. Für die XC100 und den ersten DP-Strang der XC200 heißt die Diagnoseadresse %MB4.

Steuerungskonfiguration	د اولد
AT %IS0: BYTE; (* Local Inputs AT %IK1 0: BOOL; (* State *) (C	Dasisparameter DP Parameter Busp. •
Non Display[SLOT]	Modulid. 25705
B- #XIOC-NET-DP-M[SLOT]	Knotennummer:
E HXIOC-NET-DP-MISLOTI	Eingabeadresse: 1986
- # EMPTY-SLOTISLOT	Ausgabeadkesse: 3000
	Diagnoseadrosse: 20404

Abbildung 92: Diagnoseadresse

Deklaration bei XC100:

```
Var_Global
DPSTAT AT%MB4 : GETBUSSTATE; (* MB4-Diagnoseadresse des
End_Var DP-Masters *)
```

Deklaration bei XC200 mit 3 DP-Strängen:

```
Var_Global
DPSTAT_1 AT%MB4 : GETBUSSTATE; (* 1. Master *)
DPSTAT_2 AT%MBxx : GETBUSSTATE; (* 2. Master *)
DPSTAT_3 AT%MByz : GETBUSSTATE; (* 3. Master *)
End Var
```

Variable vom Typ GETBUSSTATE abfragen: Die Diagnosedaten werden in ein ARRAY OF BYTE mit dem Strukturnamen EXTENDEDINFO geschrieben.

Array EXTENDEDINFO auswerten: Prinzipiell hat das Array folgenden Aufbau:

Bit	7	6	5	4	3	2	1	0	Teilnehmer- Adresse
Byte 0						×	\times	×	0
Byte 1						×	×	×	1
Byte 2						×	\times	×	2
Byte 3						×	\times	×	3
Byte 125						×	×	×	125

Jedes Byte enthält die Diagnoseinformationen eines Teilnehmers. Sie werden durch das Laufzeitsystem laufend aktualisiert. Bit 0, 1 und 2 enthalten nachstehende Diagnosedaten. Bit 3 bis Bit 7 sind ohne Bedeutung.

Tabelle 23: Diagnoseinformationen

Bit 0 = 1:	Für die Adresse liegt eine Konfiguration vor.
Bit 1 = 1:	Datenaustausch ok Bit 1 zeigt bereits "1"-Signal an, wenn der Datenaus- tausch zum Ankoppeln des Slaves erfolgreich war. Das bedeutet: Die Verbindung ist o. k. und der Datenaus- tausch findet statt.
Bit 2 = 1:	Neue Diagnosedaten liegen vor.

Zur Diagnose kontrollieren Sie die Teilnehmerbyte auf Störmeldungen, beginnend mit Adresse 2 bis max. Adresse 125. Im Beispiel erfolgt dies mit der Abfrage:

IF (xxx.EXTENDEDINF0[n] >=6) THEN

xxx = globale Variable vom Typ GETBUSSTATE, z. B. DPSTAT n = Adresse des Teilnehmers

Detaillierte Diagnose mit Funktionsbaustein DIAGGETSTATE

Den Funktionsbaustein DIAGGETSTATE müssen Sie für jeden Teilnehmer/Knoten (BUSMEMBERID) aufrufen.

FUNCTION_BLOCK DiagG	GetState
VAR_INPUT	
ENABLE:	BOOL ;
DRIVERNAME:	POINTER TO STRING ; (* XC100/XC200 = 0 *)
DEVICENUMBER:	INT ; (*XC100: 0, 1/XC200: 0, 1, 2*)
BUSMEMBERID:	DWORD ;
END_VAR	
VAR_OUTPUT	
READY:	BOOL ;
STATE:	INT ;
EXTENDEDINFO:	ARRAY[099] OF BYTE ;
END_VAR	

Der Ausgang EXTENDEDINFO des Funktionsbausteins "DiagGetState" ist unabhängig vom Ausgang EXTENDEDINFO der Struktur GETBUSSTATE.

Das Beispielprogramm zur Diagnose zeigt einen Strang mit einer XI/ON-Station und der Ein-/Ausgangs-Kombination EM4/LE4 (-> ab Seite 90).

Nachdem die Parameter an den Bausteineingängen DRIVER-NAME, DEVICENUMBER und BUSMEMBERID angelegt wurden, ist an den ENABLE-Eingang eine "1" anzulegen.

Führt der Bausteinausgang READY eine ",1" und der Ausgang STATE eine ",2" (Vergleich mit der definierten Konstanten ",NDSTATE_DIAGINFO_AVAILABLE = 2), kann das Ausgangsarray EXTENDEDINFO abgefragt werden.

Eingänge	
ENABLE	1 = aktivieren 0 = deaktivieren
DRIVERNAME	= 0 (immer 0 bei XC100/XC200)
DEVICENUMBER	XC100 = 0, 1/XC200 = 0, 1, 2
BUSMEMBERID	Adresse des Slaves
Ausgänge	
READY	0 = Baustein inaktiv 1 = Baustein aktiv
STATE	für die Werte –1, 0, 1, 2, 3 sind die Konstanten festgelegt:
	-1: NDSTATE_INVALID_INPUTPARAM 0: NDSTATE_NOTENABLED 1: NDSTATE_GETDIAG_INFO 2: NDSTATE_DIAGINFO_AVAILABLE 3: NDSTATE_DIAGINFO_ NOTAVAILABLE
EXTENDEDINFO	In den 100 Byte stehen weitere Diagnosedaten.

Ein-/Ausgänge des Funktionsbausteins DIAGGETSTATE

• Dateninhalt von DIAGGETSTATE.EXTENDEDINFO

Der Dateninhalt von DIAGGETSTATE.EXTENDEDINFO ist aufgeteilt in:

- Allgemeine Diagnosedaten (Byte 0 bis 7)
- Standard-Diagnosedaten (Byte 8 bis 13)
- Gerätespezifische Diagnosedaten (Byte 14 bis 99)

Die gerätespezifische Diagnosedaten sind in der Geräte-Dokumentation und in der zugehörigen GSD-Datei beschrieben.

Die wichtigen Daten sind in der folgenden Tabelle grau hinterlegt.

EXTENDEDINFO[0]	// bei PROFIBUS-DP: Slaveadresse			
EXTENDEDINFO[14]	// keine Bedeutung			
EXTENDEDINFO[5]	// LaengenByte der Geraetediagnose			
EXTENDEDINFO[6&7]	// keine Bedeutung			
EXTENDEDINFO[8]	// Status_1			
(Standard-Byte 1)	Bit 0:	Gerät antwortet nicht (keine gueltigen IO-Daten)		
	Bit 1:	Slave nicht bereit		
	Bit 2:	abweichende Konfiguration		
	Bit 3:	es liegt eine erweiterte Diagnose vor		
	Bit 4:	unbekannter Befehl		
	Bit 5:	ungültige Antwort		
	Bit 6:	Parametrierung unvollständig		
	Bit 7:	Parametrierung von einem anderen Master		
EXTENDEDINFO[9]	// Status_2			
(Standard-Byte 2)	Bit 0:	Bereit für neue Anlauf- Sequenz		
	Bit 1:	keine Parametrierung		
	Bit 2:	"1"		
	Bit 3:	Watch Dog aktiviert		
	Bit 4:	FREEZE-Befehl aktiv		
	Bit 5:	SYNC-Befehl aktiv		
	Bit 6:	Reserviert		
	Bit 7:	Slave wurde nicht projektiert		
EXTENDEDINFO[10] (Standard-Byte 3)	// keine Bedeutung			
EXTENDEDINFO[11] (Standard-Byte 4)	// fuer PROFIBUS-DP: Masteradresse			
EXTENDEDINFO[12&13] (Standard-Byte 5, 6)	// eigene ldentnummer			
EXTENDEDINFO[14]	// LaengenByte der herstellerspezifischen Daten			
EXTENDEDINFO[1599]	//gerätespezifische Diagnose.			

Diagnose der PROFIBUS-DP-Slaves

• Diagnosefähige XI/ON-Module

Wenn Sie eine Diagnose mit dem Funktionsbaustein DIAG-GETSTATE an einer XI/ON-Station durchführen, zeigt der Ausgang EXTENDEDINFO in Byte 15 und 16 die Diagnosedaten der gesamten Station an. Die Daten gehen aus der GSD-Datei des zentralen XI/ON-Gateways hervor.

Byte 17 bis 99 enthalten den Fehlercode der diagnosefähigen Module. Dies erfolgt in der Reihenfolge der Module. Für nichtdiagnosefähige Module existiert kein Byte.

EXTENDEDINFO[15]	//	Bit 0:	Modul-Diagnose liegt vor
		Bit 2:	Parametrierung unvoll-
			staendig
		Bit 3:	Abweichende Konfiguration
EXTENDEDINFO[16]	//	Bit 1:	-
		Bit 2:	Modulbusfehler
		Bit 3:	Master-Konfigurationsfehler
		Bit 4:	_
		Bit 5:	Stations-Konfigurationsfehler
		Bit 6:	I/Oassistant-Force Mode
			aktiv
		Bit 7:	Modulbusausfall
EXTENDEDINFO	//f	uer jedes o	diagnosefähige Modul ein oder
[1799]	m	ehrere Byt	e (\rightarrow nachfolgende Tabelle);
	W	eitere Info	rmationen finden Sie auch im
	Ha	andbuch "	XI/ON PROFIBUS-DP"
	(AWB2700-1394D).		

Der folgende Auszug aus dem Handbuch "XI/ON-Gateways für PROFIBUS-DP" (MN05002004Z-DE; frühere Bezeichnung AWB2725-1529D) zeigt die Diagnosebit der XI/ON-Module:

Versorgungsmodule		
XN-BR-24VDC-D	Bit 0:	Modulbus-Spannungs- Warnung
	Bit 2:	Feldspannung fehlt
XN-PF-24VDC-D	Bit 2:	Feldspannung fehlt
XN-PF-120/230VAC-D	Bit 2:	Feldspannung fehlt
Ausgabemodule		
XN-2DO-24VDC-0.5A-P	Bit 0:	Ueberstrom Kanal 1
XN-2DO-24VDC-2A-P XN-2DO-24VDC-0.5A-N XN-16DO-24VDC-0.5A-P	Bit 1:	Ueberstrom Kanal 2
Analogmodul		
XN-1AI-I	Bit 0:	Messwert-Bereichsfehler
	Bit 1:	Drahtbruch
XN-1AI-U	Bit 0:	Messwert-Bereichsfehler

XN-2AI-PT/NI-2/3	1. BYTE	
	Bit 0:	Messwert-Bereichsfehler (Kanal 1)
	Bit 1:	Drahtbruch
	Bit 2:	Kurzschluss
	2. BYTE	
	Bit 0:	Messwert-Bereichsfehler (Kanal 2)
	Bit 1:	Drahtbruch
	Bit 2:	Kurzschluss
Counter Modul		
XN-1CNT-24VDC (C)	Bit 0:	Kurzschluss/Drahtbruch DO
	Bit 1:	Kurzschluss Geberversorgung 24 V DC
	Bit 2:	Zaehlbereichende falsch
	Bit 3:	Zaehlbereichanfang falsch
	Bit 4:	Invert-DI bei L-RetrFehler
	Bit 5:	Hauptzaehlrichtung falsch
	Bit 6:	Betriebsart falsch
XN-1CNT-24VDC (M)	Bit 0:	Kurzschluss/Drahtbruch DO
	Bit 1:	Kurzschluss Geberversorgung 24 V DC
	Bit 2:	Geberimpulse falsch
	Bit 3:	Intergrationszeit falsch
	Bit 4:	Obergrenze falsch
	Bit 5:	Untergrenze falsch
	Bit 6:	Betriebsart falsch
Direktstarter Modul	_	_
XS1-XBM	Bit 0:	Identfehler
	Bit 1:	PKZ Kurzschluss
	Bit 2:	PKZ Ueberlast
	Bit 4:	DIL1 defekt
	Bit 5:	DIL2 defekt

• Diagnosebyte von EM4-/LE4-Modulen

Weitere Informationen zur Diagnose enthält die Dokumentation "EM4-204-DX1, Erweiterungsmodul für PROFIBUS-DP" (AWB27-1315D).

Der Dateninhalt von DIAGGETSTATE.EXTENDEDINFO hat folgende Bedeutung:

EXTENDEDINFO[013]	wie zuvor beschrieben
EXTENDEDINFO[14]	Längenbyte
EXTENDEDINFO[15]	Sammeldiagnosebyte für alle Module
EXTENDEDINFO[16]	Diagnosebyte für EM4
EXTENDEDINFO[1722]	Diagnosebyte für 1 6 LE

Diagnose in der Slavesteuerung

Generell fragt der Master (DP-M-Modul) den Slave (DP-S-Modul) ab, ob eine Diagnose/Fehler vorliegt. In diesem Fall holt der Master die Standard-Diagnose-Daten vom Slave ab. Die Auswertung dieser Daten ist im Abschnitt "Diagnosedaten auswerten" auf Seite 82 beschrieben.

Zusätzlich kann der Slave aktiv werden und Diagnosedaten senden. So kann z. B. das Start-/Stop-Ereignis ausgewertet werden und dem Master anwenderspezifische Daten mitgeteilt werden.

Die Slaveaktivität dient dazu, dem Master den Start/Stop-Zustand sowie wichtige anwenderspezifische Daten mitzuteilen. Die Übertragung der Daten sollte nicht kontinuierlich erfolgen, da sonst der Bus zu stark belastet wird. Die Übertragung erfolgt mit dem Diagnosebaustein "xDPS_SendDiag" (siehe Abschnitt unten) im Slaveprogramm. Den Inhalt der anwenderspezifische Daten bestimmen Sie selbst und kopieren ihn in den vom Baustein angegeben Bereich.

Bei einer Unterbrechung der Busverbindung nach dem Start des Funktionsbausteins wird der Sendeauftrag ausgeführt, sobald die Verbindung wieder hergestellt ist.

Die Zuordnung zwischen DP-Modul XIOC-NET-DP-S und dem Diagnosebaustein erfolgt mit Hilfe einer Devicenummer, die zusätzlich vom Steckplatz des Moduls abhängig ist, → Tabelle 20 und Tabelle 21.

Master- und Verbindungsstatus abfragen

Sollte in der Slavesteuerung eine Abfrage des Masterzustands (RUN/STOP) oder des Verbindungszustands erforderlich sein, müssen Sie diese Funktion programmieren. Nähere Informationen hierzu finden Sie im Handbuch MN05010002Z-DE (frühere Bezeichnung AWB2786-1456D) unter "Diagnosebausteine xDiag_SystemDiag" und "xDiag_ModuleDiag".

Diagnosebaustein "xDPS_SendDiag"

Dieser Funktionsbaustein befindet sich in der Bibliothek "xSysNetDPSDiag.lib".

Prototyp des Funktionsbausteins

Operandenbedeutung

xExecute	Start, Voraussetzung:	xBusy-Ausgang = L-Signal xDone-Ausgang = L-Signal		
	Der Eingang ist auf nachdem xDone-Au	L-Signal zu setzen, sgang = H-Signal annimmt.		
uiDevice	DP-Slave Device-Nummer			
uiLenDiagData	Länge der Diagnosedaten (0 bis 30 Byte) Bei 0 werden die Standard-Diagnosedaten gesendet, → Abschnitt "Dateninhalt von DIAG- GETSTATE.EXTENDEDINFO" auf Seite 84.			
abyUserDiagData	Diagnosedaten des Anwenders			
xDone	H-Signal nachdem der Auftrag abgearbeitet wurde			
	Wenn "xExecute" von H- nach L-Signal wechselt, führt "xDone"-Ausgang L- Signal			
xBusy	H-Signal, nachdem ein gültiger Auftrag vorliegt			
xError	Die Ausgänge sind abzufragen, nachdem der xDone-Ausgang von L-Signal zu H-Signal wechselt.			
wErrorID	Wird der xExecute-Eingang auf L-Signal gesetzt, werden auch die Error-Ausgänge auf L-Signal gesetzt.			
	Errorcode 0: ok 1: Falscl 2: Ungü 3: keine 4: Interr 5: Fehle	ne Devicenummer Itige Länge der Diagnosedaten Ressourcen verfügbar ner Fehler rmeldung vom PROFIBUS-DP		

Beschreibung

Ein Aufruf des Bausteins im Slaveprogramm bewirkt, dass der Master beim nächsten Zugriff auf den Slave zunächst die anwenderspezifischen Diagnosedaten abholt, danach tauscht er die I/O-Daten weiter zyklisch aus.

Die CPU benötigt mehrere Zyklen um den Baustein abzuarbeiten!

Da Sie mehrere Module Master/Slave einsetzen können, ist am Eingang "uiDevice" die Device-Nummer einzutragen. Sie stellt die Zuordnung zwischen dem Baustein und dem Modul her.

Für die XC100 gilt: 0, 1 → Tabelle 20

Für die XC200 gilt: 0, 1, 2 → Tabelle 21

Anwendungsbeispiel zum Senden von Diagnosedaten (mit dem Funktionsbaustein xDPS_SendDiag)

Das Programmbeispiel wurde als Funktionsblock erstellt, der den Baustein xDPS_SendDiag einschließt.

Die Übergabeparameter sind:

uiDevice:UINT;	Device-Nummer
uiLenDiagData:UINT;	Länge der zu senden Diagnosedaten
abyDiagData: ARRAY[029]OF BYTE;	Diagnosedaten ByteArray

Wird durch eine Fehlfunktion die Abarbeitung des Bausteins gestört, wird die Variable "DiagErrorWarning" gesetzt. Sie ist als globale Variable zu deklarieren.

FUNCTION_BLOCK DP_SendDiag_Slave

VAR_INPUT

uiDevice:UINT; uiLenDiagData:UINT;

abyDiagData: ARRAY[0..29]OF BYTE;

END_VAR

VAR_OUTPUT

xError:BOOL;

wErrorld:WORD;

END_VAR

VAR

```
DpSndDiag : xDPS_SendDiag;
Timer:TON;
(*Test_Counter1: UINT;*)
(*Test_Counter2: UINT;*)
```

END_VAR

Programm:

IF NOT DpSndDiag.xBusy AND NOT DpSndDiag.xExecute THEN DpSndDiag.uiDevice:=uiDevice; DpSndDiag.uiLenDiagData:=uiLenDiagData; DpSndDiag.abyUserDiagData:=abyDiagData; DpSndDiag.xExecute:=TRUE;

END_IF

- (* Übergabeparameter *) (* Device-Nummer*) (* Länge der zu senden Diagnosedaten *)
- (* Diagnosedaten ByteArray *)

WHILE (NOT DpSndDiag.xDone) DO Timer.PT:=T#2s; (* Endlosschleife vermeiden falls DpSndDiag.xDone nicht beendet wird*) Timer.IN:=TRUE; Timer(); IF Timer.Q =TRUE THEN DiagErrorWarning:=TRUE; EXIT; END_IF (*Test_Counter1:=Test_Counter1+1;*) DpSndDiag(); xError:=DpSndDiag.xError; wErrorld:=DpSndDiag.wErrorld; END_WHILE DpSndDiag.xExecute:=FALSE; DpSndDiag(); Timer.IN:=FALSE; Timer(); (*Test_Counter2:=Test_Counter2+1;*)

Beispielprogramm zur Diagnose in der Mastersteuerung

Die Diagnose wird anhand eines Programmbeispiels erläutert, das auf dem Geräteaufbau in Abb 69 basiert. Die Diagnoseprogramme sind auch für andere Geräte gültig. In diesem Beispiel übernimmt die XC100 die Steuerungsfunktion.

Abbildung 93: Konfiguration des Beispielprojektes

Konfiguration erstellen

Die Gerätekonfiguration erfolgt mit dem Steuerungskonfigurator der easySoft-CoDeSys (-> MN05010003Z-DE, Programmiersoftware, Kapitel "Steuerungskonfiguration").

Erstellen Sie die Konfiguration nach der folgenden Vorlage:

Konfiguration der XIOC-NET-DP-M

 Rufen Sie den Ordner "Steuerungskonfiguration" im Register "Resourcen" auf.

Es wird die XC100 mit Ein- und Ausgängen sowie mit mehreren Ordnern "Empty Slot" angezeigt.

- ► Klicken Sie mit der rechten Maustaste auf einen der drei ersten Ordner EMPTY SLOT [Slot] unter dem Ausgangsbyte QB0.
- Setzen Sie den Mauszeiger auf "Element ersetzen" und wählen Sie aus der Liste das Modul XIOC-NET-DP-M aus. Es wird in die Konfiguration eingefügt und im rechten Fenster erscheinen vier Register:

Abbildung 95: Konfiguration der XIOC-NET-DP-M

Abbildung 94: Gerätekonfiguration in der easySoft-CoDeSys

Stellen Sie im Register "Busparameter" die Baudrate ein und kontrollieren Sie, ob die Funktion "Automatisch optimieren" aktiviert ist.

XION-Station konfigurieren

- Klicken Sie mit der rechten Maustaste auf den Ordner XIOC-NET-DP-M[Slot].
- Wählen Sie "Unterelement anhängen" aus und klicken Sie ein "Bus Refreshing-Modul" an, z. B. XN-GW-PBDP-xxMB. Es wird in die Steuerungskonfiguration eingefügt.
- Stellen Sie f
 ür das XN-GW-PBDP die Parameter in den verschiedenen Registern ein:
- Im Register "DP-Parameter" geben Sie die Stationsadresse ein.
- Im Register "Anwenderparameter" ändern Sie die
- Einstellungen wie folgt (Cursor auf die Angabe in der Spalte "Wert" setzen und doppelklicken):
 - Diagnostics from modules: activate
 - Gateway diagnostics: device related diagnostics
- Im Register Ein-/Ausgänge:

Bestimmen Sie die E/A-Typen, aus denen sich die XION-Station zusammensetzt:

- Wählen Sie das Bus Refreshing-Modul grundsätzlich als erstes aus:
 - Markieren Sie im linken Fenster unter "Leermodule" das T-XN-BR-24VDC-D.
 - Betätigen Sie die Taste "Auswählen", um das Modul in das rechte Fenster zu übertragen.
- Verfahren Sie mit den weiteren Modulen ebenso. Nach der Auswahl aller Module sollte das rechte Feld folgende Module enthalten:

Abbildung 96: Konfiguration der XION-Station

Konfiguration des EM4-/LE4-Moduls

- Setzen Sie den Cursor auf den Ordner XIOC-NET-DP-M[SLOT] und betätigen Sie die rechte Maustaste.
- Setzen Sie den Cursor auf den Menüpunkt "Unterelement anhängen" und wählen Sie aus der Liste das Modul EM4-204-DX1 aus. Das Gerät wird in die Konfiguration eingefügt.
- ► Stellen Sie die Parameter in den Registern ein:
- Im Register "DP Parameter" geben Sie die Stationsadresse an.
- Im Register "Ein-/Ausgänge" wählen Sie Ihre Module aus:
 - Markieren Sie im linken Fenster unter "Eingabemodule" das Modul EM4-204-DX1 und betätigen Sie die Taste "Auswählen". Das Modul wird ins rechte Feld "Ausgewählte Module" übernommen.
 - Wählen Sie unter "Ausgabemodule" das "LE4-116-XD1" aus.

Beide Module werden im rechten Fenster angezeigt und sind Teil der Konfiguration. Damit ist die Konfiguration abgeschlossen.

→ Wenn Sie LE4 mit Analog-Ein-/Ausgängen einsetzen, lesen Sie auch den Abschnitt "Parametrierung der LE4 mit Analog-Ein-/Ausgängen" auf Seite 94.

Aufbau des Beispielprogramms mit einem Master

Das Hauptprogramm PLC_PRG bearbeitet die Ein- und Ausgänge und ruft das Unterprogramm DP_DIAG auf, das im ersten Teil die Diagnose und im zweiten Teil die Kommunikationsabfrage enthält. Die Abfrage der Kommunikation wird für zwei Teilnehmer durchgeführt. Möchten Sie weitere Slaves einfügen, kopieren Sie einen Programmteil und fügen im Deklarationteil die Parameter hinzu.

Generell führen Sie folgende Programmiermaßnahmen durch:

- ► Legen Sie eine globale Variable vom Typ GETBUSSTATE an: DPSTAT AT%MB4: GETBUSSTATE
- Tragen Sie die maximale Busadresse in den Deklarationsteil ein: Adr_max_DP: BYTE:=124;
 - → In diesem Beispiel ist ",3" die maximale Adresse. Wird eine höhere Adresse, z. B. 124, eingetragen, ohne dass Geräte physikalisch angekoppelt werden, so wird die Zeit zum Abarbeiten des Programms verlängert.

Funktion des Beispielprogramms

Wenn am Eingang IX0.0 (Input_0 = erster Eingang am I/O-Modul der CPU) eine Spannung angelegt wird, sollen die folgenden Ausgänge gesetzt werden:

- QX0.0 (Output_0) = erster Ausgang am I/O-Modul der CPU,
- QX2.0 (Output_S2) = erster Ausgang am XION-Modul,
- QX4.0 (Output_S4) = erster Ausgang am LE4-116-XD1.

Funktion des Diagnoseprogramms

Zur Abfrage der Diagnosemeldungen ist Bit 2 aller Teilnehmerbyte zu kontrollieren. Dies erfolgt mit der Anweisung:

```
IF DPSTAT.EXTENDEDINFO[n_DWORD] >=6 THEN
DPSTAT ist ein Instanzname von GETBUSSTATE
N DWORD = Adresse des Slave
```

Sendet der Slave eine Diagnosemeldung, z. B. einen Kurzschluss, wird das Bit 2 im Teilnehmer-Byte gesetzt. Der Funktionsbaustein DIAGGETSTATE wird aufgerufen und das Ausgangsarray DIAGGETSTATE.EXTENDEDINFO in ein Dummy-Feld DIAGDATA_DP kopiert. Sie können die Diagnosedaten direkt aus dem Ausgangsarray "DIAGSTATE.EXTENDEDINFO" oder aus dem Ausgangsarray "DIAGDATA_DP"entnehmen.

Wurde ein Fehler erkannt und abgearbeitet, beginnt die Abfrage des Ausgangsarray GETBUSSTATE.EXTENDEDINFO wieder beim ersten Teilnehmer.

Wird eine direkte Abfrage gefordert, können Sie einen Hilfsmerker setzen, der das Eintreffen der Fehlermeldung signalisiert (→ Hinweis im Beispielprogramm) und den Fehlercode daraufhin abfragen.

Der Inhalt des Arrays "DiagData_DP" entspricht dem Inhalt des Arrays "DiagGetState.EXTENDEDINFO". Das Array ist im Abschnitt "Der Dateninhalt von DIAGGETSTATE.EXTENDEDINFO ist aufgeteilt in:" auf Seite 84 beschrieben.

Tritt ein Kurzschluss am Ausgang QX2.0 (Erster Ausgang der XION-Station) auf, wird der Fehler diagnostiziert.

Im Online-Modus enthält das Array "DiagData_DP" folgende Angaben:

۲	-DIAGSTATE_DP
8	-DiagData_DP
	-DiagData_DP[0] = 2
	DiagData_DP(1) = 0
	-DiagData_DP[2] = 0
	DiagData_DP[3] = 0
	DiagData_DP[4] = 0
	-DiagData_DP[5] = 12
	DiagData_DP[6] = 5
	DiagData_DP[7] = 1
	-DiagData_DP[8] = 8
	—DiagData_DP[9] = 12
	—DiagData_DP(10) = 0
	DiagData_DP(11] = 1
	—DiagData_DP[12] = 2
	DiagData_DP[13] = 179
	DiagData_DP[14] = 6
	-DiagData_DP[15] = 1
	—DiagData_DP[16] = 0
	DiagData_DP(17] = 0
	—DiagData_DP[18] = 1

- Die "2" in Byte DiagData_DP[0] = 2 zeigt die Adresse des Slave an.
- In Byte 8 ist Bit 3 gesetzt: Es liegt eine erweiterte Diagnose vor (Bit 3= 1-Signal → 00001000 binär oder 8 dezimal)

Das sagt aus, dass noch weitere Informationen anstehen, wie in dem Beispiel in Byte 15 und 18:

- In Byte 15 ist Bit 0 gesetzt: Moduldiagnose liegt vor
- In Byte 18 ist Bit 0 gesetzt: Ueberstrom Kanal 1

Wird der Kurzschluss beseitigt, sendet der Slave nochmals eine Diagnosemeldung, die ein Rücksetzen der Bits bewirkt.

Funktion des Datenaustausch (Überwachung)

Zur Kontrolle des Datenaustausch ist Bit 1 aller Teilnehmerbyte abzufragen. Dies erfolgt mit der Anweisung:

IF DPSTAT.EXTENDEDINFO[n].1 = TRUE THEN
DPSTAT ist ein Instanzname von GETBUSSTATE

n = Adresse des Slave

Bei einer bestehenden Verbindung werden die Variablen KOM2_ok bzw. KOM3_ok auf ".Signal gesetzt. Wird die Verbindung zu einem Slave unterbrochen, werden die Variablen auf ".Signal zurückgesetzt.

Die Variablen KOMx_ok können im Hauptprogramm weiter verwendet werden.

Beispielprogramm zur Diagnose mit einem Master

Globale Variablendeklaration

```
VAR GLOBAL
   DPSTAT AT %MB4:
                                                                 (*Ist generell zu deklarieren*)
                                        GetBusState;
(*Siehe Beschreibung"Variable des Typ GETBUSSTATE anlegen + abfragen" *)
   KOM2_ok:
                                        BOOL;
   KOM3_ok:
                                        B00L;
   Input_0 AT %IX0.0:
                                        B00L;
   Output_0 AT %QX0.0:
                                        BOOL;
   Output_S2 AT %QX2.0:
                                        B00L;
   Output S4 AT %QX4.0:
                                        BOOL;
END_VAR
```

PROGRAM PLC_PRG

Deklaration: VAR END_VAR	
<pre>Programm: Output_0:=Input_0; Output_S2:=Input_0; Output_S4:=Input_0;</pre>	
DIAG_DP;	(*Diagnoseprogramm*)
(* IF KOM2_ok =TRUE THEN Data Transfer: Master <-> Slave 2 END_IF*)	Abfrage Datenaustausch ok? Datenaustausch ausführen!
(* IF KOM3_ok =TRUE THEN Data Transfer: Master <-> Slave 3 END_IF*)	Abfrage Datenaustausch ok? Datenaustausch ausführen!

PROGRAMM DIAG_DP

Dek1	aration:		
VAR			
	DIAGSTATE_DP :	DiagGetState;	
	DiagData_DP:	ARRAY[099] OF BYTE;	
	wHelp_DP:	WORD;	
	Adresse_DP:	DWORD;	
	n_DWORD:	DWORD;	
END	VAR		
VAR	CONSTANT		
	Adr_max_DP:	BYTE:=124;	(*max. Busadresse eintragen!*)
END	VAR		

```
Programm:
(*-----Diagnose -----*)
IF DIAGSTATE_DP.ENABLE = FALSE THEN
   Adresse_DP:=0;
   FOR n DWORD:=2 TO Adr max DP DO
       IF (DPSTAT.EXTENDEDINFO[n DWORD] >=6) THEN
           Adresse_DP:=n_DWORD;
           EXIT;
       END IF
   END FOR
   IF DIAGSTATE_DP.ENABLE = FALSE THEN
       DIAGSTATE_DP.DRIVERNAME:=0;
                                                       (* immer 0 *)
       DIAGSTATE DP.DEVICENUMBER:=0;
                                                       (* DP-Master is the first device with DeviceNo = 0*)
       DIAGSTATE_DP.BUSMEMBERID:=Adresse_DP;
                                                       (* Slave Address *)
       DIAGSTATE_DP.ENABLE:=TRUE;
       DIAGSTATE_DP();
                                                       (* Call FB *)
   END IF
END IF
IF DIAGSTATE DP.ENABLE = TRUE THEN
   IF DIAGSTATE_DP.READY THEN
       IF DIAGSTATE_DP.STATE=NDSTATE_DIAGINFO_AVAILABLE THEN
       (*Diaginfo:=TRUE;*)
       (*Hilfsmerker setzen: Wenn Diagdataabfrage=0->1, dann sind die Diagnosedaten gültig und können abgefragt werden.
       Der Merker ist im Anwenderprogramm zurückzusetzen.*)
           FOR wHelp DP:=0 TO (DIAGSTATE DP.EXTENDEDINF0[14]+13) BY 1 DO
           DiagData_DP[wHelp_DP]:=DIAGSTATE_DP.EXTENDEDINF0[wHelp_DP];
           END_FOR
       END_IF
       DIAGSTATE DP.ENABLE:=FALSE;
   END IF
   DIAGSTATE_DP();
END_IF
(* Comunication ok-- Slave 2 -----*)
IF DPSTAT.EXTENDEDINF0[2].1 = TRUE THEN
KOM2_ok:=FALSE;
ELSE
KOM2 ok:=TRUE;
END_IF
(* Comunication ok-- Slave 3 -----*)
IF DPSTAT.EXTENDEDINF0[3].1 = TRUE THEN
KOM3_ok:=FALSE;
ELSE
KOM3 ok:=TRUE;
END_IF
(* End of ProfibusDP diagnose *)
```

Parametrierung der LE4 mit Analog-Ein-/Ausgängen

In diesem Abschnitt erfahren Sie, wie Sie die Analogmodule LE4-206-AA1 und LE4-206-AA2 mit Hilfe des easySoft-CoDeSys-Konfigurators parametrieren:

► Fügen Sie das EM4 -204-DX1 in die Konfiguration ein und wählen Sie die Analogmodule aus:

Abbildung 97: Analog-Module in die Konfiguration einfügen

 Markieren Sie ein LE4 und klicken Sie auf die Schaltfläche "Eigenschaften".

Das Fenster "Moduleigenschaften" öffnet sich.

► Klicken Sie auf den Text "IO count/Resolution/IOscan".

Es werden Ihnen folgende Parametrierungsmöglichkeiten angezeigt:

Name: LE4-20G-AA1 4AEW 2AA	4W/	OK
Config 0xC0.0x41.0x43		
Eingebelänge (Byte): 8		Abbrechen
Ausgabelänge (Byte): 4		
Symbolische Namen: 🔽		
Parameter	Wert	Wertebereich
"IO count / Resolution / IO se	an 4/2 VO / 128	1/6 Unsigned8 1 1-
4/2 1/0 / 4/2 1/0 / 2/2 1/0 / 2/2 1/0 / 1/2 1/0 / 1/2 1/0 / 1/2 1/0 /	120k / 6/ms/27ms - 108k / 40ms/27ms - 128k / 32ms/27ms - 108k / 22ms/15ms - 128k / 19ms/14ms - 108k / 13ms/ 8ms - 128k / 13ms/ 8ms -	= 1 = 2 = 3 = 4 = 5 = 6

Abbildung 98: Analogmodul parametrieren

Im Feld "Wert" sind die Standard-Parameter angegeben. Sie können die Einstellung ändern, indem Sie auf den ersten Eintrag doppelt klicken. Mit jedem Doppelklick wird der folgende Wert angezeigt.

9 Technische Daten

XControl	
Allgemeines	
Normen und Bestimmungen	IEC/EN 61131-2, EN 50178
Umgebungstemperatur	0 bis +55 °C
Lagertemperatur	-25 bis +70 °C
Schwingfestigkeit	10 – 57 Hz ±0,075 mm, 57 – 150 Hz ±1,0 g
Schockfestigkeit	15 g/11 ms
Schlagfestigkeit	500 g/Ø 50 mm ±25 g
Überspannungskategorie	II
Verschmutzungsgrad	2
Schutzklasse	1
Schutzart	IP20
Störaussendung	DIN/EN 55011/22, Klasse A
Elektromagnetische Verträglichkeit	
elektrostatische Entladung (IEC/EN 61 000-4-2)	
Kontaktentladung	4 kV
elektromagnetische Felder (IEC/EN 61 000-4-3, RFI)	
AM/PM	10 V/m
Burst Impulse (IEC/EN 61 000-4-4)	
Versorgungsleitungen	2 kV
Signalleitungen	1 kV
energiereiche Impulse (Surge) (IEC/EN 61 000-4-5)	
Versorgungsleitungen, unsymmetrisch	0,5 kV
Einströmung (IEC/EN 61 000-4-6)	
AM	10 V
Externe Spannungsversorgung	
Bemessungsspannung U _e	24 V DC
Zulässiger Bereich	20,4 bis 28,8 V DC
Restwelligkeit der Eingangsspannung	< 5 %
Überbrückung von Spannungseinbrüchen	
Dauer des Einbruchs	10 ms
Wiederholrate	1 s

Digitale Eingangsmodule

Тур	XIOC-8DI	XIOC-16DI	XIOC-32DI
Eingangsart	DC-Eingang	DC-Eingang	DC-Eingang
Anzahl der Eingangskanäle	8	16	32
Anzahl Kanäle mit gleichem Bezugspotential ¹⁾	8	16	32, Bezugspotential: 4 Klemmen
Eingangsspannung	24 V DC	24 V DC	24 V DC
Bereich der Eingangsspannung	20,4 bis 28,8 V DC	20,4 bis 28,8 V DC	20,4 bis 28,8 V DC
Eingangswiderstand	Typ. 6 kΩ	Typ. 6 kΩ	Typ. 5,6 kΩ
Eingangsstrom	Typ. 4,0 mA	Typ. 4,0 mA	Typ. 4,3 mA
Spannungspegel			
EIN	≥ 15V	≥ 15V	≧ 15V
AUS	\leq 5V	\leq 5V	\leq 5V
Eingangs-Signalverzögerung			
$AUS \rightarrow EIN$	\leq 1 ms	\leq 1 ms	5 ms
$EIN \rightarrow AUS$	\leq 1 ms	\leq 1 ms	5 ms
Potentialtrennung			
zwischen Eingängen und I/O- Bus	Mit Optokopplern	Mit Optokopplern	Mit Optokopplern
Eingangsanzeige	Mit LED (grün)	Mit LED (grün)	Mit LED (grün) ²⁾
Externe Verbindung	Steckbarer Klemmenblock ³⁾	Steckbarer Klemmenblock ³⁾	XIOC-TERM32 (Stecker/Kabel) ³⁾
Interne Stromaufnahme (5 V DC)	Typ. 6 mA	Typ. 10 mA	Typ. 100 mA
Gewicht	0,16 kg	0,16 kg	0,16 kg

1) Die Klemmen für das Bezugspotential sind intern verbunden.

2) LED umschaltbar 0 − 15, 16 − 31 (→ Abbildung 1 auf Seite 10)

3) nicht im Lieferumfang des Moduls

Abbildung 100:Klemmenanordnung

Тур	XIOC-16DI-110VAC	XIOC-16DI-AC
Eingangsart	AC-Eingang	AC-Eingang
Anzahl der Eingangskanäle	16	16
Anzahl Kanäle mit gleichem Bezugspotential ¹⁾	16	16
Eingangsspannung	100 bis 120 V AC	200 bis 240 V AC
Bereich der Eingangsspannung	85 bis 132 V DC	170 bis 264 V DC
Eingangswiderstand	Typ. 16 kΩ (50 Hz) Typ. 13 kΩ (60 Hz)	Typ. 32 kΩ (50 Hz) Typ. 27 kΩ (60 Hz)
Eingangsstrom	4,8 bis 7,6 mA (100 V AC/50 Hz)	4,3 bis 8,0 mA (200 V AC/50 Hz)
Spannungspegel		
EIN	\geq 79 V AC	\geq 164 V AC
AUS	\leq 20 V AC	\leq 40 V AC
Eingangs-Signalverzögerung		
$AUS \rightarrow EIN$	\leq 15 ms	\leq 15 ms
$EIN \rightarrow AUS$	\leq 25 ms	\leq 25 ms
Potentialtrennung		
zwischen Eingängen und I/O- Bus	Mit Optokopplern	Mit Optokopplern
Eingangsanzeige	Mit LED (grün)	Mit LED (grün)
Externe Verbindung	Steckbarer Klemmenblock ²⁾	Steckbarer Klemmenblock ²⁾
Interne Stromaufnahme (5 V DC)	Typ. 51 mA	Typ. 51 mA
Gewicht	0,18 kg	0,18 kg

1) Die Klemmen für das Bezugspotential sind intern verbunden.

2) nicht im Lieferumfang des Moduls

Abbildung 101:Klemmenanordnung

Digitale Ausgangsmodule

Transistor-Ausgangsmodule

Тур	XIOC-8DO	XIOC-16DO	XIOC-32DO
Ausgangsart	Transistor-Ausgang (Source-Typ)	Transistor-Ausgang (Source-Typ)	Transistor-Ausgang (Source-Typ)
Anzahl der Ausgangskanäle	8	16	32
Anzahl Kanäle mit gleichem Bezugspotential	8	16	32
Ausgangsspannung	24 V DC	24 V DC	24 V DC
Schaltstrom, minimal	1 mA	1 mA	1 mA
Reststrom bei Signal "0"	0,1 mA	0,1 mA	0,1 mA
Bemessungsstrom			
bei Signal "1"	0,5 A	0,5 A	0,2 A
Pro gemeinsamer Potentialklemme	4 A	8 A	3,2 A ($\Sigma = 6,4$ A)
Ausgangs-Signalverzögerung			
$AUS \rightarrow EIN$	$\leq 25 \mu s$	\leq 25 μ s	\leq 0,3 ms
Überspannungsschutz	Diode	Diode	Diode
Sicherung ¹⁾	-	-	8 A
Potentialtrennung			
zwischen Ausgängen und I/O-Bus	Mit Optokopplern	Mit Optokopplern	Mit Optokopplern
Kurzschlussschutz	ја	ја	-
Ausgangsanzeige	Mit LED (grün)	Mit LED (grün)	Mit 16 LED (grün) ²⁾
Externe Verbindung	Steckbarer Klemmenblock ³⁾	Steckbarer Klemmenblock ³⁾	XIOC-TERM32 (Stecker und Kabel) ³⁾
Interne Stromaufnahme (5 V DC)	max. 80 mA	max. 150 mA	Typ. 250 mA
Externe Spannungsversorgung ⁴⁾	24 V DC (Seite 95)	24 V DC (Seite 95)	24 V DC (Seite 95)
Gewicht	0,16 kg	0,16 kg	0,16 kg

1) Eine defekte Sicherung darf nicht durch den Anwender ausgetauscht werden.

2) LED umschaltbar: 0 - 15, 16 - 31 (\rightarrow Abbildung 1 auf Seite 10)

3) nicht im Lieferumfang des Moduls

4) Achtung! Bei UL-Applikationen müssen die Versorgungsleitungen einen Querschnitt von AWG16 (1,3 mm²) haben.

Abbildung 102: Anordnung der Klemmen und Stifte

Relais-Ausgangsmodul

Тур	XIOC-12DO-R
Ausgangsart	Relais-Ausgang
Anzahl der Ausgangskanäle	12
Anzahl Kanäle mit gleichem Bezugspotential ¹⁾	12
Ausgangsspannung	100/240 V AC, 24 V DC
Schaltstrom, minimal	1 mA
Bemessungsstrom	
bei Signal "1"	2 A
Pro gemeinsamer Potentialklemme	5 A
Ausgangssignalverzögerung	
$AUS \rightarrow EIN$	\leq 10 ms
$EIN \rightarrow AUS$	\leq 10 ms
Überspannungsschutz	extern
Sicherung	extern
Potentialtrennung zwischen Relais und I/O-Bus	Mit Optokopplern
Ausgangsanzeige	Mit LED (grün)
Allgemeines	
Externe Verbindung	Steckbarer Klemmenblock ²⁾
Interne Stromaufnahme (5 V DC)	Typ. 40 mA
Externe Spannungsversorgung ³⁾	24 V DC → Seite 95
Gewicht	0,2 kg

Legende zur Tabelle:

- 1) Die Klemmen für Bezugspotential sind intern verbunden.
- 2) Nicht im Lieferumfang des Moduls
- Zum Betrieb der Relais muss eine Spannung von 24 V DC extern zugeführt werden. Achtung! Bei UL-Applikationen müssen die Versorgungsleitungen einen Querschnitt von AWG16 (1,3 mm²) haben.

Abbildung 103:Klemmenanordnung des Moduls XIOC-12DO-R

 \rightarrow Legende in nächster Spalte

Digitale Ein-/Ausgangsmodule

7 Achtung!

Die Versorgungsspannungen für die Ein- und Ausgänge sowie für das Modul müssen aus der gleichen Quelle stammen.

Тур	XIOC-16DX
Eingänge	
Eingangsart	DC-Eingang
Anzahl der Eingangskanäle	16 (0 bis 15)
Eingangsspannung	24 V DC
Bereich	20,4 bis 28,8 V DC
Eingangswiderstand	5,6 kΩ
Eingangsstrom	Typ. 4 mA
Spannungspegel	
EIN	≧ 15V
AUS	\leq 5V
Eingangs-Signalverzögerung	
$AUS \rightarrow EIN$	typ. 100 μs
$EIN \rightarrow AUS$	typ. 1 ms
Potentialtrennung	
zwischen Eingängen und I/O- Bus	Mit Optokopplern
Eingangsanzeige	Mit LED (grün)
Ausgänge	
Ausgangsart	Transistor (Source)
Anzahl der Ausgänge	12 (0 bis 11)
Ausgangsspannung	24 V DC
Reststrom bei Signal "0"	са. 140 µА
Bemessungsstrom	
bei Signal "1"	0,5 A DC bei 24 V DC
Lampenlast	4 W ohne Vorwiderstand
Gleichzeitigkeitsfaktor g	1
Relative Einschaltdauer ED	100 %
Begrenzung der Abschaltspannung	
bei induktiven Lasten	ja, –21 V (bei U _N = 24 V DC)
Schalthäufigkeit pro Stunde	
bei Zeitkonstante t \leq 72 ms	3600 (G = 1)
Parallelschaltbarkeit der Ausgänge	in Gruppen 0 bis 3, 4 bis 7, 8 bis 11; Ansteuerung der Ausgänge inner- halb einer Gruppe nur im gleichen Programmzyklus
Anzahl der Ausgänge	max. 3
gesamter Maximalstrom	2 A je Gruppe
gesamter Minimalstrom	250 mA

Тур	XIOC-16DX
Ausgangssignalverzögerung	typ. 100 µs
Überspannungsschutz	Diode
Potentialtrennung zwischen Ausgängen und I/O-Bus	Mit Optokopplern
Kurzschlussschutz	ja
Kurzschlussauslösestrom	max. 1,2 A über 3 ms pro Ausgang
Ausgangsanzeige	Mit LED (grün)
Allgemeines	
Externe Verbindung ¹⁾	Steckbarer Klemmenblock
Interne Stromaufnahme	typ. 50 mA
Externe Spannungsversorgung ²⁾	24 V DC → Seite 95
Gewicht	0,16 kg
4) Nitchet im 11: formula of a NA -	

1) Nicht im Lieferumfang des Moduls

 Achtung! Bei UL-Applikationen müssen die Versorgungsleitungen einen Querschnitt von AWG16 (1,3 mm²) haben.

Abbildung 104:Klemmenanordnung des Moduls XIOC-16DX

Konfiguration und Programmierung der Digital-Ein-/Ausgänge

Das Modul hat 16 Anschlüsse. Die ersten 12 Anschlüsse (0 bis 11) können Sie als Ein- und Ausgänge benutzen, die Anschlüsse 12 bis 15 nur als Eingänge, -> Abbildung 104.

Die Konfiguration des Moduls erfolgt im Register "Steuerungskonfiguration". Mit "Element setzen" wird es auf einen "Empty slot" eingefügt. Es erscheint z. B.:

---XIOC-16DXISLOT

---AT%IW6:WORD;(*Inputs/Outputs*) [CHANNEL (D]

---AT%QW2:WORD)(*Outputs/Inputs*) [CHANNEL (I)]

Nach einem Doppelklick auf das Eingangswort:

```
---AT%IW6:WORD$(*Inputs/Outputs*) [CHANNEL (D)
---AT%IX6.0:BOOL$(*Bit 0*)
---AT%IX6.1:BOOL$(*Bit 1*)
bis
---AT%IX6.7:BOOL$(*Bit 7*)
---AT%IX7.0:BOOL$(*Bit 0*)
---AT%IX7.1:BOOL$(*Bit 1*)
bis
---AT%IX7.7:BOOL$(*Bit 1*)
```

Nach einem Doppelklick auf das Ausgangswort:

AT%QW2:WORD}(*Outputs AT%QX2.0:BOOL!(*Bit AT%QX2.1:BOOL!(*Bit bis AT%QX2.7:BOOL!(*Bit	/Inputs*) 0*) 1*) 7*)	ICHANNEL	(D)
AT%QX3.0:B00L\$(*Bit @ AT%QX3.1:B00L\$(*Bit AT%QX3.2:B00L\$(*Bit AT%QX3.3:B00L\$(*Bit AT%QX3.4:B00L\$(*Bit AT%QX3.5:B00L\$(*Bit AT%QX3.6:B00L\$(*Bit AT%QX3.7:B00L\$(*Bit)*) 1*) 2*) 3*) 4*) 5*) 6*) 7*)		

Beispiel

Der Anschluss "I/Q0" des XIOC-16DX soll als Eingang oder Ausgang programmiert werden. Entsprechend dem Programm ist der Anschluss zu verdrahten.

• Anschluss als Eingang programmieren

Deklaration:

Start	AT%	IX6.0:	BOOL;
Ventil	:		B00L;

Programm (AWL):

LD Start ST Ventil

Abbildung 105: Anschluss als Eingang verdrahtet

• Anschluss als Ausgang programmieren

Deklaration:

motor	AT%	QX2.0:	B00L;
Start	:		B00L;

Programm (AWL):

LD Start

ST Motor

Abbildung 106: Anschluss als Ausgang verdrahtet

Ebenso können Sie mit den Anschlüssen 1 bis 11 verfahren. Die Anschlüsse 12 bis 15 können nur als Eingänge programiert werden.

Analoge Eingangsmodule

Тур	XIOC-8AI-I2	XIOC-8AI-U1	XIOC-8AI-U2	
Eingangsstrom-Bereich	4 bis 20 mA	-	-	
Eingangsspannungsbereich	-	0 bis 10 V DC	-10 bis 10 V DC	
Auflösung	12 Bit	12 Bit	12 Bit	
Wandlungszeit	\leq 5 ms	\leq 5 ms	\leq 5 ms	
Gesamtgenauigkeit	$\leq \pm 1$ % (vom Skalenendwert)	$\leq \pm 1$ % (vom Skalenendwert)	$\leq \pm 1$ % (vom Skalenendwert)	
Eingangswiderstand	-			
Spannungseingang	-	100 kΩ	100 kΩ	
Stromeingang	Тур. 100 Ω	-	-	
Potentialtrennung				
Kanal – Interner Schaltkreis	Mit Optokopplern	Mit Optokopplern	Mit Optokopplern	
Zwischen Kanälen	-	-	-	
Anzahl Kanäle	8	8	8	
Externe Verbindung	Steckbarer Klemmenblock (nicht im Lieferumfang des Moduls)			
Interne Stromaufnahme (5 V DC)	100 mA	100 mA	100 mA	
Externe Versorgungsspannung	24 V DC (+20 %, -15 %), ca. 0,15 A (ca. 0,4 A bei eingeschalteter Versorgungsspannung)			
Externe Verkabelung	2-adriges abgeschirmtes Kabel (≤ 20 m)			
Gewicht	0,18 kg	0,18 kg	0,18 kg	

Abbildung 107:Klemmenanordnung der Module XIOC-8AI-12 und Module XIOC-8AI-U1/-U2

Abbildung 108:Verdrahtung der Module

Abbildung 109:U-/I-Diagramm der Module

Тур	XIOC-2AO-U1-2AO-I2	XIOC-2AO-U2	XIOC-4AO-U1	XIOC-4AO-U2		
Ausgangsspannungs-Bereich	0 bis 10 V DC	-10 bis 10 V DC	0 bis 10 V DC	-10 bis 10 V DC		
Ausgangsstrom-Bereich	4 bis 20 mA	-	-	-		
Auflösung	12 Bit	12 Bit	12 Bit	12 Bit		
Wandlungszeit ¹⁾	\leq 5 ms	\leq 5 ms	\leq 5 ms	\leq 5 ms		
Gesamtgenauigkeit	$\leq \pm 1$ % (vom Skalenend	$\leq \pm 1$ % (vom Skalenendwert)				
Externer Lastwiderstand						
Spannungsausgang	\geq 10k Ω	\geq 10k Ω	\geq 10 k Ω	\geq 10 k Ω		
Stromausgang	0 bis 500 Ω	-	-	-		
Potentialtrennung						
Kanal – Interner Schaltkreis	Mit Optokopplern	Mit Optokopplern	Mit Optokopplern	Mit Optokopplern		
Zwischen Kanälen	_	-	-	-		
Anzahl Kanäle						
Ausgangsspannung ²⁾	2 Kanäle (0 bis 1)	2	4	4		
Ausgangsstrom ²⁾	2 Kanäle (2 bis 3)	_	-	-		
Externe Verbindung	Steckbarer Klemmenblock ³⁾					
Interne Stromaufnahme (5 V DC)	typ. 100 mA	typ. 100 mA	typ. 100 mA	typ. 100 mA		
Externe Versorgungsspannung	24 V DC (+20 %, -15 %), ca. 0,15 A (ca. 0,5 A bei eingeschalteter Versorgung)					
Externe Verkabelung	2-adriges abgeschirmtes Kabel (\leq 20 m)					
Gewicht	0,18 kg	0,18 kg	0,18 kg	0,18 kg		

Analog-Ausgangsmodul

 Die 5 ms beziehen sich auf die Wandlungszeit des Asics. Aufgrund der Ausgangsbeschaltung der Spannungsausgänge ergeben sich je nach Höhe der Ausgangsänderung unterschiedlich lange Zeiten, bis der Endwert erreicht ist. Die Maximalzeit wird bei einem Sprung von −10 V nach +10 V erreicht: −10 V → +10 V: 30 ms

 $0 V \rightarrow +10 V: 5 ms$

+10 V \rightarrow 0 V: 14 ms

 $0 V \rightarrow +1V: 1 ms$

+1 V \rightarrow 0 V: 3 ms

2) Beim XIOC-2AO-U1-2AO-I2 können Spannungs- und Stromausgänge gleichzeitig verwendet werden.

3) Nicht im Lieferumfang des Moduls

Abbildung 110:Klemmenanordnung

* nicht bei XIOC-2AO-U2

Abbildung 112:U-/I-Diagramm der Module
Analoge Ein-/Ausgangsmodule

→ Die Module können mit den CPUs XC-CPU101 ab Version V02 und XC-CPU201 betrieben werden.

Тур	XIOC-4AI-2AO-U1	XIOC-2AI-1AO-U1
Allgemeines		
Externe Verbindung	Steckbarer Klemmenblock ¹⁾	Steckbarer Klemmenblock ¹⁾
Interne Stromaufnahme (5 V DC)	200 mA	200 mA
Gewicht	0,16 kg	0,16 kg
Eingänge		
Eingangsspannungsbereich	0 bis 10 V DC	0 bis 10 V DC
Auflösung	14 Bit	14 Bit
Wandlungszeit	\leq 1 ms	\leq 1 ms
Gesamtgenauigkeit	\leq 0,4 % (vom Skalenendwert)	\leq 0,4 % (vom Skalenendwert)
Eingangswiderstand	40 kΩ	40 kΩ
Potentialtrennung		
Kanal – Interner Schaltkreis	-	-
Zwischen Kanälen	-	-
Anzahl Kanäle	4	2
Ausgänge		
Ausgangsspannungs-Bereich	0 bis 10 V DC	0 bis 10 V DC
Auflösung	12 Bit	12 Bit
Wandlungszeit	≤ 1 ms	$\leq 1 \text{ ms}$
Gesamtgenauigkeit	\leq 0,4 % (vom Skalenendwert)	\leq 0,4 % (vom Skalenendwert)
Externer Lastwiderstand	\geq 2 k Ω	\geq 2 k Ω
Potentialtrennung		
Kanal – Interner Schaltkreis	-	-
Zwischen Kanälen	-	-
Anzahl Kanäle	2	1

1) Nicht im Lieferumfang des Moduls

Abbildung 113:Klemmenanordnung der Module XIOC-4AI-2AO-U1 und XIOC-2AI-1AO-U1

Тур		XIOC-2AI-1AO-	XIOC-2AI-1AO-U1-I1		XIOC-4AI-2AO-U1-I1	
Zur Einstellung der S	ignalarten "Strom" und "Spa	annung" > Seite 19				
Allgemeines						
Externe Verbindung		Steckbarer Klem	menblock (nicht im	Lieferumfang des M	oduls)	
Interne Stromaufnah	me (5 V DC) bei Signalart:					
Eingang	Ausgang					
Spannung	Spannung	220 mA		270 mA		
Spannung	Strom	280 mA		380 mA		
Strom	Spannung	220 mA		270 mA		
Strom	Strom	280 mA		380 mA		
Potentialtrennung						
Kanal – Interner	Schaltkreis	-		-		
Zwischen Kanäle	n	-		-		
Gewicht		0,16 kg		0,16 kg		
Eingänge						
Anzahl Kanäle		2		4		
Signalart		Spannung	Strom	Spannung	Strom	
Eingangsspannungsb	pereich	0 bis 10 V DC	0 bis 20 mA	0 bis 10 V DC	0 bis 20 mA	
Auflösung		14 Bit		14 Bit		
Wandlungszeit		$\leq 1 \text{ ms}$	\leq 1 ms		\leq 1 ms	
Gesamtgenauigkeit		\leq 0,4 % (vom S	\leq 0,4 % (vom Skalenendwert)		\leq 0,4 % (vom Skalenendwert)	
Eingangswiderstand		40 kΩ	125 Ω	40 kΩ	125 Ω	
Ausgänge						
Anzahl Kanäle		1		2		
Signalart		Spannung	Strom	Spannung	Strom	
Ausgangsspannungs	-Bereich	0 bis 10 V DC	0 bis 20 mA	0 bis 10 V DC	0 bis 20 mA	
Auflösung		12 Bit	12 Bit		12 Bit	
Wandlungszeit		$\leq 1 \text{ms}$	≤ 1 ms		$\leq 1 \text{ ms}$	
Gesamtgenauigkeit		\leq 0,4 % (vom S	\leq 0,4 % (vom Skalenendwert)		\leq 0,4 % (vom Skalenendwert)	
Externer Lastwidersta	and	\geq 2 k Ω	\leq 0,5 k Ω	\geq 2 k Ω	\leq 0,5 k Ω	
Kurzschlussfest		ја	ja	ja	ја	

Abbildung 114:Klemmenanordnung der Module XIOC-2AI-1AO-U1-I1 (I0, I1, Q0) und XIOC-4AI-2AO-U1-I1 (I0 bis I3, Q0 bis Q1)

Temperaturerfassungsmodul XIOC-4T-PT

→ Mehr Informationen zum Temperaturerfassungsmodul finden Sie im Kapitel 2 ab Seite 23.

Тур	XIOC-4T-PT
Platin-Temperaturwiderstand	Pt 100 (IEC 751)/PT 1000
Temperatur-Auflösung	15 Bit mit Vorzeichen
Genauigkeit ¹⁾	
-20 bis 40 °C (Pt 100)	±0,5 °C
–50 bis 400 °C (Pt 100)	±3 °C
–50 bis 400 °C (Pt 1000)	±6 °C
Temperatur-Messbereich	-20 bis +40 °C/-50 bis +400 °C (Konstantstrom 2 mA)
Anzahl Eingänge	4
Wandlungszeit	Typ. 1 Sekunde für vier Kanäle
Potentialtrennung	
Zwischen Eingängen und E-/A-Bus	Mit Optokoppler
Zwischen den Eingängen	-
Externe Versorgungsspannung	24 V DC
Interner Stromverbrauch	Max. 200 mA
Externer Widerstand	Max. 400 Ω/Kanal
Externe Verkabelung	Abgeschirmtes Kabel ²⁾
Zusätzliche Funktion	Linearisierung
Fehlererkennung -20 bis +40 °C -50 bis +400 °C	Der Widerstandswert beträgt 7FFF _{hex} bei: ≤ -25 °C oder ≥ 45 °C ≤ -60 °C oder ≥ 410 °C
Verhalten bei Leitungsbruch oder nicht verwendeter Eingänge	der Widerstandswert beträgt in diesem Fall 7FFF _{hex} .
Gewicht	0,18 kg

 Die angegebene Genauigkeit gilt ab 10 Minuten nach dem Betriebsstart. Unmittelbar nach dem Start des Betriebs ist die maximale Temperatur-Abweichung unter Umständen etwas größer. Zusätzlich ist die korrekte Beschaffenheit des Temperatur-Messwiderstandes zu überprüfen.

2) Nicht im Lieferumfang des Moduls

Abbildung 115:Verdrahtung der Module

Abbildung 116:Klemmenanordnung des Moduls XIOC-4T-PT

Temperaturerfassungsmodul XIOC-4AI-T

0	XIOC-4AI-T
näle	
Anzahl	4
Temperaturmessbereich	K-Typ: -270 - 1370 J-Typ: -210 - 1200 B-Typ: 100 - 1800 N-Typ: -270 - 1300 E-Typ: -270 - 1000 R-Typ: -50 - 1760 T-Typ: -200 - 400
Spannungsmessung	- 50 mV50 mV -100 mV100 mV -500 mV500 mV -1000 mV1000 mV
Kaltstellenkompensation	ja, integriert
Störspannungsunterdrückung	50 Hz, 60 Hz
Einheit	0.1 °C, 0.1 F
Auflösung	16 Bit
Gesamtfehler	\pm 0.5 % vom Messbereich Element "E" von –270 °C bis –180 °C \pm 2 % vom Messbereich
max. Eingangsspannung (Zerstörgrenze)	10 V DC
Isolationsspannung	500 V _{eff} zwischen Eingangsleitungen und Rückwandbus
Wandlungszeit	<1s
Temperaturkoeffizient	< 200 ppm/°C vom Messbereich
Gewicht	0,18 kg

Counter-Modul

→ Mehr Informationen zur Verdrahtung des Counter-Moduls finden Sie im Kapitel 3 ab Seite 31.

Тур	XIOC-2CNT-100 kHz	XIOC-1CNT-100 kHz
Isolations-Spannungsfestigkeit	250 V DC zwischen E/A-Signal und Bus	250 V DC zwischen E/A-Signal und Bus
Interne Stromaufnahme (5 V DC)	200 mA	200 mA
Umgebungstemperatur/Luftfeuchtigkeit während des Betriebs	0 bis 55 °C, 20 bis 90 % relative Luftfeuchtigkeit (nic	cht-kondensierend)
Umgebungstemperatur/Luftfeuchtigkeit während der Lagerung	-10 bis 75 °C, 10 bis 90 % relative Luftfeuchtigkeit (nicht-kondensierend)	
Eingang		
Maximaler Zählerstand	32 Bit (0 bis 4.294.967.295)	32 Bit (0 bis 4.294.967.295)
Maximale Frequenz	100 kHz (25 kHz bei 4-facher Auflösung)	100 kHz (25 kHz bei 4-facher Auflösung)
Anzahl Kanäle	2 Kanäle	1 Kanal
Eingangsspannung	12 bis 24 V DC	12 bis 24 V DC
Spannung für EIN	> 10 V DC	> 10 V DC
Spannung für AUS	< 4 V DC	< 4 V DC
Eingangsstrom	\geq 4 mA	\geq 4 mA
Differenz-Eingangsspannung	+/- 5 V DC	+/- 5 V DC
Spannung für EIN	2 bis 5 V DC	2 bis 5 V DC
Spannung für AUS	-5 bis -0,8 V DC	-5 bis -0,8 V DC
Differenz-Eingangsstrom	35 mA	35 mA
Potentialtrennung	Mit Optokoppler	Mit Optokoppler
Anzahl Eingänge je Kanal	3	3
Minimale Breite des Zählimpulses	$EIN \cong 4\mu s,AUS \cong 4\mu s$	$EIN: \ge 4 \ \mu s$, $AUS: \ge 4 \ \mu s$
Minimale Breite des Markers	\geq 10 µs (während EIN-Flanke)	\geq 10 μ s (während EIN-Flanke)
Anschluss für externe Verkabelung	30-poliger Stecker XIOC-TERM30-CNT4 ¹⁾	30-poliger Stecker XIOC-TERM30-CNT4 ¹⁾
Externe Verkabelung	Verdrillte (Twisted Pair) und abgeschirmte Kabel ¹⁾	Verdrillte (Twisted Pair) und abgeschirmte Kabel ¹⁾
Ausgang		
Art des Ausgangs	Transistor (Open Collector)	Transistor (Open Collector)
Externe Spannung	12/24 V DC (30 V DC max.)	12/24 V DC (30 V DC max.)
Minimaler Laststrom	1 mA	1 mA
Maximaler Laststrom	20 mA/Ausgang	20 mA/Ausgang
Leckstrom	max. 0,5 mA	max. 0,5 mA
Ausgangs-Verzögerungszeit		
$EIN \rightarrow AUS$	\leq 1 ms	$\leq 1 \text{ ms}$
$AUS \rightarrow EIN$	\leq 1 ms	\leq 1 ms
Spannungsabfall bei EIN	max. 1,5 V	max. 1,5 V
Anzahl externer Ausgänge	4 Ausgänge/Modul	2 Ausgänge/Modul
Vor-/Rückwärtszähler	Aktueller Wert \geq Sollwert 1	Aktueller Wert \geq Sollwert 1
Ringzähler	Aktueller Wert = Sollwert 2	Aktueller Wert = Sollwert 2
Potentialtrennung	Mit Optokopplern	Mit Optokopplern

1) Nicht im Lieferumfang der Baugruppe

Counter-Analog-Modul

Mehr Informationen zur Verdrahtung des Counter-Analog-Moduls finden Sie im Kapitel 4 ab Seite 47.

Тур	XIOC-2CNT-2AO-INC
Allgemein	
Kanalanzahl	2
Max. interne Stromaufnahme	450 mA
Eingänge	
Zählerbreite	32 Bit
Signale nach RS422	A, !A, B, !B, R, !R
Eingangsspannung Differenz	+/- 5 V DC
High	0,2 bis + 5 V DC
Low	– 5 bis –0,2 V DC
galvanische Trennung	
IO-Bus → Eingänge	Nein
zwischen den Eingängen	Nein
zwischen den Ein- und Ausgängen	Nein
Eingangsfrequenz	400 kHz
Betriebsarten	1-, 2-, 4-fach Flankenaus- wertung
Ausgänge (analog)	
Auflösung	12 Bit
Ausgangsspannungsbereich	-10 bis +10 V
Fehler	typ. 0,4 %
galvanische Trennung	
IO-Bus → Ausgänge	Nein
zwischen den Ausgängen	Nein
Wandelzeit	< 1 ms
Max. Laststrom	10 mA
Min. Lastwiderstand	1 kOhm
Kurzschlussfest	Ja
Max. Ausgangsstrom	10 mA
(min. Lastwiderstand)	1 kΩ
Versorgung für Geber	
Spannung	5 V DC
Strom je Kanal ¹⁾	Max. 300 mA

1) Versorgen Sie den Geber extern, falls der verfügbare Strom nicht ausreicht.

Serielles Schnittstellenmodul/Fernwirkbaugruppe

→ Mehr Informationen zur Verdrahtung finden Sie hier: Schnittstellen-Modul → Kapitel 5 ab Seite 53. Fernwirkbaugruppe → Kapitel 6 ab Seite 57.

		XIOC-SER	XIOC-TC1	
Schnittstellen		RS232(C), RS422, RS485		
Protokolle		Tranparent-Modus, MODBUS Master/ Slave, SUCOM-A, Suconet-K-Slave	Tranparent-Modus, MODBUS Master/ Slave, SUCOM-A, DNP3-Protokoll	
Zeichenformate		8E1, 8O1, 8N1, 8N2,	8E1, 801, 8N1, 8N2, 7E2, 702, 7N2, 7E1	
Steuer- und Melde tungen	lei-	RTS, CTS, DTR, DSR, DCD		
Datenübertra- gungsrate	kBit/s	0.357.6	0.357.6	
Suconet K		187.5, 375	-	
Potentialtrennung				
RS232		nein	nein	
RS422/485		ја	ја	
Anzahl Slaves		-	-	
Sendedaten	Byte	≦250	≦250	
Suconet K	Byte	≦120	-	
Empfangsdaten	Byte	≦250	≦500	
Suconet K	Byte	≦120	-	
Busabschlusswider	stände	zuschaltbar für RS485	5, RS422	
Steckerausführung				
RS232		9-poliger SUB-D-Steck	<er< td=""></er<>	
RS422/485		steckbarer Klemmenblock		
Stromaufnahme	mA	< 275 mA	< 275 mA	
Gewicht	kg	ca. 0,2	ca. 0,2	
Anzahl der Module	5			
XC100		2	-	
XC200		4	4	
Steckplätze		beliebig	beliebig	

DNP3-Bibliothek in Verbindung mit XIOC-TC1

Allgemeine Daten		
Profil		DNP3-Level 2
Sendedaten	Byte	≦250
Empfangsdaten	Byte	≦282
Verwendbar für		Steuerungssystem XC200
Max. Anzahl Baugruppen		4 (Gemeinsam mit XIOC-SER, XIOC-NET-SK-M)
Datenpuffer		
Binary Input		1 - 1024, Bytedarstellung (inkl. Flags)
Analog Input		1 - 1024, 16 Bit + 1Byte Flags
Counter Input		1 - 1024, 32 Bit + 1Byte Flags
Binary Output		1 - 1024, Bytedarstellung (inkl. Flags)
Analog Output		1 - 1024, Bytedarstellung (inkl. Flags)

Suconet-K-Modul (Master)

Тур	XIOC-NET-SK-M
Modul-Anzahl (COM-Schnittstellen)	
XC100	2
XC200	4
Max. interne Stromaufnahme	275 mA
Anschluss	
RS485	6-poliger Federzugklemmenblock
Potentialtrennung	ja
Betriebsart Suconet K (Master)	
Art der Schnittstelle	RS485
Datenübertragungsraten	187,5 oder 375 kBit/s
Telegramm	Suconet K/K1
Anzahl Slaves	16
Slaveadressen	2 bis 31
Max. Sendedaten	250 Byte
Max. Empfangsdaten	250 Byte

PROFIBUS-DP-Modul

→ Mehr Informationen zum PROFIBUS-DP-Modul finden Sie im Kapitel 8 ab Seite 73.

Тур	XIOC-NET-DP-M/S	5
EMV	→ Seite 95	
Funktion	XIOC-NET-DP-M:	XIOC-NET-DP-S:
	PROFIBUS-DP- Interface, Master (Klasse 1)	Slave
Slaveanzahl	Max.124 (30 ohne	Repeater)
Sende-/Empfangsdaten	je 3,5 kByte für Ein-	und Ausgänge
Ein-/Ausgänge	XIOC-NET-DP-M:	XIOC-NET-DP-S:
	Max. 244 Byte pro Slave	Max. 244 Byte
Schnittstelle	RS485	
Steckerausführung	Sub-D, 9 polig, Buchse	
Potentialtrennung	Ja, zur internen Spa	nnungsversorgung
Stromverbrauch	300 mA	
Baudrate/Länge	kBits/s	m
	9,6	1200
	19,2	1200
	93,75	1200
	187,5	1000
	500	400
	1500	200
	3000	100
	6000	100
	12000	100
Busabschlusswiderstände	zuschaltbar	
Busdiagnose	LED	
Anzahl der Module	XC100: 1, XC200: 3	3
Steckplätze, → Tabelle 20, Tabelle 21	1, 2, 3	

Stichwortverzeichnis

Α	Abmessungen
	Baugruppenträger
	Signalmodule 22
	Abschirmung, Signalleitungen
	Aktuellen Istwert lesen
	Analogmodule parametrieren
	Analogmodule. Typenübersicht
	Anordnung der Module
	Anschluss
	Geräte an Ausgänge V von Counter-Modul 36
	Inkromentalgeber an Counter Modul
	Anschlüsse Zählermedul
	Anschlusse, Zahlehnouul
	Autoau
	Counter-Modul
	Signalmodul 10
	Ausgangsabbild, Counter-Analog-Modul
	D
В	Baugruppentrager
	Steckplatzbelegung 11
	Typenübersicht 9, 11
	Befehlsablauf, bei Counter-Modul
	Beispiel
	Diagnose in der Mastersteuerung (PROFIBUS-DP) . 89
	Betrieb
	DP-Modul
	Betriebsart, XIOC-SER
	Suconet K (Slave)
	Transparentmodus 55 59
	Retriebsartenschalter (Counter-Modul) 32
	Busahschlusswiderstände
	XIOC-NET-DP-M 74
	XIOC-NET_SK_M 71
	Einstellung mit AUC-BP-EAT
	Ellistellungen in der edsyson-CoDesys
	Buserweiterungsstecker 12
	Buszykluszeit ermitteln
<u> </u>	C Klammon 17
C	C-Klemmen
D	Datenaustausch DP-Modul 76
0	Datenauswertung Temperatur 25
	Datenmodell DNP3 50
	Datenühortragung Poispiel für DP Module 70
	Datenubertragung, beispier für DF-Module
	DIAGGETSTATE (Funktionsbaustein)
	EXTENDEDINFO (Array)
	GETBUSSTATE (Variable)
	Slaves am PROFIBUS-DP 81
	XIOC-SER 56

	Digitalmodule, Typenübersicht
E	Eingangsabbild, Counter-Analog-Modul
	rücklesen42setzen41Equal Flag (EQ) rücksetzen42Erweiterungs-Baugruppenträger12EXTENDEDINFO, Array83
F	Fehlersuche, bei XIOC-4T-PT28Fernwirkbaugruppe57Filter, für Spannungsspitzen17Flags rücklesen (Counter-Modul)43Freilaufdioden17Funktionsbaustein86Funktionsbaustein DIAGGETSTATE83Funktionscode, nach DNP3-Level 270
G	Geräte anschließen, an Ausgänge Y (Counter-Modul) 36 GETBUSSTATE, Variable
I	Impulsverarbeitung (Beispiel)46induktive Last17Inkrementalgeber anschließen33Istwert ändern37, 39
K	Kabel mit Stecker, für Counter-Modul18, 35kapazitive Lasten17Klemmenblock10befestigen15Kommunikationsbibliothek, für DNP3-Protokoll59Komfiguration59Konfiguration51Digital-Ein-/Ausgänge100XIOC-NET-DP-M89Zählereigenschaften40Konfiguration, XIOC-NET-DP-S/M75Konfigurationsbeispiel, DP-Modul89Konfiguration, XIOC-NET-DP-S/M26, 27

L	Latch-Ausgang
	Counter-Analog-Modul 48
	Counter-Modul 31
	XIOC-NFT-SK-M 71
	XIOC-SER 54 58
	I FD-I Imschalter 10
	Level-Ausgang 37 113
	Linear-Zähler 32 37 46
Μ	Maximaler Gesamtausbau12
	Maximaler Grundausbau
	Modulausgang (Counter-Modul)
	dem Vergleichswert 1/2 zuordnen
	freigeben
	setzen
	Module anordnen10
	Monotasking
	Montage
	Baugruppenträger12
	Klemmenblock15
	Signalmodule
	Multitasking-Betrieb78
N	Neuen Istwert setzen
0	Overflow Flag (Counter-Modul)
	löschen
D	Parametriorung LE4 mit Apalog Ein /Aurgängen 04
Г	Pariodischar Datanaustausch DP-Modul 77
	PROFIBILS-DP-Stocker 7/
	Programmierung
	Counter-Analog-Modul /8
	Counter-Modul 31
	Digital-Fin-/Ausgange
	Projektierung 10
R	Reaktionszeit, am PROFIBUS-DP
	Referenz-Eingang (Counter-Modul)
	freigeben
	Relaiskontakte, Lebensdauer
	Repeater
	RESET-Taster (Counter-Modul)
	Ring-Zähler

S	Schaltvorgänge, mit hohen Frequenzen 17
	Schnittstelle
	PROFIBUS-DP
	XIOC-NET-SK-M
	XIOC-SER
	Sendedaten .
	XIOC-NET-SK-M
	XIOC-SER
	Sicherung, gegen Durchbrennen der ext. Verdrahtung . 18
	Signalleitungen anschließen
	Signalmodule
	Aufbau
	max. Anzahl pro CPU 11
	Typenübersicht
	S-Klemmen
	Spannungspitzen (Filter)
	Startwert (Counter-Modul)
	rücklesen 42
	setzen 41
	Statusanzeine
	Counter-Analog-Modul 48
	Strombedarf Module anordnen 10
	Suconet-K-Modus XIOC-SER 53
Т	Target Rotation Time
	Taskkontrolle, im Online-Betrieb
	Technische Daten
	Analog-Ausgangsmodul
	Analoge Ein-/Ausgangsmodule
	Analog-Eingangsmodule
	Counter-Analog-Modul 110
	Counter-Modul 109
	Digitale Eingangsmodule
	PROFIBUS-DP-Modul 111
	Relais-Ausgangsmodul
	Serielles Schnittstellenmodul
	Suconet-K-Modul (Master)
	Temperaturerfassungsmodul
	Transistor-Ausgangsmodule
	Teilnehmerbyte
	Temperatureinstellung (XIOC-4T-PT)
	Temperatur-Messwert-Diagramm
	Transparentmodus. XIOC-SER
U	Uberstrome
	Ungebungstemperatur, ernont
	Undertiow-Flag loscnen

V	Verdrahtung
	Analog-Module
	Counter-Modul
	Digital-Eingangsmodul
	Eingangsmodul XIOC-32DI, Ausgangsmodul XIOC-
	32D0
	Federzugklemmenblock 16
	Relais-Ausgangsmodul 17
	Schraubklemmenblock 16
	Transistor-Ausgangsmodul 17
	XIOC-4T-PT
	Vergleichswert (Counter-Modul)
	parametrieren
	rücklesen 42
	setzen
	Verriegelung 10
	Versorgungsspannung
	Ein-/Ausgangselektronik
	Signalmodule 11
	zur Steuerung der Relais 17
	Vorgabewert (Counter-Modul)
	rücklesen 42
	setzen

W	Widerstandsthermometer 23
X	xDPS_SendDiag, Funktionsbaustein
Z	Zähler-Eingang (Counter-Modul)32freigeben42Zustandsanzeige (Counter-Modul)45Zustandsanzeige Ein-/Ausgänge10Zustandsanzeige, PROFIBUS-DP-Slaves79Zyklischer Datenaustausch, DP-Modul76

02/16 MN05002002Z-DE