
06/14 MN05003001Z-ENManual

Modular PLC

XC-CPU201-…(-XV)

XC-CPU202-…-XV



All brand and product names are trademarks or registered trademarks of the owner

concerned.

Emergency On Call Service

Please call your local representative:

http://www.eaton.com/moeller/aftersales

or

Hotline of the After Sales Service:

+49 (0) 180 5 223822 (de, en)

AfterSalesEGBonn@eaton.com

Original Operating Instructions

The German-language edition of this document is the original operating manual.

Translation of the original operating manual

All editions of this document other than those in German language are translations of

the original German manual.

1st published 2003, edition date 12/03

2nd edition 2004, edition date 12/03

3rd edition 2004, edition date 04/04

4th edition 2004, edition date 06/04

5th edition 2004, edition date 08/04

6th edition 2004, edition date 11/04

7th edition 2005, edition date 03/05

8th edition 2005, edition date 11/05

9th edition 2006, edition date 09/06

10th edition 2006, edition date 12/06

11th edition 2007, edition date 04/07

12th edition 2008, edition date 01/08

13th edition 2010, edition date 10/10

14th edition 2013, edition date 08/13

15th edition 2014, edition date 06/14

See revision protocol in the “About this manual“ chapter

© 2010 by Eaton Industries GmbH, 53105 Bonn

Production: Antje Panten-Nonnen

Translation: globaldocs GmbH

All rights reserved, including those of the translation.

No part of this manual may be reproduced in any form (printed, photocopy, microfilm

or any other process) or processed, duplicated or distributed by means of electronic

systems without written permission of Eaton Industries GmbH, Bonn.

Subject to alteration without notice.

http://www.eaton.com/moeller/aftersales
http://www.eaton.com/moeller/aftersales
mailto:AfterSalesEGBonn@Eaton.com
mailto:AfterSalesEGBonn@Eaton.com

I

Before commencing the installation

� Disconnect the power supply of the device.

� Ensure that devices cannot be accidentally restarted.

� Verify isolation from the supply.

� Earth and short circuit.

� Cover or enclose neighbouring units that are live.

� Follow the engineering instructions (AWA/IL) of the

device concerned.

� Only suitably qualified personnel in accordance with

EN 50110-1/-2 (VDE 0105 Part 100) may work on

this device/system.

� Before installation and before touching the device ensure

that you are free of electrostatic charge.

� The functional earth (FE) must be connected to the

protective earth (PE) or to the potential equalisation. The

system installer is responsible for implementing this

connection.

� Connecting cables and signal lines should be installed so

that inductive or capacitive interference does not impair

the automation functions.

� Install automation devices and related operating elements

in such a way that they are well protected against

unintentional operation.

� Suitable safety hardware and software measures should

be implemented for the I/O interface so that a line or wire

breakage on the signal side does not result in undefined

states in the automation devices.

� Ensure a reliable electrical isolation of the low voltage for

the 24 volt supply. Only use power supply units complying

with IEC 60364-4-41 (VDE 0100 Part 410) or HD 384.4.41 S2.

� Deviations of the mains voltage from the rated value must

not exceed the tolerance limits given in the specifications,

otherwise this may cause malfunction and dangerous

operation.

� Emergency stop devices complying with IEC/EN 60204-1

must be effective in all operating modes of the automation

devices. Unlatching the emergency-stop devices must not

cause restart.

� Devices that are designed for mounting in housings or

control cabinets must only be operated and controlled

after they have been installed with the housing closed.

Desktop or portable units must only be operated and

controlled in enclosed housings.

� Measures should be taken to ensure the proper restart of

programs interrupted after a voltage dip or failure. This

should not cause dangerous operating states even for a

short time. If necessary, emergency-stop devices should

be implemented.

� Wherever faults in the automation system may cause

damage to persons or property, external measures must

be implemented to ensure a safe operating state in the

event of a fault or malfunction (for example, by means of

separate limit switches, mechanical interlocks etc.).

E
a

to
n

 I
n

d
u

st
ri

e
s

 G
m

b
H

S
a

fe
ty

 in
st

ru
c

ti
o

n
s

Danger!

Dangerous electrical voltage!

II

Contents

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 08/13 MN05003001Z-EN www.eaton.eu 1

Contents

0 About this manual ... 5
0.1 List of revisions .. 5

0.2 Writing conventions ... 6

0.2.1 Hazard warnings of material damages ... 6

0.2.2 Hazard warnings of personal injury .. 6

0.2.3 Tips... 6

0.3 Additional documentation .. 7

1 Design of the XC200 PLC... 8
1.1 Rack ... 8

1.1.1 Performance scope of the CPU ... 9

1.1.2 Functional spans .. 9

1.1.3 Power supply ... 10

1.1.4 Local inputs/outputs... 10

1.1.5 Processor unit with interfaces ... 12

1.1.6 Real-Time Clock ... 12

1.1.7 Battery.. 12

1.1.8 Multi-media card (MMC), secure digital card (SD), USB stick...... 13

1.1.9 CPU drives ... 13

1.1.10 ETH232 programming interface ... 14

1.1.11 Splitting of the ETH232 interface ... 14

1.1.12 CAN/easyNet interface... 15

1.1.13 Reaction of the station on the CAN bus....................................... 16

1.1.14 Add-on functions of the CPU (local inputs) 17

2 CPU installation.. 19
2.1 Detaching the CPU... 19

3 Engineering... 20
3.1 Control panel layout ... 20

3.1.1 Ventilation .. 20

3.1.2 Layout of units ... 21

3.2 Preventing interference.. 21

3.2.1 Cable routing and wiring .. 21

3.2.2 Suppressor circuit for interference sources 22

3.2.3 Shielding... 22

3.3 Lighting protection ... 22

3.3.1 External lightning protection .. 22

3.3.2 Internal lightning protection ... 22

3.4 Connections ... 23

3.4.1 Connecting the power supply .. 23

3.4.2 Connecting inputs/outputs (central processing unit).................... 23

3.4.3 Connecting the incremental encoder ... 24

3.4.4 Connecting up/down counter... 25

3.4.5 Connecting interrupt actuators .. 25

3.4.6 Connect PC .. 26

Contents

2 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 08/13 MN05003001Z-EN www.eaton.eu

3.5 Interface assignments ... 27

3.5.1 USB interface... 27

3.5.2 XC200 programming interface... 27

3.5.3 CAN/easyNet interface .. 28

4 Operation.. 29
4.1 Startup behavior... 29

4.1.1 Startup behavior of the XC-CPU201... 30

4.1.2 Startup behavior of the XC-CPU202... 31

4.1.3 Configuring the start-up behavior with CODESYS....................... 32

4.2 Program start ... 33

4.2.1 Program start (STOP ￫ RUN)... 33

4.2.2 Program stop (RUN ￫ STOP)... 33

4.3 Power off/Interruption of the power supply................................. 33

4.3.1 CPU operating state display... 34

4.3.2 Test and commissioning (Debugging).. 34

4.3.3 Breakpoint/single-step mode ... 34

4.3.4 Single-cycle mode.. 35

4.3.5 Forcing ... 35

4.3.6 Status display... 35

4.3.7 Reset ... 36

4.4 Programs and project... 37

4.4.1 Loading the program.. 37

4.4.2 General information on RETAIN PERSISTENT............................. 38

4.4.3 Storing and deleting the boot project... 39

4.5 Updating the operating system.. 41

4.5.1 XC-CPU201 .. 41

4.5.2 XC-CPU202 .. 45

5 Program processing, multitasking and system times............ 48
5.1 Task configuration.. 48

5.1.1 Creating the “Basic” cyclic task .. 49

5.1.2 Creating event controlled task “Param” and defining the

program call ... 50

5.2 System events... 51

5.2.1 Assigning a POU to a system event .. 51

5.3 Multitasking ... 52

5.3.1 Updating the input/output images ... 52

5.3.2 Behavior of the CAN stack with multitasking 55

5.4 Task monitoring with the watchdog .. 55

5.4.1 Multiple tasks with the same priority... 58

5.5 Direct peripheral access... 58

5.5.1 ReadBitDirect... 60

5.5.2 ReadWordDirect .. 60

5.5.3 ReadDWordDirect.. 61

5.5.4 Write…Direct ... 61

5.5.5 WriteBitDirect .. 62

5.5.6 WriteWordDirect.. 62

5.5.7 GetSlotPtr .. 63

5.5.8 Failure code with direct peripheral access................................... 63

Contents

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 08/13 MN05003001Z-EN www.eaton.eu 3

5.6 Operating states... 63

5.7 Web visualization ... 64

5.8 Limit values for memory usage.. 64

5.9 Addressing inputs/outputs and markers 66

5.9.1 Activate “Automatic addresses” ... 66

5.9.2 “Activating Check for overlapping addresses” 67

5.9.3 Uneven word addresses .. 67

5.9.4 Address range .. 67

5.9.5 Free assignment or modification of addresses of input/output

modules and diagnostic addresses .. 68

5.9.6 Run “Automatic calculation of addresses” 68

5.10 Diagnostics... 69

6 Connection set-up PC – XC200 ... 70
6.1 Connection set-up via RS 232 interface 70

6.2 Defining/changing the PC’s communication settings 70

6.2.1 Changing the CPU’s communication settings.............................. 71

6.3 Connection set-up with Ethernet ... 72

6.3.1 Selecting communication channel and address 72

6.4 Scan/modify the IP address ... 73

7 Setting system parameters via the Startup.ini file................. 75
7.1 Overview.. 75

7.1.1 Parameters in the Startup.ini file.. 75

7.2 Structure of the ini file.. 76

7.3 Creating the Startup.ini file... 76

7.4 Entry of the ini file HOST_NAME... 76

7.4.1 Switch-on of the control with inserted memory card with

XCSTARTUP.ini file .. 77

7.4.2 Alter parameters .. 77

7.4.3 Deleting the Startup.ini file... 77

8 Programming via CAN(open) Network (Routing)................... 78
8.1 Prerequisites .. 78

8.2 Routing features of the controller .. 79

8.2.1 Notes.. 80

8.2.2 Addressing ... 81

8.2.3 Communication with the target PLC.. 82

8.2.4 PLC combinations for routing... 84

8.2.5 Number of communication channels ... 84

9 RS 232 interface in Transparent mode..................................... 85
9.1 Programming of the RS 232 interface in transparent mode 86

Contents

4 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 08/13 MN05003001Z-EN www.eaton.eu

10 Configuration and parameterization of the inputs/outputs.. 87
10.1 Input/output general... 87

10.1.1 Local digital inputs/outputs .. 87

10.2 Inputs/outputs for additional functions .. 90

10.2.1 Incremental encoder .. 90

10.2.2 Functionality of the inputs/outputs .. 90

10.2.3 Representation of the inputs/outputs of the incremental encoder 92

10.2.4 Counter .. 93

10.2.5 Representation of the inputs/outputs of the 32 bit counter......... 94

10.2.6 Representation of the inputs/outputs of two 16 bit counters...... 94

10.3 Interrupt processing... 95

10.3.1 EnableInterrupt .. 96

10.3.2 Parameter definition... 96

10.3.3 Example for interrupt processing... 97

11 Libraries, function blocks and functions.................................. 99
11.1 Using libraries .. 99

11.1.1 Installing additional system libraries .. 100

11.2 XC200 specific functions ... 100

11.2.1 CAN_Utilities.. 101

11.2.2 Event functions.. 102

11.2.3 XIOC functions... 105

11.2.4 Additional functions of the XC200_Util2.lib library for the

XC-CPU201 .. 106

11.2.5 Additional functions of the XC200_Util2.lib library for the

XC-CPU202 .. 112

12 Browser commands... 128
12.1 Calling browser commands ... 130

12.2 Accessing communications parameters 130

12.3 Display CPU loading (plcload)... 131

12.3.1 Display the loading of the CAN bus (canload) 131

12.3.2 Access to memory objects .. 132

12.3.3 Error and event list after calling browser commands 133

13 Appendix... 135
13.1 Characteristic of the Ethernet cable... 135

13.2 Properties of the CAN cable .. 136

13.3 Transparent mode: Text output via RS232 (example).................. 137

13.4 Access to the CPU drives/memory card 139

13.4.1 SysLibFile.lib library.. 139

13.4.2 Modes for opening a file .. 139

13.4.3 Examples of the “SysFile...” functions.. 140

13.5 Dimensions.. 141

13.6 Technical Data.. 142

13.7 Technical data – Filter .. 147

Index ... 149

0 About this manual

0.1 List of revisions

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 5

0 About this manual

0.1 List of revisions
The following significant amendments have been introduced since previous

issues:

Publication date Page Subject New Modification

12/03 (Reprint) 38 Data remanence, 1st paragraph ✓
04/04 64 Limit values for memory usage ✓

62 WriteBitDirect ✓
06/04 23, 86, 91 External 24 V DC line filter for the XC200 power supply ✓
08/04 38 Data remanence, note ✓

42 Download of programs ✓
65 RS 232 interface of the XIOC-SER in transparent mode (COM2/3/4/5) ✓
90 Electromagnetic compatibility ✓

11/04 13, 85 Multi-media card (MMC), secure digital card (SD), USB stick ✓
14 Splitting of the ETH232 interface ✓
35 Status display

45 Connection set-up via RS 232 interface ?

100 XC200 specific functions ?

106 Additional functions of the XC200_Util2.lib library for the XC-CPU201 ?

85 RS 232 interface in Transparent mode ?

03/05 14 Splitting of the ETH232 interface ?

17 Figure 20 ?

65 Segment size of the XC-CPU201-EC256k ?

66 Addressing inputs/outputs and markers ?

69 Diagnostics ?

78 Programming via CAN(open) Network (Routing) ?

09/05 43 Set the system parameters via the STARTUP.INI file ?

11/05 Complete revision of the manual

09/06 75 chapter “Setting system parameters via the Startup.ini file” ?

112 Chapter “The easyNet network” ?

12/06 48 chapter “Program processing, multitasking and system times” ?

78 chapter “Programming via CAN(open) Network (Routing)” ?

04/07 112 Chapter “The easyNet network” ?

01/08 Chapter 13: “The easyNet network” and chapter 14: “Programming via easyNet
(routing)” are now found in manual MN05006004Z-EN.

?

01/08 (publication
date unchanged)

16 Fig. 7 ?

10/10 XC-CPU202 added ✓
08/13 145 Typical current consumption: 1.4 0.85 A ?✓
06/14 Firmware update for XC-CPU202 ?✓

0 About this manual

0.2 Writing conventions

6 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

0.2 Writing conventions

Symbols with the following meaning are used in this manual:

▶ Indicates instructions to be followed.

0.2.1 Hazard warnings of material damages

0.2.2 Hazard warnings of personal injury

0.2.3 Tips

▶ Indicates instructions to be followed

Select ‹File r New› means: activate the instruction “New” in the “File”

menu.

￫ Short notation for XC200
Whenever this manual uses the designation “XC200”, it is

referring to both the XC-CPU201 and XC-CPU202 device

versions. Whenever it needs to refer to the XC-CPU201 or

XC-CPU202 version specifically, it will explicitly indicate

which version it is referring to.

NOTICE

Warns about the possibility of material damage.

 CAUTION

Warns of the possibility of hazardous situations that may

possibly cause slight injury.

 WARNING

Warns of the possibility of hazardous situations that could result

in serious injury or even death.

 DANGER

Warns of hazardous situations that result in serious injury or

death.

￫ Indicates useful tips.

0 About this manual

0.3 Additional documentation

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 7

0.3 Additional documentation
At different points in this manual, references are made to more detailed

descriptions in other manuals. These manuals are described with their title

and documentation number (e.g. MN05002002Z-DE). All manuals are

available in PDF format. If for some reason they are not supplied on the

product CD, they are available for download as PDF files.

To find the manuals required go to the following Internet address

http://www.eaton.eu l Customer Support l Download Center
Documentation

and enter the documentation number in the quick search box.

http://www.eaton.eu

1 Design of the XC200 PLC

1.1 Rack

8 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

1 Design of the XC200 PLC

The XC200 PLC is designed for use in machine controls and systems.

With an RS232/Ethernet interface for connection of a programming device,

the central coupling of XIOC signal modules and the decentral connection of

CAN devices, this control forms the basis for the implementation of a

comprehensive automation system.

The PLC consists of the:

� Rack ￫ Page 8

� CPU with PSU and local inputs/outputs￫ Page 9

� XIOC-signal modules ￫ separate manual “Hardware and Engineering”

(MN05002002Z-EN).

Figure 1: Layout of the XC-CPU201 with XIOC modules

1.1 Rack
There are basic backplanes and expansion racks.

The basic backplane XIOC-BP-XC features two slots for the central

processing unit. The XIOC-BP-XC1 provides three slots, so that there is also

place available for an XIOC signal module beside the central processing unit.

A basic backplane can be expanded using several expansion racks.

Expansion backplanes are fitted with XIOC signal modules.

The rack establishes the connection between the CPU and the modules

using an integrated bus rail.

￫ CODESYS programming software from Version 2.3 is required

for programming the XC200.

Lo
ca

l i
np

ut
s/

ou
tp

ut
s

Central inputs/outputs

￫ Detailed information on the module racks and the XIOC signal

modules is provided in the manual “XI/OC signal module –
Hardware and Engineering” (MN05002002Z-EN).

1 Design of the XC200 PLC

1.1 Rack

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 9

1.1.1 Performance scope of the CPU
In order to better cover the requirements for different applications, the CPU

is available with different performance levels. This affects the speed, the size

of the user memory and function of the integrated web server.

The following part numbers are available:

� XC-CPU201-EC256K-8DI-6DO(-XV),

� XC-CPU201-EC512K-8DI-6DO(-XV),

� XC-CPU202-EC4M-8DI-6DO-XV.

“EC256K”, “EC512K” and “EC4M” are a measure for the size of the user

memory. “XV” identifies a visualization CPU with integrated web server.

According to the size of the user program, the following memory values

apply:

1.1.2 Functional spans
The CPU is arranged into three functional areas:

� Power supply ￫ Page 10,

� Local inputs and outputs ￫ Page 10,

� Processor unit with interfaces ￫ Page 12

Figure 2: XC-CPU201 – a CPU of the XC200 series

a Processor unit with interfaces

b Power supply with local inputs/outputs

XC-CPU201-…-8DI-6DO(-XV) XC-CPU202...

…EC256K …EC512K …EC4M

Program code 512 kByte 2048 kByte – from
operating system
1.04.01

4 MB

Program data, of which: 256 kByte 512 kByte 2M Bytes

Marker 16 kByte 16 kByte 16 kByte

Retain data 32 KByte 32 KByte 64 kByte

?
?

1 Design of the XC200 PLC

1.1 Rack

10 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

1.1.3 Power supply
Two separate voltage supplies are available for the power supply of the

processor unit and the local inputs/outputs: On the one hand a 24 V

connection exists for the processor unit (inscription: 24V/0V) and on the other

a 24 V connection for the local inputs/outputs (inscription: 24VQ/0VQ).

If there is a voltage dip of the 24 V supply voltage (switching threshold is

about 10 V) then a power-down logic switches of the 5 V supply to the signal

modules (central I/O).

1.1.4 Local inputs/outputs
On the right half of the CPU an 18-pole terminal block is located behind the

front cover of the CPU. This is used to connect the power supply of the CPU

and the local inputs/outputs as well as the sensors and actuators.

The eight digital inputs (I0.0 to I0.7) and six semiconductor outputs (Q0.0 to

Q0.5) are designed for 24 V signals and have a common 0VQ/24VQ power

supply which is potentially isolated right up to the bus.

The outputs Q0.0 to Q0.5 can be loaded with 500 mA, a duty factor (ED) of

100% and a utilization factor (g) of 1.

The outputs are short-circuit proof. A short-circuit state should, however, not

be permitted to exist over a longer period.

See also:

� Add-on functions of the CPU (local inputs) ￫ Page 17

1 Design of the XC200 PLC

1.1 Rack

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 11

1.1.4.1 Terminal assignments

Figure 3: Terminals of the power supply unit and local inputs/outputs

I0.0 to I0.7: local digital inputs

Q0.0 to Q0.5: local digital outputs

0VQ/+24VQ: supply voltage for the local inputs/outputs

0V/+24V: supply voltage to the processor unit

1.1.4.2 LED indicators
The LEDs indicate the signal status for the inputs and outputs. An LED that is

ON indicates a H-level signal on the corresponding connection terminal.

Figure 4: LEDs for the local inputs/outputs

The two upper rows of LEDs show the signal status for the eight digital

inputs of the CPU module (I0.0 to I0.7), and the two lower rows show the

signal status for the six digital outputs (Q0.0 to Q0.5).

I 0.0
I 0.1

I 0.2
I 0.3

I 0.4
I 0.5

I 0.6
I 0.7

Q 0.0
Q 0.1

Q 0.2
Q 0.3

Q 0.4
Q 0.5

24 VQ
0 VQ

0 V
24 V

0 1 2 3

4 5 6 7

0 1 2 3

4 5

Inputs I0.0 to I0.3

Inputs I0.4 to I0.7

Outputs 0.0 and 0.3

Outputs 0.4 and 0.5

1 Design of the XC200 PLC

1.1 Rack

12 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

1.1.5 Processor unit with interfaces
Belonging to the processor unit are:

� Real-Time Clock ￫ Page 12,

� Battery ￫ Page 12,

� Multi-media card (MMC), secure digital card (SD), USB stick ￫ Page 13,

� CPU drives ￫ Page 13,

� USB interface ￫ Page 27,

� ETH232 programming interface ￫ Page 14,

� CAN/easyNet interface ￫ Page 15,

� Add-on functions of the CPU (local inputs) ￫ Page 17.

1.1.6 Real-Time Clock
The XC200 features a real-time clock, which can be referenced in the user

program via the functions from the SysLibRTC.lib library.

Possible functions are:

� Display of the battery charge state,

� Display mode for hours (12/24 hour display),

� Reading and setting of the real-time clock.

A description of the functions can be found in the SysLibRTC.pdf file.

Furthermore, you can set or scan the real-time clock via the following

browser commands:

� setrtc (set the real-time clock) ￫ Page 129,

� getrtc (query the real-time clock) ￫ Page 128.

1.1.7 Battery
A Lithium battery of type 1/2 AA (3.6 V) is used for saving of retentive data

and for operation of the real-time clock. The battery compartment can be

found on the left side of the central processing unit unit, behind a blanking

plate. The charge level of the battery is monitored. If the battery voltage

exceeds a preset fixed limit value, a common group fault is indicated.

The battery backup times are:

� Worst-case: 3 years continuous buffering,

� Typical: 5 years of continuous buffering.

The order designation of the battery is: XT-CPU-BAT1

NOTICE

Only change the batteries when the supply voltage is switched

on. Otherwise data may be lost.

1 Design of the XC200 PLC

1.1 Rack

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 13

1.1.8 Multi-media card (MMC), secure digital card (SD), USB stick
MMC, SD and USB serve as mass memory. You can load the recipe data,

general data and the user program onto them. The operating system (OS)

supports memory types with the FAT16 file system.

If you want, you can use an SD memory card instead of an MMC memory

card.

From operating system version 01.03. of the XC-CPU201, you can transfer

the operating system to the MMC in order to load it from there to other

controllers (operating system update). From this operating system version in

XC-CPU201 it is also possible to use a USB stick for data storage.

1.1.9 CPU drives
The XC200 has the following drives available:

� internal

� Memory system (disk_sys)

� external (optional)

� Multi-media card MMC or secure digital card SD (disk_mmc)

� USB stick (disk_usb).

The external CPU drive will continue to be called disk_mmc even if you are

using an SD card.

The boot system and the operating system are saved in compressed format

and protected against failure of the power supply in the transaction safe

system memory.In the operating state, the boot project and the relevant

sections of operating system are “unpacked” and copied into the working

memory. The retentive data are stored in the battery-buffered SRAM

memory.

NOTICE

The file system of the memory card is not transaction-safe.

Make sure that all the files of the program are closed before you

plug or un-plug a card or turn off the voltage.

See also:

� XC-CPU-202: ￫ Page 40
� Deleting the operating system/boot project from the MMC of the XC-CPU201 ￫ Page 44
� Configuration of the USB interface ￫ Page 27

￫ Erasing of files is implemented in the same way as erasing

the operating system.

1 Design of the XC200 PLC

1.1 Rack

14 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

Figure 5 indicates the interaction of the differing XC-CPU200 memory

systems/drives.

Figure 5: XC-CPU200 memory organization

1.1.10 ETH232 programming interface
The communication between the PLC and the programming device is

implemented via the ETH232 programming interface of the CPU. It consists

of an Ethernet interface and an RS232 interface.

The Ethernet interface is used for programming and debugging, as it is

processed more quickly by the operating system. This interface features

network capabilities and is electrically isolated.

The XC-CPU202 also allows you to update the operating system of the

controller via the Ethernet interface.

You can also execute programming via the RS232 interface.

From operating system version V01.03 of the XC-CPU201 you can also

switch the RS232 interface to Transparent mode in order to establish a point-

to-point connection without handshake lines.

1.1.11 Splitting of the ETH232 interface
The cable switch XT-RJ45-ETH-RS232 enables you to communicate with the

XC200 via the RS232 and Ethernet interfaces simultaneously.

￫ Transaction safe means that if there is a voltage dip when

the file is being processed, the file system and the opened

file are generally not destroyed. It is possible however,

that data which you have written into the file last opened

may be lost.

See also:
� Data access on the memory card

� with the aid of browser commands such as, for example, copyprojtommc, to copy the user program

onto the MMC ￫ Page 128

� Functions such as SysFileOpen or SysFileRead? Page 139
� Limit values for memory usage ￫ Page 64

disk_sys

disk_mmc

Disk_USB

System

memory

(flash)

Working

memory

(SDRAM)

Memory card MCC

or memory card SD

USB stick

1 Design of the XC200 PLC

1.1 Rack

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 15

The connection between the CPU and the cable splitter is established using

the EASY-NT-30/80/130 cable. Then connect the cable from the “IN” socket

of the cable splitter to the ETH232 connecter of the CPU.

For example you can connect the programming device to the Ethernet

interface of the cable switch and the RS232 interface (in Transparent mode)

to a printer. The pin assignment of the RS232 and the Ethernet plug socket

of the cable switch is the same as that of the ETH232 socket of the central

processing unit.

Figure 6: Connection of the XC-CPU200 with the XT-RJ45-ETH-RS232

1.1.12 CAN/easyNet interface
The CAN/easyNet interface is isolated. The connections of the interfaces are

the same. The CPU can be run both as a network (NMT) master as well as an

NMT slave (device) on the CAN bus.

The CPU can run the CANopen and the easyNet protocol at the same time.

Bus terminating resistors

Bus termination resistors must be installed at the first or last station on the

line.

See also:
� Connect PC ￫ Page 26
� Configuration of the programming interface ￫ Page 27
� Connection set-up PC – XC200 ￫ Page 70.

I
N

E
T
H
E
R
N
E
T

R
S
2
3
2

RJ45

RJ45

RJ45

E
T
H
2
3
2

XC-CPU200

EASY-NT-30/80/150

RJ45

See also:
� Detailed information for engineering and programming CAN stations

a Application note AN2700K27.
� easy800 control relay operator manual (MN04902001Z-EN; previously called AWB2528-1423GB)
� Network easyNet a page 73

Module Bus termination resistor

XC-CPU201, MFD4 120 O (external)

easy800, MFD EASY-NT-R

XC-CPU202 switched neutral

1 Design of the XC200 PLC

1.1 Rack

16 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

Figure 7: Example: network with bus termination resistor on XC-CPU201

Terminals 1 and 4 , 2 and 5 as well as 3 and 6 are internally connected.

The bus terminating resistor on the XC-CPU202 can be switched. This switch

is located above the battery switch (factory setting: ON).

Figure 8: XC-CPU202, XT-CPU-BAT1

1.1.13 Reaction of the station on the CAN bus
Station/bus monitoring: CAN telegrams are sent and received directly by the

user program. An interruption on the CAN Bus will only be recognized when

the respective CAN slave is monitored by the PLC (Nodeguarding function).

Start/Stop behavior:

If you set the STOP position on the operating mode selector switch, all

outputs of the decentral devices are set at the end of the cycle to “0”.

Switch on voltage:

The order in which you switch on the power supply of the individual CAN

stations has no effect on the functioning of the CAN bus. Depending on the

parameters set, the controller “waits” for stations that are not present or

starts them when the station is connected to the CAN net.

Communication with CAN stations:

The communication with the CAN stations and their configuration is

described in the following application notes and operating manuals:

� Connection of an XION station to the XC100/200 via CAN (AN27K18D)

� Communication between two controls using network variables via CAN

(AN27K19D)

� Connection of multiple autonomous controls (CAN-Device) via CAN

(AN27K20D)

� Engineering of CAN stations (AN27K27D)

6

5

4

3

2

1

6

5

4

3

2

1

6

5

4

3

2

1

CAN_L

CAN_H

120 O 120 O

ONOFF

1 Design of the XC200 PLC

1.1 Rack

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 17

� Library description: CANUser.lib/CANUser_Master.lib

(MN05010001Z-EN).

1.1.14 Add-on functions of the CPU (local inputs)
The inputs I0.0 to I0.5 can be parameterized as:

� Incremental encoder inputs (I0.0 to I0.3)

� Counter inputs (32 bit I0.0, I0.1)

� Counter inputs (16 bit I0.0, I0.1 and I0.2, I0.3)

� Interrupt inputs (I0.4 and I0.5)

The input signals in the CPU are preprocessed with these functions.

1.1.14.1 Incremental encoder input (32 Bit)
The function is available once. On inputs I0.0 and I0.1 the incremental signals

A and B of the encoder are directed to input I0.2 of the reference signal,

which the encoder generates once per revolution. The switch is connected

on input I0.3, which maps the reference window in the closed state in which

the reference signal I0.2 is processed.

The incremental signals A and B are phase shifted by 90 degrees in order to

indicate the count direction. The falling and rising edges are processed (4-fold

evaluation). The maximum input frequency is 50 kHz. This results in a total

frequency of 200 kHz.

1.1.14.2 Up/down counter (32 Bit)
The function is available once. The counter input I0.0 accepts the impulses

with a maximum frequency of 50 kHz. The directional signal on input I0.1

defines if the counter impulse is to be incremented or decremented when

the counting pulse arrives. The direction signal is a static signal which must

be present before the counting pulses. The count value is incremented/

decremented with each counter value until the setpoint value is reached.

After the setpoint value is achieved an interrupt is initiated which is used to

branch to a programming routine (POU). The reaction after the setpoint value

is reached is determined by the direction of counting:

Incrementing: Count direction “up”: If a setpoint value is achieved, the

parameterized interrupt is activated. With the next counting pulse the

counter begins at 0. The interrupt source is defined in the control

configurator.

See also:
� Configuration of the CAN/easyNet interface ￫ Page 28
� Properties of the CAN cable ￫ Page 136

See also:
� Connecting the incremental encoder ￫ Page 24
� Incremental encoder parameterization￫ Page 90

1 Design of the XC200 PLC

1.1 Rack

18 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

Decrementing: If a setpoint value is achieved, the parameterized interrupt is

activated. When the next count pulse occurs, the counter begins to count at

the preselected setpoint value. The interrupt source is defined in the control

configurator.

1.1.14.3 Up/down counter (16 Bit)
Two of these counters are available. It corresponds with the up/down

counter (32 bit).

1.1.14.4 Interrupt inputs
The digital inputs I0.4 and I0.5 can be parameterized as interrupt inputs.

The leading or the lagging edge (can be parameterized) of the input signals

are evaluated.

See also:
� Interrupt processing ￫ Page 95
� Input of the setpoint value in the control configuration ￫ Page 93
� Connecting up/down counter ￫ Page 25

Inputs

Counter 1:

I0.0 Pulse input

I0.1 Directional input

Counter 2:

I0.2 Pulse input

I0.3 Directional input

￫ If an XC100 PLC is replaced by an XC200 PLC, the interrupt

inputs are connected to other physical input addresses!

See also:
� Time constraints placed on the interrupt inputs: “Technical data – input delay – fast digital input” ￫ Page 145
� Programming in the “Interrupt function” is described on Page 95.
� Connecting up/down counter ￫ Page 25

2 CPU installation

2.1 Detaching the CPU

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 19

2 CPU installation

▶ Insert the loop on the bottom of the CPU module into the hole in the

module rack .

▶ Press the top of the CPU module onto the module rack, until you hear it

click into position .

Figure 9: CPU installation

2.1 Detaching the CPU
▶ Press in the catch .

▶ Keep the catch pressed in, and pull the top of the CPU module forwards

.

▶ Lift up the CPU module and remove it .

Figure 10:Detaching the modules

￫ Detailed information on mounting the module rack and the XIOC

signal modules is provided in the manual “XI/OC Signal Modules

– Hardware and Engineering” (MN05002002Z-EN).

1

2

2

1

1

2

3

1

2

3

3 Engineering

3.1 Control panel layout

20 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

3 Engineering

3.1 Control panel layout
The layout of the components inside the control panel is a major factor for

achieving interference-free functioning of the plant or machinery. During the

project planning and design phase, as well as its implementation, care must

be taken that the power and control sections are separated.

The power section includes:

� Contactors

� Coupling/interfacing components,

� Transformers,

� Variable frequency drives,

� Current converters.

In order to effectively exclude any electromagnetic interference, it is a good

idea to divide the system into sections, according to their power and

interference levels. In small control panels it is often enough to provide a

sheet steel dividing wall, to reduce interference factors.

3.1.1 Ventilation
In order to ensure sufficient ventilation a minimum clearance of 50 mm to

passive components must be observed. If the adjacent components are

active elements (e.g. power supplies, transformers) a minimum clearance of

75 mm must be observed. The values that are given in the technical data

must be observed.

3 Engineering

3.2 Preventing interference

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 21

3.1.2 Layout of units
Build the module racks and the controls into the control panel in a horizontal

position.

Figure 11:Control panel layout

a Clearance > 50 mm

b Clearance > 75 mm to active elements

c Cable duct

3.2 Preventing interference

3.2.1 Cable routing and wiring
Cables are divided into the following categories:

� Electric power lines (e.g. power cables carrying high currents, or lines to

current converters, contactors, solenoid valves),

� Control and signal cables (e.g. digital input cables),

� Measurement and signal cables (e.g. fieldbus cables).

Take care to implement proper cable routing both inside and outside the

control panel, to keep interference as low as possible:

▶ Avoid parallel routing of sections of cable in different power categories.

▶ As a basis rule, keep AC cable separated from DC cables.

c

ba

ba

b

a

b

a

￫ Always route power cables and signal cables as far apart as

possible. This avoids capacitive and inductive coupling.

If separate cable routing is not possible, then the first priority

must be to shield the cable responsible for the interference.

3 Engineering

3.3 Lighting protection

22 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

▶ Keep to the following minimum clearance:

� at least 10 cm between power cables and signal cables;

� at least 30 cm between power cables and data or analog cables.

▶ When routing cables, make sure that the outgoing and return leads of a

circuit pair are routed together. The opposing currents on this cable pair

cause the sum of all currents to equal zero. The generated

electromagnetic fields cancel each other out.

3.2.2 Suppressor circuit for interference sources
▶ Connect all suppressor circuits as close to the source of interference

(contactors, relays, solenoids) as possible.

3.2.3 Shielding
▶ Use shielded cables for the connections to the data interfaces.

The general rule is:

the lower the coupling impedance, the better the shielding effect.

3.3 Lighting protection

3.3.1 External lightning protection
All cables between buildings must be shielded. Metal conduits are

recommended for use here. Fit signal cables with overvoltage protection,

such as varistors or other surge arresters. Implement these measures ideally

where the cable enters the building and at least at the control panel.

3.3.2 Internal lightning protection
Internal lightning protection covers all those measures taken to reduce the

effects of a lightning strike and the resulting electrical and magnetic fields on

metallic installation and electrical plant. These measures are:

� Potential equalizing/earthing

� Shielding,

� Using surge protective devices

￫ Switched reactors should always have suppressor circuitry

fitted.

3 Engineering

3.4 Connections

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 23

3.4 Connections

3.4.1 Connecting the power supply

Figure 12:Example of wiring for power supply unit

a Main switch

b Circuit protection device

c 24 V DC supply voltage

d Earthed operation

e In floating (i.e. non-earthed) operation, an isolation monitor must be used

(IEC 204-1, EN 60204-1, DIN EN 60204-1)

f 24 V DC line filter; ensures that a rated operating voltage of up to 24 V DC (maximum) is available at a

rated voltage of 2.2 A. Use of the filter ensures that the EMC stipulations for devices.

Instructions: The filter is not a component of the central processing unit and must therefore be ordered

separately:

Type: XT-FIL-1, Article no.: 285316 (Supplier: Eaton Industries GmbH)
￫ Dimensions on Page 141

￫ Technical data on Page 147.

1*) Internal jumper

2*) Additional PE connection via contact spring on rear

3.4.2 Connecting inputs/outputs (central processing unit)
This figure shows the connection of inputs/outputs and their power supply.

Figure 13:Connecting inputs/outputs to the central processing unit

~
=

~
=

a

e d

f

e d

c

b

L1
L2
L3
N
PE

24 V 0 V DC 24 VQ 0 VQ DC

XC-CPU200

1*)

1*) 1*)

XT-FIL-1 2*)

(Voltage supply of CPU) (Voltage supply of the
local digital inputs/outputs)

+ 24 V H

0 V H

0

2

4

6

0

2

4

24 VQ

24 V

1

3

5

7

1

3

5

0 VQ

0 V

3 Engineering

3.4 Connections

24 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

3.4.3 Connecting the incremental encoder
The incremental encoder is shown in the following figure in the manner in

which it is to be connected to the control.

Figure 14:Connection of the incremental value encoder with a reference window switch

￫ Wiring examples on the XIOC modules are provided in the

manual “XI/OC Signal Modules – Hardware and Engineering”

(MN05002002Z-EN).

24 V

0 V

24 VQ

0 VQ

I0.2

I0.3

I0.0
I0.1

C
0 V

24 V

A
B

C
0 V

24 V

A
B

3 Engineering

3.4 Connections

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 25

3.4.4 Connecting up/down counter

Figure 15:Connection of pulse generator with signal for incrementing/decrementing

3.4.5 Connecting interrupt actuators
The inputs I0.4 and I0.5 can be parameterized as interrupt inputs.

Figure 16:Interrupt input connections

24 V

0 V

24 VQ

0 VQ

I0.2
I0.3

I0.0
I0.1DownUp

DownUp

￫ Please note that when an XC100 PLC is replaced by an XC200

PLC the interrupt inputs are situated at other physical input

addresses!

24 V

0 V

I0.4

I0.5

24 VQ

0 VQ

1

2

Interrupt 1

Interrupt 2

3 Engineering

3.4 Connections

26 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

3.4.6 Connect PC

3.4.6.1 Ethernet connection
From a purely physical/mechanical point of view the programing devices

interface is an RJ45 interface (socket). This means that normal commercial

RJ45 connectors or Ethernet patch cables can be used.

Direct connection PC – XC200:

The XC200 can be connected directly to the (programming) PC via a

crossover Ethernet cable, ￫ Figure 17, 18.

Crossover cables have the following design features:

Figure 17:Connection set-up of an 8-pole crossover cable

Figure 18:Connection set-up of a 4-pole crossover cable

The following cross-over cables are available:

� XT-CAT5-X-2 2 m long (article no. 256487)

� XT-CAT5-X-5 5 m long (article no. 256488)

PC – XC200 via Hub/Switch connection:

If you use a Hub or a Switch between the PC – XC200 connection, you must

use a standard Ethernet cable which is connected 1:1 for the connection

between PC – Hub/Switch and Hub/Switch – XC200.

The cable EU4A-RJ45-USB-CAB1 (Art. no. 115735) is provided for

programming via the USB interface of a PC.

￫ Please note that when there is a double assignment of the RJ45

interface with the RS232 and Ethernet, the connections 4 and 7

are connected to “GND potential” because of the RS232

interface. For this reason, we recommend the use of 4-core

cables for the connection of the XC200 to the Ethernet.

See also:
� Characteristic of the Ethernet cable ￫ Page 135

55

66

77

88

11

22

33

44

11

22

33

66

3 Engineering

3.5 Interface assignments

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 27

3.4.6.2 RS232 connection
Please use the XT-SUB-D/RJ45 (article no. 262186) programming cable to

make a connection between the XC200 and PC.

3.5 Interface assignments

3.5.1 USB interface

Table 1: Configuration of the USB interface

3.5.2 XC200 programming interface

Table 2: Configuration of the programming interface

RJ45 plug Programming cable SUB-D socket

Figure 19:Pin assignment RS232 programming cable

See also:
� Connection set-up PC – XC200 ￫ Page 70
� RS 232 interface in Transparent mode ￫ Page 85

8
7
6
5
4
3
2
1 5

8

4

2

3

5 3
4

1
2

5

8
9

6
7

Signal

1 +5 V H

2 USB–

3 USB+

4 GND

1 4

Signal

RJ45 socket RS232 Ethernet

8 RxD –

7 GND –

6 – Rx–

5 TxD –

4 GND –

3 – Rx+

2 – Tx–

1 – Tx+
1

2

3

4

5

6

7

8

3 Engineering

3.5 Interface assignments

28 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

3.5.3 CAN/easyNet interface

Table 3: Configuration of the CAN/easyNet interface

￫ The Ethernet socket on the XC-CPU202 is reversed by 180

degrees. However, the pin assignment is identical to that of the

XC-CPU201.

Terminal Signal

 CAN easyNet

6 GND GND

5 CAN_L ECAN_L

4 CAN_H ECAN_H

3 GND GND

2 CAN_L ECAN_L

1 CAN_H ECAN_H

Connector type: 6 pole, plug-in spring-loaded terminal block,

conductor cross-section up to 0.5 mm2

Terminals 1 and 4 , 2 and 5 as well as 3 and 6 are internally connected.

6

5

4

3

2

1

4 Operation

4.1 Startup behavior

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 29

4 Operation

4.1 Startup behavior
Several different user programs/boot projects can be saved on the CPU.

They can be located on the MMC/SD/USB as well as on the disk_sys system

memory. However, the CPU simply runs a user program.

The following flow diagrams (Fig. 20 and Fig. 21) show which program is

used. The charts also show the updating of the operating system (OS) using

the MMC/SD/USB.

After voltage recovery, a boot project saved in the XC200 will be started in

accordance with the position of the operating mode switch and the

programmed start conditions.

4 Operation

4.1 Startup behavior

30 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

4.1.1 Startup behavior of the XC-CPU201

Figure 20:Boot procedure with MMC

OS on MMC?

Start

Yes Several OS
on MMC?

Determine newest versionYes

Transfer of data from
startup.ini

Yes

Application project
on MMC?

Copy the application project
to disk_sys

Yes

Power on

Version
< or > Disc_Sys?

Update and reboot
save settings

(IP address, COM, boot project)

Yes

CONTINUE

NoNo

CONTINUE

CONTINUE

No

Startup.ini
on MMC

Start of PLC

No

No

①

4 Operation

4.1 Startup behavior

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 31

4.1.2 Startup behavior of the XC-CPU202

Figure 21:Boot procedure with SD/MMC and USB

OS on SD/MMC?

Start

Yes Several OS
on SD/MMC?

Determine newest versionYes

Transfer of data from
startup.ini

Yes

Application project
on SD/MMC?

Copy the application project
to disk_sys

Yes

Power on

Version
< or > Disc_Sys?

Update and reboot
save settings

(IP address, COM, boot project)

Yes

OS on USB?

No

Yes Several OS
on USB?

CONTINUE

Yes Version
< or > Disc_Sys?

Update and reboot
save settings

CIP/COM/Bootproj

Yes

neinnein

Determine newest version

No

CONTINUE

CONTINUE

No

Application project
on USB?

No

Startup.ini
on SD/MMC

Start of PLC

Copy the application project
to disk_sys

Yes

No

No

No

①

Note:

If both SD/MMC and USB are fitted, SD/MMC

has priority.

The SD/MMC is scanned in startup.ini.

4 Operation

4.1 Startup behavior

32 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

4.1.3 Configuring the start-up behavior with CODESYS
The start-up behavior setting primarily defines the handling of the retentive

variables. The following settings are only taken into consideration when the

power supply is switched on.

Select one of the following start conditions in the “STARTUP BEHAVIOR”

drop-down menu in the “Other Parameters” tab of the PLC configurator:

� STOP

� COLDSTART,

� WARMSTART.

4.1.3.1 HALT
The user program is not started independently of the switch position of the

RUN/STOP switch.

4.1.3.2 COLDSTART/WARMSTART
Precondition: The RUN/STOP switch is in the RUN position.

The variables are initialized in accordance with Table 4 , before the control

starts.

Table 4: Behavior of the variables after COLDSTART/WARMSTART

STOP

RUN/STOP
switch in RUN?

Yes

COLDSTART/
WARMSTART

Start behavior?
HALT

Load retentive data

RUN

a

￫ section “Program
start”

No

Behavior of the variables after …

Variable type COLDSTART WARMSTART

Non-retentive Activation of the initial values Activation of the initial values

Retain1) Activation of the initial values Values remain in memory

4 Operation

4.2 Program start

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 33

4.2 Program start
When a program starts, the CPU checks whether the configured inputs and

outputs match the physically present ones. It also checks whether the actual

module corresponds with the parameterized module type. If the wrong

module type is identified, the CPU changes to NOT READY state.

4.2.1 Program start (STOP ￫ RUN)
You have the following possibilities to start the program:

4.2.2 Program stop (RUN ￫ STOP)
A change of the RUN/STOP switch to the STOP position leads the central

processing unit to the STOP state after completion of the program cycle

(ending of all active tasks).

After the task has ended the outputs used by the I/O task are set to 0,

a chapter “Program processing, multitasking and system times” on

Page 48.

You can stop the program in one of two ways:

� In online operation, issue the STOP command.

� Set the RUN/STOP switch in the STOP position.

4.3 Power off/Interruption of the power supply
When the program is running, the switching off or interruption of the (CPU)

power supply will cause the program cycle or task to be aborted

immediately. The data is no longer consistent!

Persistent Values remain in memory Activation of the initial values

Retain Persistent Values remain in memory Values remain in memory

1) Physical operands such as I, Q or M cannot be declared as “retain” variables.

Behavior of the variables after …

Variable type COLDSTART WARMSTART

Program exists in main memory Program should be loaded

Prerequisite � CPU in STOP
� RUN/STOP switch in STOP

� CPU in STOP
� RUN/STOP switch in RUN

Action � Switch RUN/STOP switch to RUN or
� in online operation, issue the “Start”

command.

� Load program
� in online operation, issue the “Start”

command.

Result for all
variables

CPU in RUN
Values are retained at the start

CPU in RUN
Initial values are activated

4 Operation

4.3 Power off/Interruption of the power supply

34 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

All outputs in which the I/O tasks are used are set to 0 or switched off

a chapter “Program processing, multitasking and system times”to

Page 48. The behavior of retentive variables in shown in can be seen in

Table 4.

The remaining program cycle will not be completed when power is

reconnected!

If the consistency of the data is absolutely necessary for an application, other

measures are required, such as the use of a uninterrupted power supply with

battery back-up. The PLC is started as shown in Figure 20 and Figure 21.

4.3.1 CPU operating state display
The operating state of the CPU is displayed on the RUN/STOP and SF LEDs:

The NOT READY state is indicated by the RUN/STOP and SF LEDs. The PLC

goes into this state when an error has occurred during the start.

The CPU remains in STOP state. The CPU can be restarted after elimination

of the fault.

4.3.2 Test and commissioning (Debugging)
The PLC supports the following test and commissioning features:

� Breakpoint/Single step mode,

� Single cycle mode,

� Forcing,

� Online modification, ￫ PLC programming with CODESYS manual,

Chapter “Online functions”,

� Status display/Powerflow.

4.3.3 Breakpoint/single-step mode
Breakpoints can be set within the application program. If an instruction has a

breakpoint attached, then the program will halt at this point. The following

instructions can be executed in single-step mode. Task monitoring is

deactivated.

 CPU status RUN/STOP LED SF-LED

RUN on off

STOP flashes off

NOT READY flashes on

NOTICE

Any outputs already set when the program reaches the

breakpoint remain set!

4 Operation

4.3 Power off/Interruption of the power supply

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 35

4.3.4 Single-cycle mode
In single-cycle operation, one program cycle is performed in real time. The

outputs are enabled during the cycle. At the end of the cycle, the output

images are cancelled and the outputs are switched off. Task monitoring is

active. Task monitoring is active.

4.3.5 Forcing
All variables of the user program can be forcibly set. A local output is only

forced if the corresponding variable is forced and the central processing unit

is in the RUN state.

4.3.6 Status display
The inputs/outputs are to be referenced in order to visualize the states of the

configured inputs/outputs in an interval controlled task in the PLC

configurator. The following syntax is sufficient in the ST programming

language in order to be able to display individual I/O bits.

Example:

in IL:

%IB0; (referencing of inputs I0.0 - I0.7)

%QB
0;

(referencing of outputs Q0.0 - Q0.7)

LD %IB0

ST Default byte

LD Default byte

ST %QB0

4 Operation

4.3 Power off/Interruption of the power supply

36 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

4.3.7 Reset
There are three different types of Reset commands:

� Warm reset,

� Cold reset,

� Full reset.

Table 5: The commands also affect the state of the CPU: shows the

commands to use for initializing a retentive variable range. The commands

also affect the state of the CPU.

4.3.7.1 Warm reset
The program is stopped. The variables are initialized.

The program can be restarted.

4.3.7.2 Cold reset
The program is stopped. The variables are initialized.

The program can be restarted.

4.3.7.3 Full reset
The program in the PLC and the boot project are deleted. The variables are

initialized. The PLC is set into the NOT READY state.

Table 5: Behavior of the variables after a Reset

Reset command

Variable type Warm reset Cold reset Full reset1)

Non-retentive Activation of the initial
values

Activation of the initial
values

Activation of the initial
values

Retain2) Values remain in memory

Persistent Activation of the initial
values

Values remain in memory

Retain Persistent Values remain in memory Values remain in memory

1) After a full reset, the program must be reloaded. In online operation, the “Start” command can now be issued.

2) Physical operands such as I, Q or M cannot be declared as “retain” variables.

4 Operation

4.4 Programs and project

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 37

4.4 Programs and project

4.4.1 Loading the program
You must log on in order to load recently created or modified programs. The

question “Load the new program?” will appear. The load operation will start

once this prompt has been confirmed.

Program download is monitored. After the default transfer time is exceeded,

communication ends and the error message: “Communications fault (#0).

Logging out”.

This happens if the programs are very large or if the number of “Persistent”

variables and/or “Retain-Persistent” variables are greater than 5000.

The number is independent of the data type. The transfer time can be

extended to 30000 ms to eliminate this problem. The transfer time can be

set in CODESYS.

Figure 22:Setting the transfer time

In order to safely store the program, a boot project must be generated by the

user program. With the “Create boot project” command the program is

loaded from the PC into the system memory and saved as a zero-voltage

safe boot project.

The following steps are necessary in order to create a boot project:

▶ Change over to the “Online” folder.

▶ Select the “Login” command.

▶ Select the “Create boot project” command.

￫ Please note that the “Retain” variables are initialized during the

load process, but the “PERSISTENT” variables retain their

value.

4 Operation

4.4 Programs and project

38 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

4.4.2 General information on RETAIN PERSISTENT
The data of variables declared as RETAIN PERSISTENT are retained (in the

memory of the XC200) when a new program is loaded via MMC/SD or

CODESYS as long as the following conditions are fulfilled:

� A boot project must be created for the loaded program.

� The names of the variables of the loaded program and the new program

must be identical.

� The data types of the variables of the loaded program and the new

program must be identical or interconvertible.

The following always apply:

The data for all standard data types will be used 1:1 in the new program.

Strings may be truncated depending on the declared string length.

If different data types are assigned to the variable names in the new

program, the data is converted automatically by the operating system of the

XC200 when the program is loaded.

Normally zeros are filled depending on type (SINT ￫ DWORD) or the higher

bytes are truncated (DWORD ￫ BYTE). However, there is some data that is

not convertible, e.g. (WORD ￫ UINT). The result for this is always ZERO.

4 Operation

4.4 Programs and project

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 39

The following table shows the conversions:

RETAIN PERSISTENT data is deleted if

� the new program does not contain identical variable names,

� the “Full reset” command is executed,

� the battery was removed.

4.4.3 Storing and deleting the boot project
XC-CPU201

1. Save boot project on MMC

▶ Click on “Resources ￫ PLC Browser“ folder and enter the command

copyprojtommc.

The boot project is stored on the MMC in the subdirectory “project” under

the name “Default.prg”. A file is also created with the name “Default.chk”.

The Browser commands filecopy or filerename can be used to copy the boot

project (e.g. for a backup copy) and change the name of the file. In the

CODESYS software, however, only the boot project with the name

“Default” is active.

2. Delete boot project on MMC

Click “Resources” ￫ PLC Browser and enter the following command for

the XC-CPU201-EC256K:

Variable names and data types in the PLC memory (Src)

rp_typN N = 1..11 1..11 1..11 1..11 1..11 1..11 1..11 1..11 1..11 1..11 1..11

N = Type SINT INT ENUM DINT BYTE USINT WORD UINT DWOR UDINT REAL LREAL

V
ar

ia
bl

e
na

m
es

 a
nd

 d
at

a
ty

pe
s

in
 t

he
 M

M
C

 p
ro

gr
am

 (D
es

t)

1, 11 SINT = X X X X X X X X X X X

2 INT X = 0 X X X X X X X X X

ENUM X 0 = X X X X X X X X X

3 DINT X X X = X X X X X X X X

4 BYTE X X X X = 0 0 0 X X X X

5 USINT X X X X 0 = 0 0 X X X X

6 WORD X X 0 X X X = 0 X X X X

7 UINT X X 0 X X X 0 = X X X X

8 DWORD X X X X X X X X = 0 X X

9 UDINT X X X X X X X X 0 = X X

10 REAL X X X X X X X X X X = X

LREAL X X X X X X X X X X X =

Program sections 1 2 3 4 5 6 7 8 9 10 11

rp = RETAIN PERSISTENT

X = Conversion executed. The data is adapted to the new data type (from MMC program).
Preceding zeros are added or or higher bytes are truncated

= No conversion required. Data is identical.

0 = Conversion result is ZERO.

1..11 Blue = Variable names different, but of same type (PLC program)

1.11 yellow = Variable names identical to 1.11 blue, but different type (MMC program)

filedelete \\disk_mmc\\MOELLER\\XC-CPU201-EC256K-8DI-6DO\\ project\\default.prg

4 Operation

4.4 Programs and project

40 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

XC-CPU-202:

1. Save boot project on MMC

Click on the folder “Resources l PLC Browser” and enter the copyprojtommc

command.

The boot project is stored on the MMC in the subdirectory “project” under

the name Default.prg. Furthermore a Default.chk file is generated.

You can copy the boot project with the browser commands filecopy or

filerename (e.g. as a backup copy) and change the name of the file. In the

CODESYS software, however, only the boot project with the name

“Default” is active.

2. Save boot project on MMC

Click on the folder “Resources l PLC Browser” and enter the copyprojtommc

command.

The boot project is stored on the MMC in the subdirectory “project”

under the name Default.prg. Furthermore a Default.chk file is generated.

You can copy the boot project with the browser commands filecopy or

filerename (e.g. as a backup copy) and change the name of the file. In the

CODESYS software, however, only the boot project with the name

“Default” is active.

3. Delete boot project on SD/MMC

Click on the folder “Resources ￫ PLC Browser” and enter for the

XC-CPU202 the following command:

4. Delete boot project on USB stick

Click on the folder ‹Resources ￫ PLC Browser› and enter for the

XC-CPU202 the following command:

filedelete \\disk_mmc\\CONTROL\\XC-CPU202-EC4M-8DI-6DO\\project\\default.prg

filedelete \\disk_usb\\CONTROL\\XC-CPU202-EC4M-8DI-6DO\\project\\default.prg

4 Operation

4.5 Updating the operating system

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 41

4.5 Updating the operating system

With the XC200 it is possible to replace the operating system with the latest

version. Eaton offers the latest operating system version on the Internet at:

http://www.eaton.com/moeller ￫ Support

4.5.1 XC-CPU201

4.5.1.1 Transferring the operating system from the PC to the XC-CPU201

Procedure:

▶ Establish a serial connection via the RS232 interface of the PC with the

XC201. Information on this is provided in the sections “Connect PC” on

Page 26 and “Connection set-up PC – XC200” on Page 70.

▶ Activate in the CODESYS software the “Other Parameters” tab in the

“PLC Configuration” window and click on the “Start” button.

Figure 23:Updating the operating system of the XC-CPU201

The “Download Tool” window opens.

￫ If you transfer a current operating system to an older hardware

version, it is possible that not all functions of the operating

system will be supported by the hardware.

￫ When an operating system is loaded onto the PLC, the existing

operating system and user program will be deleted!

￫ The Baud rate is set to a fixed value of 115200 Bit/s for loading

the operating system.

http://www.eaton.com/moeller

4 Operation

4.5 Updating the operating system

42 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

▶ Click on the “Open” button and enter the path in which the update of

the operating system is located.

Figure 24:Selecting the operating system for XC-CPU201

▶ Opening of the operating system file to be transferred.

The following window appears:

Figure 25:Download of the XC-CPU201 operating system

4 Operation

4.5 Updating the operating system

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 43

▶ Click on the “Download to PLC” button.

The “Connecting to target PLC” window entry appears. “Please reboot

target now.”

▶ Switch off the control voltage of the XC-CPU201 and wait a few

seconds. This will ensure that the residual voltage is discharged.

▶ Switch the control voltage of the XC-CPU201 back on.

The transfer of the operating system into the XC-CPU201 is started.

It can take a few minutes. Please observe the signal states of the operating

LEDs:

The read SF LED is lit during the transfer. When the transfer display shows

100 %, the SF LED goes out after a short delay. It will light up later after

approx. 1 minute and the green RUN/STOP LED flashes. The waiting time

depends on the programming of the internal flash memory (comparable with

the booting of a PC).

Further inputs appear on the download window. The progress of the

download is also indicated by the status bar on the transfer field.

Please do not engage in the download process until the green LED flashes

and “Ready for operating system transfer” appears for a second time on the

download window. The download is only complete after both attributes have

appeared.

Figure 26:Download of the XC-CPU201 operating system ended

▶ End the download with the “Close” button.

4 Operation

4.5 Updating the operating system

44 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

4.5.1.2 Transferring the operating system from the PC to the MMC of the XC-CPU201
This is only possible via an Ethernet connection. The XC-CPU201 must

contain an operating system from version 01.03.00 or higher.

After the transfer, the operating system is located in the directory:

disc_mmc\moeller\XC-CPU201

PC ￫ MMC

The process operates analog to the transfer of the operating system from

the PC to the PLC. Simply click on the button “Transfer to MMC” (see

Figure 25).

MMC ￫ PLC

If the operating system of an XC-CPU201 is to be updated via the MMC,

the controller must have an operating system from version 01.03.00. The

operating system is updated during the startup procedure.

4.5.1.3 Deleting the operating system/boot project from the MMC of the XC-CPU201
You can delete the operating/boot project system from the PC, e.g. with

Internet Explorer.

▶ Establish a connection to the XC-CPU201 via the

default address ftp://192.168.119.200
▶ Open the disc_mmc\moeller\XC-CPU201 directory.

All the operating system files are stored in this directory and can be deleted

there.

4 Operation

4.5 Updating the operating system

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 45

4.5.2 XC-CPU202
The following description (firmware update) applies to version 2.4.13 and

higher (target firmware version).

The operating system of the XC-CPU202 is updated inside the XSOFT-

CODESYS-2 programming system.

Procedure:

▶ Establish a serial connection via the Ethernet interface of the PC with the

XC202.

Information on this is provided in ￫ Section 3.4.6, “Connect PC”,

page26 and ￫ Chapter 6, “Connection set-up PC – XC200”, Page 70.

▶ Go to the “PLC Configuration” window in XSOFT-CODESYS-2 and open

the “Firmware” tab.

Figure 27:“PLC configuration” window

▶ Click on the “Start” button (under “Update operating system”).

▶ Select the firmware file for the XC202 and click on the “Open” button.

▶ Click on “Next” to start the Setup Wizard.

▶ Select the “FTP installation” option and then click on “Next”.

Figure 28:“FTP installation” window

▶ Enter the PLC's IP address and click on “Next”.

Note: The default network setting will be: IP address: 192.168.119.202

4 Operation

4.5 Updating the operating system

46 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

Figure 29:FTP parameters

▶ Select the “XC202” device type and click on “Next”.

▶ Select the “PLC operating system“ component and click on “Next”.

▶ Click on “Install” to start downloading the firmware.

▶ Wait until the window shows a message saying “Update finished”.

Then close the window with “RETURN”.

▶ Click on “Done” to exit the Setup Wizard.

The update process when using removable media or a local directory

(￫ Figure 28, page 45) is similar to that for FTP installation.

Procedure:

▶ Plug the USB flash drive or SD card into the computer.

▶ Go to the “Setup - TargetFirmwareWinCE” (a fig. 28) window and

select “Install using removable media”.

▶ Select the removable media directory and click on “Next”.

▶ Select the “XC202” device type and click on “Next”.

▶ Select the “PLC operating system” component and click on “Next”.

▶ Click on “Install” to start downloading the firmware.

▶ Click on “Done” to exit the Setup Wizard.

The firmware files will be found in a directory on the removable medium

called CONTROL/XC-CPU202.

▶ Plug the USB flash drive or SD card into the XC-CPU202.

The system will check whether there is a different operating system on the

removable medium. If one is found, the system will start updating the

firmware. When this occurs, the RUN/STOP (green) and SF (red) LEDs will

flash alternately.

4 Operation

4.5 Updating the operating system

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 47

￫ If you are updating a 01.00.xx firmware version to a 2.4.xx

firmware version, the filesystem for the local “disk_sys”

memory will be changed. This change may take up to 10

minutes.

The XC-CPU202's RUN/STOP (green) and SF (red) LEDs will

flash alternately when the system is writing to the PLC's

internal memory.

￫ The new firmware version will not be enabled until the PLC is

restarted.

NOTICE

If you are updating a 01.00.xx firmware version to a 2.4.xx

firmware version, the filesystem will be replaced. All data stored

on the local “disk_sys” memory (PLC program / registry

settings / your own data) will be deleted.

This data will not be deleted if you are updating from a 1.00.xx

to another 1.00.xx firmware version or from a 2.4.xx to another

2.4.xx firmware version.

5 Program processing, multitasking and system times

5.1 Task configuration

48 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

5 Program processing, multitasking and system times

5.1 Task configuration
Processing of the project can be controlled via tasks. Each task can be

assigned with a range of programs which should be run during execution of

the task..

The task is defined by a name, a priority and a type which defines under

which conditions a task starts. Task condition and priority determine the

sequence in which the tasks are to be processed.

You can set “Cyclic” or “Event-triggered” as the task condition. A cyclical

task is restarted after the set interval time has elapsed. An event-triggered

task is only started when the event occurs. You can also link system events

such as “Start”, “Stop” or “Reset” with the execution of a program.

The task priorities can be parameterized with a value from 0 to 31 where 0 is

the highest priority and 31 is the lowest priority.

In principle the output image is written onto the physical outputs before

every task is called and the map is read by the inputs (updating of the input/

output map). The task is executed thereafter. In addition, all system activities

are carried out before or after the task call. This includes for example,

communication with the CODESYS or Online changes.

Updating of the input/output image by multiple tasks is described in the

section “Multitasking” on Page 52.

All IEC tasks, including those with the highest priority can be interrupted by

an interrupt or an event controlled task.

Time monitoring (Watchdog) can be activated for each task.

At the end the control specific settings are explained on the basis of an

example.

￫ For a detailed task configuration description, please refer to the

manual for programming PLCs with CODESYS.

5 Program processing, multitasking and system times

5.1 Task configuration

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 49

Creating task (example)

First create the cyclic task “Basic” with the assigned program “Basic_prog”.

Then you can add the event controlled task “Param” with the program

“Param_prog”. In the program “Basic_prog” an event is programmed which

invokes the “Param” task.

The following steps are necessary in order to create a task:

� Add a task

� Define the program call

� Create the program

5.1.1 Creating the “Basic” cyclic task
▶ Open the “Task configuration” folder in the “Resources” tab

▶ Click with the right mouse button on the “Task configuration” folder and

select the “Add task” command in the popup menu.

▶ Enter in the Name field a name such as “Basic”.

▶ Set the task in the dialog as in Figure 30.

▶ Click on the “Task configuration” folder and the configuration is

accepted.

Figure 30:Parameterization of the cyclic task

5.1.1.1 Define the program call
With the program call you define which program is to be called with the task

“Basic”.

▶ Click with the right mouse button on the clock symbol of the “Basic”

task created beforehand and select the “Program call” command in the

popup menu.

▶ Enter the name “Basic_prog” in the “Program call” window.

▶ Click on the button at the end of the input field and confirm the program

name in the “Entry help” window.

5 Program processing, multitasking and system times

5.1 Task configuration

50 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

5.1.1.2 Writing a program
▶ Change over to the “Global Variables” tab and click with the right mouse

button on the default program element PLC_PRG and select the

“Rename object” command. Designate the element as “Basic_Prog”.

▶ You can now enter a program. In the program example (Figure 31) the

variable “count” is incremented.

On counter status = 9, a = TRUE.

Figure 31:Creating a program element for a cyclic task

5.1.2 Creating event controlled task “Param” and defining the program call
The procedure corresponds to the creation of a cyclic task.

▶ Create a task of the “event controlled type” with the name “Param” in

accordance with Figure 32.

▶ Define the Boolean variable “a” as the result of the event.

▶ Enter the program call “Param_prog”.

Figure 32:Creating an event controlled task

5 Program processing, multitasking and system times

5.2 System events

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 51

5.1.2.1 Writing a program
▶ Change over to the “Modules” tab and insert an object (POU) with the

name “Param_prog”.

▶ You can now enter a program. The program example Param_prog

(Figure 33) increments the variable “value” by the value 1.

The Param_prog is processed if the variable a = TRUE.

Figure 33:Programmed element for event controlled task

5.2 System events
A POU can be called with the help of a system event. It can be used when

the PLC is started to initialize modules with parameters. The system events

are independent of the task!

5.2.1 Assigning a POU to a system event
▶ Activate under System events in the task configuration the event, e.g.

Start and enter the name of the POU (e.g. Power_prog) that is to be

processed.

Figure 34:Assigning the POU to a system event

▶ Change over to the “Resources ￫ Modules” and add the object (POU)

“Power_prog”.

▶ Program the application.

5 Program processing, multitasking and system times

5.3 Multitasking

52 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

Figure 35:Programming a POU

5.3 Multitasking
The XC200 run time system is a multitasking system. This means that

multiple tasks can be run at the same time (in parallel).

5.3.1 Updating the input/output images
If the local and central inputs/outputs are programmed in several tasks, an

update (refresh of the input/output level) of the input/output image is

performed according to special rules:

The system starts searching the first task for programmed inputs, e.g. after

the start. The term “First task” is the first task in the task configuration,

irrespective of priority and the cycle time of the individual tasks. The name of

the first task “Prog1” is in the Figure 37. If the system detects an input that

is connected by the configuration with an input module, e.g. XIOC-16DI, all

the inputs of this module are updated in the image. If other inputs are

present in this task that are assigned to other modules, the inputs of these

modules are also updated (module update procedure). If, for example, the

inputs %IX6.0 and %IX7.1 of input module 1 are addressed by different

tasks, the inputs of this module are only updated from the first task.

￫ Further information concerning the system events can be found

in the online help of the programming system.

5 Program processing, multitasking and system times

5.3 Multitasking

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 53

5.3.1.1 Examples
The examples are based on the following configuration:

Figure 36:XC200 configuration

The task configuration appears as follows:

Figure 37:Task configuration for the examples

Example 1:

Table 6: Task details for example 1

In the first task “Prog1”, the inputs %IX1 of input module 6.0 and %IX1 of

input module 8.3 are programmed in the program “progtes(2)”. Before the

start of the first task “Prog1” the inputs of these modules are updated.

In the second task “Prog2” the input %IX7.1 of input module 1 is

programmed in the program “progtes(2)”. Before the start of the 2nd task

“Prog2” the inputs of this input module are not updated, as this only occurs

in the 1st task.

Task name Priority Cycle time

Prog 1 2 50 ms

Prog 2 1 10 ms

XC200
CPU

6.0

7.7

8.0

9.7

2.0

3.7

output module 1

input module 2

input module 1

central I/Olocal I/O

5 Program processing, multitasking and system times

5.3 Multitasking

54 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

Figure 38:Program for example 1

Example 2:

Table 7: Task details for example 2

In example 2 in the first task the input 6.1 is programmed and in the second

task the input 8.4 and output 3.4 is programmed. At the start of the first task

an update of the inputs 6.0 to 7.7 of input module 1 occurs.

At the start of the second task, the inputs 8.0 to 9.7 of input module 2 follow

as well as the outputs 2.0 to 3.7 of output module 1.

Figure 39:Program for example 2

Task name Priority Cycle time

Prog 1 2 50 ms

Prog 2 1 20 ms

5 Program processing, multitasking and system times

5.4 Task monitoring with the watchdog

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 55

5.3.1.2 Creating a task with consistent I/O
Avoid access to the physical outputs from several tasks. In order to

guarantee a clear PLC sequence, create for the local/central inputs/outputs a

task in which all inputs are copied in global variables and at the end of the

interval all outputs of global variables are written to the output module (I/O

update task). The I/Os are consistent (data integrity) within this task. The

global variables can then be used instead of the I/Os in other tasks.

5.3.2 Behavior of the CAN stack with multitasking
A CAN stack call occurs before every task in which the CAN variables are

used. A multitasking system can contain individual tasks which can be

interrupted as required according to their priority. This behavior can lead to an

inconsistency in the CAN stack when it is called by a higher priority task,

before the CAN stack has been processed by the interrupted task.

5.4 Task monitoring with the watchdog
The processing time of a task can be monitored in terms of time required

using a watchdog. The following applies for defining the monitoring time:

Processing time < Interval time of the task < Watchdog(time)

If the processing time exceeds the interval time, the end of the second

interval time is awaited until the task is restarted.

￫ Watchdog deactivated

The watchdog interrupts the program processing if the processing time of

the task exceeds the watchdog time.

Furthermore, the frequency (sensitivity) can be set, which the number of

exceeds allows. In this case the outputs of the PLC are switched off and the

user program is set to the “Halt” state. Afterwards, the user program must

be reset with RESET.

￫ On the XC200 PLC a maximum of 10 tasks are possible.

The parameterization of a task as “free wheeling” is not

supported.

Note with parametric programming of the watchdog time

that the POU called with the interrupt service routines,

extends the task run times accordingly.

￫ The CAN stack of the XC200 does not have multitasking

capability!

Only a single user task in which CAN variables are used

can be created.

￫ If the watchdog is deactivated, task monitoring does not

occur!

5 Program processing, multitasking and system times

5.4 Task monitoring with the watchdog

56 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

5.4.0.1 Watchdog configuration
You can select the following settings in the task configuration:

� Watchdog on/off

� Watchdog time

� Watchdog sensitivity.

These settings apply for time controlled and event controlled tasks.

Watchdog active

The watchdog is started at the commencement of every processing cycle

and reset again at the end of the task.

If the processing time is longer than the watchdog time (sensitivity = 1) –

e.g. with a continuous loop in a program – the watchdog becomes active.

If the processing cycle is shorter than the watchdog time, the watchdog is

not activated.

The triggering of the watchdog continues to be dependant on the watchdog

sensitivity. The watchdog sensitivity determines when the watchdog will be

triggered, after the watchdog time has been exceeded by a determined

number of consecutive occasions.

The watchdog is triggered:

� immediately when the watchdog time is exceeded with a watchdog

sensitivity of “1”,

� immediately after the “x”th consecutive time that the watchdog time is

exceeded with a watchdog sensitivity of “x”.

For example, a task with a watchdog time of “10 ms” and a watchdog

sensitivity of “5” will end at the latest after 5 x 10 ms = 50 ms.

 CAUTION

If you want to parameterize a task without a Watchdog or want

to deactivate the Watchdog at a later time, all the outputs which

have been accessed up to this time can continue to remain

active. This is the case for example, when the task can‘t be

ended due to a continuous loop (programming error) and/or

missing end condition (stepping condition). The outputs

continue to retain their “High potential” until the operating

mode is changed from RUN to STOP or until the control voltage

for the outputs is switched off.

￫ The following rule applies for definition of the watchdog

time with several tasks: each watchdog time must be

longer than the sum of task interval times.

5 Program processing, multitasking and system times

5.4 Task monitoring with the watchdog

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 57

5.4.0.2 Example: Watchdog active
The interaction of interval time (IZ), task run time (TZ), watchdog time (WT)

and watchdog sensitivity are illustrated by the following configuration

example:

� Watchdog on

� Watchdog time (WT) = 15 ms

� Watchdog sensitivity = 2

The interval time (IZ) of the task is 10 ms.

Variant a: The watchdog is not triggered as the task time always remains

below the defined watchdog time.

Variant b: The watchdog is triggered 15 ms after commencement of the

second interval , as both times are longer than the defined watchdog

time and occur consecutively.

Variant c: The watchdog is triggered 15 ms after commencement of the

second consecutive task, which is longer than the defined watchdog time.

Variant d; Endless loop: The watchdog is triggered , because the task

time takes longer than the watchdog time multiplied by the watchdog

sensitivity (2 x 15 ms = 30 ms).

Figure 40:Watchdog active, multiple tasks with differing priority

5.4.0.3 Watchdog deactivated
The cycle time of a task is not monitored when the watchdog is deactivated.

If a task has not ended within the preselected interval time when the

watchdog is deactivated, this task will not be called or started in the

following cycle. A task is only started again if it has been ended in the

previous cycle.

TT < WT TT < WT TT < WT

TT > WT TT = WT

TT > WT TT < WT TT < WT TT > WT TT = WT

IZ IZ IZ IZIZ IZ IZ IZ IZ IZ

a TT < WT

b TT > WT

c TT k WT

d TT > WT
(continuous

loop)

TT > 2 x WT

IZ = 10 ms

5 Program processing, multitasking and system times

5.5 Direct peripheral access

58 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

5.4.0.4 Example: Watchdog deactivated
The interval time (IZ) is 10 ms.

Variant a: The interval time (IT) of a task was set to 10 ms.

The actual task time (TT) is 15 ms. The task is started on the first call but is

not terminated before the second cycle. Therefore, the task is not started

again in the second cycle. Only in the third cycle – after 20 ms – is it possible

to restart the task. The task does not run every 10 ms but rather only at a

time interval of 2 x 10 ms.

Variant b: The running cycle is not ended.

Figure 41:Watchdog deactivated

5.4.1 Multiple tasks with the same priority
You can assign several tasks with the same priority. The tasks are split

according to the “Time Slice” principle and are practically executed

simultaneously as part intervals (Round Robin).

5.5 Direct peripheral access
The “Direct peripheral access” function enables access directly to the local

and central input and output signals of the control. The I/O access does not

occur via the input/output image. The local and central input and output

signals you can find the input and output signals of the CPU and the centrally

expanded XC-200 control with the XIOC signal modules. XIOC signal

modules which can be integrated via a bus system cant be accessed via the

“Direct peripheral access”.

Addressing is dependent on the slot number “0 to 15” of the signal modules.

Further differentiation within the slot exists and relates to bit number “0 to

max. 63” of the Inputs/Outputs.

Depending on the functionality of the XIOC signal modules, access occurs as

a bit/word or read/write operation. The access parameter indicates the

Table 8.

The inputs/outputs which are required for “Direct peripheral access” are

physically connected in the same manner as normal inputs/outputs.

TZ > IZ

IZ IZ IZ IZ IZ

a TZ > IZ

b TZ > WZ
(endless loop)

TZ f WZ

TZ > IZ TZ > IZ

IZ = 10 ms IZ

5 Program processing, multitasking and system times

5.5 Direct peripheral access

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 59

Table 8: “Direct peripheral access” overview

Card I/O bit access I/O word access I/O slot

Read Write Parameters/module Read Write Parameters/
module

Parameter

XC-CPU201-EC256K-8DI-6DO ? ? DI: 0 to 7, DO: 0 to 5 ? ? 0 0

XC-CPU201-EC256K-8DI-6DO-XV ? ? DI: 0 to 7, DO: 0 to 5 ? ? 0 0

XC-CPU201-EC512K-8DI-6DO ? ? DI: 0 to 7, DO: 0 to 5 ? ? 0 0

XC-CPU201-EC512K-8DI-6DO-XV ? ? DI: 0 to 7, DO: 0 to 5 ? ? 0 0

XC-CPU202-EC4M-XV ? ? DI: 0 to 7, DO: 0 to 5 ? ? 0 0

XIOC-8DI ? – 0 to 7 ? – 0 1 to 15

XIOC-16DI ? – 0 to 15 ? – 0 1 to 15

XIOC-8DO – ? 0 to 7 – ? 0 1 to 15

XIOC-16DO – ? 0 to 15 – ? 0 1 to 15

XIOC-16DO-S – ? 0 to 15 – ? 0 1 to 15

XIOC-12DO-R – ? 0 to 11 – ? 0 1 to 15

XIOC--16DX – ? 0 to 15 ? ? 0 1 to 15

XIOC-8AI-I2 – – – ? – 0 to 7 1 to 15

XIOC-8AI-U1 – – – ? – 0 to 7 1 to 15

XIOC-8AI-U2 – – – ? – 0 to 7 1 to 15

XIOC-4T-PT – – – ? – 0 to 3 1 to 15

XIOC-4AI-T – – – ? – 0 to 3 1 to 15

XIOC-2AO-U1-2AO-I2 – – – – ?✓ 0 to 3 1 to 15

XIOC-4AO-U1 – – – – ? 0 to 3 1 to 15

XIOC-4AO-U2 – – – – ? 0 to 3 1 to 15

XIOC-2AO-U2 – – – – ? 0 to 1 1 to 15

XIOC-4AI-2AO-U1 – – – ? ? AI: 0 … 3/
AO: 0 … 1

1 to 15

XIOC-2AI-1AO-U1 – – – ? ? AI: 0 … 1/
AO: 0

1 to 15

XIOC-1CNT-100KHZ – – – – – – 1 to 15

XIOC-2CNT-100KHZ – – – – – – 1 to 15

XIOC-2CNT-2AO-INC – – – ? ? 1 to 15

XIOC-NET-DP-M – – – – – – 1 to 3

5 Program processing, multitasking and system times

5.5 Direct peripheral access

60 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

5.5.1 ReadBitDirect
A bit of an input module can be read directly with this function. The state of

an input bit is stored in the variables, which indicate to the parameterized

pointer “ptr_xValue”. The pointer variable will not be changed when a fault

occurs during processing.

Figure 42:Function “ReadBitDirect”

5.5.1.1 Parameters of the “ReadBitDirect” function

5.5.2 ReadWordDirect
A word of an input module can be read directly with this function. The state

of an input word is stored in the variables, which indicate to the

parameterized pointer “ptr_wValue”.

The pointer variable will not be changed when a fault occurs during

processing.

5.5.2.1 Parameters of the “ReadWordDirect” function

uiSlot Slot number of the signal module.
For possible parameters see Table 8 on Page 59.

uiBit Bit position within the input value of the signal module.
For possible parameters see Table 8 on Page 59.

ptr_xValue Pointer to the variable value

ReadBitDirect Display of the failure code, see Table 9 on Page 63

uiSlot Slot number of the signal module.
For possible parameters see Table 8 on Page 59.

uiOffset Word offset within a signal module. For possible parameters see Table 8 on Page 59

ptr_wValue Pointer to the variable value

ReadWordDirect Display of the failure code, see Table 9 on Page 63

5 Program processing, multitasking and system times

5.5 Direct peripheral access

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 61

5.5.3 ReadDWordDirect
With this function you can directly read a double word of an input module or

an input function such as a counter value of the 32 bit counter. The state of

the double word is stored in the variables, which point to the parameterized

pointer “ptr_dwValue”.

The pointer variable will not be changed when a fault occurs during

processing.

5.5.3.1 Parameters of the “ReadDWordDirect“ function

5.5.4 Write…Direct
Fundamentally, the outputs of the PLC should only be modified by a task or

an interrupt. Please always work within interrupts with direct access

functions as the events do not have an image.

If outputs from various tasks or events are modified in an application, the

following rules should be observed:

� If an output bit with the WriteBitDirect function is processed with an

event (interrupt or event task), the “Q-WORD” output word in which the

bit is situated, may not be referenced to any other task!

The other bits of the output word may still be assigned in other tasks as

the “Q-BOOL” output bit.

� If an output bit is modified for fast processing with the WriteBitDirect
function, and this bit is also processed at another location (task, event or

interrupt), the WriteBitDirect function must be used at all locations

(no Q-BOOL declaration and no referencing).

5.5.4.1 Example
Output variable declaration:

Referencing (assignment in the application):

uiSlot Slot number of the signal module.
For possible parameters see Table 8 on Page 59

uiOffset Word offset within a signal module.
For possible parameters see Table 8 on Page 59

ptr_dwValue Pointer to the variable value

ReadDWordDirect Display of the failure code, see Table 9 on Page 63

Q-BOOL (e.g. Qbit3) AT%QX1.2:BOOL;

Q-WORD (e.g. Qword0) AT%QW0:WORD;

Qbit3:=TRUE;

Qword0:=16#Test;

5 Program processing, multitasking and system times

5.5 Direct peripheral access

62 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

5.5.5 WriteBitDirect
A bit of an output module can be controlled directly with this function. The

respective output image is refreshed in addition to the physical output.

Writing to the output is possible and not subject to limitation, for only the

local 6 outputs of the XC200-CPU with slot “0”.

Figure 43:WriteBitDirect function

5.5.5.1 Parameters of the “WriteBitDirect” function

5.5.6 WriteWordDirect
A word of an output module can be written directly with this function. At the

time of access, the respective output image is also refreshed in addition to

the physical output.

A further refresh of the output word occurs at the end of the cycle.

5.5.6.1 Parameters of the “WriteWordDirect” function

uiSlot Slot number of the signal module.
For possible parameters see Table 8 on Page 59.

uiBit Output bit within the signal module.
For possible parameters see Table 8 on Page 59.

xValue The pointer points to the variable in which the value for the output bit is located.

WriteBitDirect Display of the failure code, see Table 9 on Page 63

uiSlot Slot number of the signal module.
For possible parameters see Table 8 on Page 59.

uiOffset Output word within a signal module.
For possible parameters see Table 8 on Page 59.

wValue The pointer points to the variable in which the value for the output word is located.

WriteWordDirect Display of the failure code, see Table 9 on Page 63

5 Program processing, multitasking and system times

5.6 Operating states

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 63

5.5.7 GetSlotPtr

5.5.8 Failure code with direct peripheral access
Verify all functions as far as possible for the validity of the call parameters.

Verification is undertaken to determine if the access occurs in dependence

on the parameterized signal module and the physical existence of the signal

module. If a fault is determined, access is not undertaken and a failure code

is output. The data fields for the value transfer remain unchanged. The

DisableInterrupt and EnableInterrupt functions do not generate a failure code.

The following return values are possible:

Table 9: Failure codes with direct peripheral access

5.6 Operating states
The following overview provides you with the state definitions for the CPU.

The LED indications for the various states are also shown.

Table 10: Definition of the states of the XC200 with LED display

￫ This function is not available!

IO_ACCESS_NO_ERROR: no error

IO_ACCESS_INVALIDE_SLOTNUMBER Slot = 0 or greater than 15

IO_ACCESS_INVALIDE_OFFSET BitWord offset is too large

IO_ACCESS_DENIED Invalid access, e.g. write access to input module, read access to
output module or access to non-available address range
(offset too large)

IO_ACCESS_NO_MODULE No module available at the parameterized slot

IO_ACCESS_ INVALIDE _Buffer No or incorrect pointer to the output variables

IO_ACCESS_ INVALIDE _Value Event is not “0” or “1” with WriteBitDirect

Status View Definition

RUN/STOP SF

Boot off
(flashes at
Start)

on The serial boot loader starts and boots and/or updates
the operating system. Windows CE is loaded from Flash
memory and copied in unpacked form into memory and
started.

Start operating
system

off
(flashes at
Start)

off Windows CE system start and system test are carried
out.
Start of applications
� HTTP-Server
� FTP-Server
� Telnet-Server
� PLC-Runtime
� Web Server

STOP flashes off PLC in STOP state

RUN on off PLC in RUN state

5 Program processing, multitasking and system times

5.7 Web visualization

64 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

5.7 Web visualization
A description of the web visualization interface can be found in section 7.4,

“Web visualization”, of the manual for programming PLCs with CODESYS.

The XC-CPU201 specific call for the web visualization is as follows:

http:\\192.168.119.200:8080/webvisu.htm

The XC-CPU202 specific call for the web visualization is as follows:

http:\\192.168.119.202:8080/webvisu.htm

Prerequisite: You have not changed the default setting of the IP address.

If you have changed the IP address, replace the IP address in the “http:\\...”

call with the address you have selected.

5.8 Limit values for memory usage
The data memory of the XC200 is divided into memory segments for data.

The segment sizes are shown in Figure 44. The global data utilizes multiple

segments. The required amount can be specified to suit the size of the

loaded program.

The segment size for the different control types can be found under

‹Resources l Target Settings l Memory Layout›:

RUN l STOP flashes on Error in RUN state “cycle time exceeded”.
The system is set to the Halt state. A “Warm Reset”
command is automatically executed.
The occurrence of a fault will be protocolled in the “Error
List”. (read with browser command geterrorlist)

NOTREADY flashes on No start possible. A major fault prevents a start (see
“Error List”) e.g.:
� No program loaded
� Field bus error
� Configuration not OK
� Checksum error
� …

ShutDown flashes flashes Wait for the supply voltage to disconnect
(after shutdown browser command)

Status View Definition

RUN/STOP SF

NOTICE

A max. of 10 clients may access the XC200!

5 Program processing, multitasking and system times

5.8 Limit values for memory usage

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 65

Example:

Figure 44:Segment size of the XC-CPU201-EC256k

The hexadecimal values of the other PLC types must be converted to

decimal values.

In order to ensure that you use the available memory for the global data in an

optimum and efficient manner, we recommend that you make the following

settings when a new project is being created:

The number of segments is set to 1 by default.

The number of segments is changed as follows:

▶ Choose ‹Project ￫ Options ￫ Conversion Options› and then the

Number of data segments field, and enter the appropriate number of

segments shown above for the selected controller type.

Control Type Number of data
segments (global)

XC-CPU201-EC256K 2

XC-CPU201-EC512K 4

XC-CPU202-EC4M 1

5 Program processing, multitasking and system times

5.9 Addressing inputs/outputs and markers

66 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

Figure 45:Memory management: Change the number of data segments

5.9 Addressing inputs/outputs and markers
If you open the PLC configuration of a new project, you will receive the

current view of the default settings of the addressing. In this setting the

addresses are automatically assigned and address conflicts (overlaps) are

reported.

Figure 46:Default setting of the addressing

If you add a module to the PLC in the configurator, the configurator will

assign this module with an address. Further modules are assigned with the

next addresses in ascending order. You can also assign the addresses freely.

However, if you access the “Automatic calculation of addresses” function

later, the addresses are shown in reassigned ascending order.

5.9.1 Activate “Automatic addresses”
The addresses are automatically assigned or modified if a module is changed

or added. This can occur with a centrally assigned module as well as a

module which is a component of a decentral PROFIBUS-DP slave or CAN

station.

5 Program processing, multitasking and system times

5.9 Addressing inputs/outputs and markers

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 67

If you add a module, the addresses of all the subsequent modules

(independently of the line) are offset by the address value of the added

module, and the added module is assigned with an address. Modules which

are located in the configuration before the added module are not changed.

If you remove the tick in the “Automatic calculation of addresses” checkbox,

the addresses remain unchanged with modifications/expansions.

5.9.2 “Activating Check for overlapping addresses”
If the check for overlapping addresses is activated, addresses which are

assigned twice will be detected and an error message is generated during

compilation. This setting should not be modified.

5.9.3 Uneven word addresses
If you assign an odd offset address (e.g. IB5) to a word addressable module

in the “Entry address” field, the next even word address (IW6) automatically

appears in the PLC configurator. This is completed automatically and is not

controlled by the “Check address overlap” setting.

Figure 47:Uneven address

5.9.4 Address range
Addresses can only be assigned within the valid ranges. The range details

can be found under ‹Target Settings ￫ Memory Layout l Size›.

The addresses are checked during compilation. It is essential to ensure that

the addresses of the configured module are used (referenced) in the

program. If the address exceeds the range, a fault is signalled.

Table 11: Address ranges

Control Input Output Marker

Size Max.
Byte
address

Max.
Word
address

Size Max. Byte
address

Max.
Word
address

Size Max.
Byte
address

Max. Word
address

[kByte] [kByte] [kByte]

XC101-64k 2 2047 2046 2 2047 2046 4 4095 4094

XC101-128k 4 4095 4094 4 4095 4094 8 8191 8190

XC101-256k 16 16383 16382 16 16383 16382 16 16383 16382

5 Program processing, multitasking and system times

5.9 Addressing inputs/outputs and markers

68 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

5.9.5 Free assignment or modification of addresses of input/output modules
and diagnostic addresses

Depending on the module, you can assign/modify the input, output and the

diagnostics(marker) addresses.

In order to make the modifications visible in the PLC configurator it is

necessary to click once on the PLC Configurator or to select another module

after the address has been edited. They will be accepted in all cases during

compilation.

5.9.6 Run “Automatic calculation of addresses”
With the “Automatic calculation of addresses” function which you can run

either via the context menu or the menu bar, all the respective addresses are

recalculated. If you are dealing with a bus master module, the calculation is

also carried out for the modules which are constituents of the slave on the

bus line. The freely entered addresses of subordinate modules are

overwritten when the address of a higher level module is calculated. If the

addresses have changed and you wish to implement the “Automatic

calculation of addresses”, you must first of all activate the change. Click first

of all on the node to drop down the structure or set the cursor in the PLC

Configuration field and press the left mouse button.

If you mark the “Configuration XC-CPU...” text and call the “Automatic

calculation of addresses”, all the addresses are recalculated

XC201-256k 4 4095 4094 4 4095 4094 16 16383 16382

XC201-512k 4 4095 4094 4 4095 4094 16 16383 16382

XC202-EC4M 4 4095 4094 4 4095 4094 16 16383 16382

Control Input Output Marker

Size Max.
Byte
address

Max.
Word
address

Size Max. Byte
address

Max.
Word
address

Size Max.
Byte
address

Max. Word
address

[kByte] [kByte] [kByte]

￫ Enter the addresses in an ascending order and in continuous

blocks.

5 Program processing, multitasking and system times

5.10 Diagnostics

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 69

5.10 Diagnostics

You can run diagnostics with the help of the diagnostics function block.

The following possibilities are available:

Type of diagnostics Function block Library Documentation

Inspection of the XIOC modules:
� Does the configuration of the hardware correspond with the

configurator?
� Is the module function OK?

Note:
These tests are undertaken once during switch on or after loading or start
of the program.

XDiag_SystemDiag xSysDiag.lib MN05010002Z-EN
(previously called
AWB2786-1456)

Inspection of the XIOC-NET-DP-M module and the stations on the DP line XDiag_SystemDiag
XDiag_ModuleDiag

XSysDiag.lib MN05010002Z-EN
(previously called
AWB2786-1456)

DiagGetState BusDiag.lib MN05002002Z-EN
(previously called
AWB2725-1452)

Inspection of the XIOC-NET-DP-S module XDiag_SystemDiag
XDiag_ModuleDiag

xSysDiag.lib MN05010002Z-EN
(previously called
AWB2786-1456)

DP slave provides the master with additional diagnostics data. XDPS_SendDiag xSysNetDPSDiag.lib MN05002002Z-EN
(previously called
AWB2725-1452)

6 Connection set-up PC – XC200

6.1 Connection set-up via RS 232 interface

70 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

6 Connection set-up PC – XC200

The connection between the PC and CPU can be established via:

� the RS232 interface

� the Ethernet interface

In this chapter you will get to know the settings to be made in the CODESYS

software.

6.1 Connection set-up via RS 232 interface
To establish a connection between PC and CPU, the two devices’

communication parameters must be the same.

� To match them, first adjust the PC’s communication parameters to the

CPU’s standard parameters settings to a section “Defining/changing

the PC’s communication settings”.

The CPU features the following standard parameters:

� After logging on the CPU parameters can be redefined (a section

“Changing the CPU’s communication settings”).

6.2 Defining/changing the PC’s communication settings
Define the communication parameters of the interface in the CODESYS

software. You can use either the COM1 or the COM2 port of the PC.

▶ Select menu point ‹Online ￫ Communicationsparameters›.

▶ Specify the port (COM1 or COM2 interface) a section “Changing

settings”

▶ Use the remaining settings as shown in Figure 48.

▶ Confirm the settings with OK.

▶ Log on to the PLC.

See also:
� Connect PC ￫ Page 26

Baud Rate 38400

Parity No

Stop bits 1

Motorola Byte No

￫ If you get an error message during login, the CPU’s default

settings have already been changed.In that case try a baud rate

of 57600 Bit/s.

6 Connection set-up PC – XC200

6.2 Defining/changing the PC’s communication settings

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 71

Figure 48:Defining the PC’s communication settings

From operating system version V01.03.xx of the XC-CPU201 the serial

(RS232) (Level 2 Route) communication channel can be selected and a target

ID can be defined. If you enter “0” for the target ID, communication is

implemented with the local PLC.

6.2.0.1 Changing settings
To change settings such as the baud rate or the port, do the following:

▶ Double-click the appropriate value, e.g. 38400.

The field is dimmed.

▶ Enter the desired value.

Double-click this field once more to choose the Baud rate, e.g. 57600 Bit/s.

6.2.1 Changing the CPU’s communication settings
▶ Select “PLC Browser” in the “Resources”.

▶ Select the “setcomconfig” browser command and add the required

baud rate after inserting a space.

▶ Acknowledge the selection with RETURN.

▶ Select the save registry browser command.

▶ Select the reboot browser command. After reboot has been completed,

the new baud rate is activated in the XC200.

Now access the CPU (e.g. by a login), you will receive the following fault

message:

Figure 49:Communications fault

In order to communicate with the CPU, you must adapt the communication

settings of the PC, a section “Defining/changing the PC’s communication

settings”.

￫ For more information on these communication settings, please

refer to the programming system's online help.

6 Connection set-up PC – XC200

6.3 Connection set-up with Ethernet

72 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

6.3 Connection set-up with Ethernet
After you have connected the PC with the CPU using a cable, select the

TCP/IP communication channel in the CODESYS software and enter the

IP address of the CPU. The XC-CPU201 has the default address

192.168.119.200, the XC-CPU202 has the default address 192.168.119.202.

The selection of the Baud rate of the Ethernet connection is performed in

Autosensing (detect) mode. Components with this feature automatically

recognize if it is a 10 or 100 MBit connection.

6.3.1 Selecting communication channel and address
▶ Access the menu with ‹Online ￫ Communication parameters›.

Figure 50:Channel selection

▶ Push the “New…” button.

▶ Select the overview of the communication channel TCP/IP (Level 2

Route) and change the name “local” e.g. to “Ethernet-Test”.

▶ Confirm with OK.

Figure 51:Enter the IP address

▶ Perform a double click on the “localhost” field and enter the default

address 192.168.119.200 or 192.168.119.202.

▶ Confirm your details, by first pressing on another field and then on OK.

Figure 52:Communication parameters with IP address

▶ Compile the program and log in.

6 Connection set-up PC – XC200

6.4 Scan/modify the IP address

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 73

6.4 Scan/modify the IP address
The setipconfig and getipconfig browser commands are available for modifying

and scanning the IP address (a section “Browser commands”on

Page 128).

Restart the XC200 after you have changed the IP address.

The DHCP function (DHCP = Dynamic Host Configuration Protocol) is not

activated.

Ensure that the IP address of the programming device (= PC) belongs to the

same address family as the PLC. This means that the IP address of the

programming device and the XC200 match in the following number groups:

6.4.0.1 Example 1
IP address XC200:192.168.119.xxx
IP address PC: 192.168.119.yyy

6.4.0.2 Example 2
IP address XC200:192.168.100.xxx
IP address PC: 192.168.100.yyy

The following conditions apply in examples 1 and 2:

� xxx is not equal to yyy,

� the addresses must be between the limits 1 and 254,

� the addresses must be part of the same address family.

If a connection is not established, the transfer route can be checked with the

“PING” function in order to ensure that the connection has not failed due to

a fault on the transmission path. The following steps are necessary:

▶ Open the DOS window via the “Start” field and the “Run” command.

▶ Enter “CMD” in the input field and confirm with OK.

You are presented with a window indicating a drive and a flashing cursor

behind the drive designator.

▶ For the example mentioned you would enter the following text:

ping 192.168.119.200 for XC-CPU201 or ping 192.168.119.202 for

XC-CPU202. Confirm this with OK.

If the routing is functioning correctly, you will receive a response indicating

the response time. Otherwise a time-out will indicate problems with the

connection set-up.

6 Connection set-up PC – XC200

6.4 Scan/modify the IP address

74 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

The following figure indicates the result of a correct connection set-up.

Figure 53:PING response with a correctly established Ethernet connection

7 Setting system parameters via the Startup.ini file

7.1 Overview

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 75

7 Setting system parameters via the Startup.ini file

7.1 Overview
System parameters independent of the project can be set by you and saved

on the memory card. They are compiled there to a Startup.ini file. The

memory card can also be plugged into other PLCs. The PLC accepts the

parameters during start up. The Startup.ini file is always created will all

controller parameters (￫ Table 12). The term Startup.ini file is generally

applicable. The file name of the Startup.ini file for the XC200 is

XCSTARTUP.ini.

7.1.1 Parameters in the Startup.ini file
Some parameters, e.g. such as the Baud rate of the COM interface have

already been entered by the system, to ensure that communication can take

place between the PC and PLC. The parameters can be adjusted later.

Table 12: Predefined default parameters in the XCSTARTUP.ini file

Table 13: Example: contents of the XCSTARTUP.ini file

TARGET=XC-CPU202

HOST_NAME=NoNameSet

IP_ENABLE_DHCP=01)

IP_ADDRESS=192168119202

IP_SUBNETMASK=255.255.255.0

COM_BAUDRATE=38400

CAN_ROUTING_CHANNEL=1

1) Note: The parameter IP_ENABLE_DHCP only exists on an XC-CPU202.

[STARTUP]

TARGET=XC-CPU202

to the Ethernet connection:

HOST_NAME=NoNameSet

IP_ADDRESS=192.168.119.200

IP_SUBNETMASK=255.255.255.0

IP_GATEWAY=

IP_DNS=

IP_WINS=

to the programming interface RS232:

COM_BAUDRATE=4800, 9600, 19200, 38400, 57600

to the CAN interface:

CAN1_BAUDRATE: 10, 20, 50, 100, 125, 250, 500

CAN1_NODEID=1-127

CAN_ROUTEID=1-127

CAN_ROUTING_CHANNEL=1

for addresses of the PROFIBUS slaves:

NET_DPS1_BUSADDRESS= (DP-S in Slot 1)

NET_DPS2_BUSADDRESS= (DP-S in Slot 2)

NET_DPS3_BUSADDRESS= (DP-S in Slot 3)

7 Setting system parameters via the Startup.ini file

7.2 Structure of the ini file

76 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

7.2 Structure of the ini file
An ini file is a text file with a defined data format. From a named section such

as [STARTUP], followed by an equals sign and the corresponding value. The

line is terminated with CR/LF (Carriage/Return).

Lines commencing with a semicolon are interpreted by the PLC as

comments and are ignored:

The parameters can be changed or created with a text editor if you insert the

memory card into the memory card slot of a PC.

� The file XCSTARTUP.ini is stored on the memory card of the XC-CPU201

in the directory:

disk_mmc\MOELLER\XC-CPU201-EC256K-8DI-6DO\PROJEKT
� The file XCSTARTUP.ini is stored on the memory card of the XC-CPU202

in the directory:

disk_mmc\CONTROL\XC-CPU202-EC4M-8DI-6DO-XV\PROJEKT

7.3 Creating the Startup.ini file
Generally the control operates when first activated (initial state) with default

system parameters, the STARTUP data regardless of if the PLC contains a

project or boot project! If you load the project into the PLC which is in the

initial state, the PLC will immediately start to operate with the parameters of

the project.

With the browser command createstartupini you will transfer from the PLC

either the STARTUP data – or if a project is contained – the system

parameters onto the memory card. This creates the Startup.INI file which

contains this data. Precondition: the memory card must be plugged in,

formatted and empty, i.e. without Startup.ini file.

It is not possible to overwrite or change an already existing file with the

createstartupini browser command. If you still enter the command, a warning

appears. In order to create a new file the existing file must be deleted first,

a section “Deleting the Startup.ini file” on Page 77.

7.4 Entry of the ini file HOST_NAME
The parameter HOST_NAME enables the controller to be addressed via the

Ethernet with this device name. It can also be addressed with its IP address.

The device name for the XC-CPU201 is available from operating system

version 1.04. It receives from the system the entry “NoNameSet”. If this is

not changed, the device linked to the Ethernet can only be addressed via its

IP address. You can enter a new device name using the browser command

settargetname. The device name must be assigned uniquely for each device.

COM1_BAUDRATE=38400
(Carriage/Return)

; CAN_NODEID=2

7 Setting system parameters via the Startup.ini file

7.4 Entry of the ini file HOST_NAME

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 77

It can also be used as a communication parameter (in Figure 54: alias), if the

parameters are defined in the programming software in the menu ‹Online l

Communication parameters›.

The parameters define the properties of the programming connection

between the PC and the PLC.

Figure 54:Communication parameters

The device name can be read with the browser command gettargetname.

7.4.1 Switch-on of the control with inserted memory card with XCSTARTUP.ini file
When the controller is started up, the data from the Startup.ini file on the

memory card is transferred to the controller. These system parameters are

also active after a new program is loaded.

7.4.2 Alter parameters
The parameters are retained until you enter the browser command

removestartupini and then switch the controller off and on again.

The controller will now operate with the parameters of the project.

7.4.3 Deleting the Startup.ini file
The following browser commands can be used to access the memory card.

� removestartupini: Always deletes the controller system parameters. If a

memory card is plugged in, the INI file on the memory card is deleted.

The parameters from the project is accepted next time the device is

switched on.

� removeprojfrommmc: Deletes the boot project and the INI file on the

memory card. The system parameters in the controller are retained.

The behavior of the Startup.ini file with the “Hard Reset” and “Default

Settings” menu commands on the controller and with the factoryset browser

command is described in section “Reset” on Page 36. If you execute the

“Full reset” command in online mode, the operating system and the project

on the Disk_sys are deleted. The XCSTARTUP.ini file is retained.

8 Programming via CAN(open) Network (Routing)

8.1 Prerequisites

78 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

8 Programming via CAN(open) Network (Routing)

“Routing” is the capability to establish an Online connection from a

programming device (PC) to any desired (routing capable) control in a CAN

network, without having to directly connect the programming device directly

with the target PLC. It can instead be connected to any other PLC in the

network. The routing connection enables you to carry out all the operations

that are possible with a direct online connection between the programming

device and the controller:

� Program Download

� Online changes

� Program test (Debugging)

� Generation of boot projects

� Writing files in the PLC

� Reading files from the PLC

Routing has the advantage that a PLC connected to the programming device

can access all routing capable PLCs on the CAN bus. You can determine in

the project selection which controller you wish to communicate with. This

provides an easy way of controlling remote PLCs.

However, the data transfer from routing connections is significantly slower

than with direct (serial or TCP/IP) connections. This results, for example, in

slower display refresh rates of variables and longer download times.

8.1 Prerequisites
The following prerequisites must be fulfilled to use routing:

� The routing PLC and the target PLC must both support routing.

� Both PLCs must be connected via the CAN bus.

� The PLCs must both have the same active CAN baud rate.

� The valid routing node ID must be set on both PLCs.

� The routing with the XC-CPU201 is possible from operating system

version V1.03.02.

8 Programming via CAN(open) Network (Routing)

8.2 Routing features of the controller

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 79

8.2 Routing features of the controller

The controller supports routing via the CAN bus.

Routing can be implemented without prior download of a user program

(default: 125 kBaud, Node Id 127). The target PLC must not be configured as

a CAN Master or CAN Device for this purpose.

You can for example load a program from the PC via a PLC of the XC device

series into the XC200. Assign a Routing Node-Id to the XC200 (target PLC) in

this case..

8.2.0.1 Routing through XC200
To perform a program transfer or routing using TCP/IP through a connection

between XC200 and PC, you must first set the block size for the transferred

data. The block size (4 kByte or 128 kByte) depends on the transfer type

(program transfer or routing) and the operating system ￫ Table 14.

Table 14: Block size for data transfer

The setting of the block size (change of the value in the registry) is explained

as follows.

Setting the block size:

▶ Close all CoDeSys applications.

▶ Close the CODESYS gateway server.

Program/file transfer Routing

XC-CPU201
OS version
< V1.03.02

XC-CPU201
OS versionȱ V1.03.02

XC-CPU201
OS version
< V1.03.02

XC-CPU201
OS versionȱ V1.03.02

XC-CPU202
OS versionȰ V1.00.07

Block size
Default 128 kByte

128 kByte 128/4 kByte Routing
not possible

4 kByte 4 kByte

BTS = operating system

NOTICE

The program download with a block size of 4 KByte to an

XC-CPU201 with an operating system version < V1.03.02

causes a malfunction!

If a program download is performed, the progress bar on the

programming device monitor will only change erratically (about

every 10 seconds).

￫ You can change this setting only if you have administrator rights

on your PC.

8 Programming via CAN(open) Network (Routing)

8.2 Routing features of the controller

80 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

Figure 55:Closing the CODESYS gateway server

▶ Change the block size to the required value.

The following *.reg files are available in the CODESYS installation directory

to enter the block size in the registry:

Alternatively, you can use the BlockSizeEditor application to change the block

size.

The download block size is defined in the following Registry key:

The default block size is 20000hex (=128 kByte), the block size for routing is

1000hex (= 4 kByte).

8.2.1 Notes
� If large files are written to the target PLC or read from the PLC, it is

possible that the online connection will be interrupted after the transfer

process has been completed. Renewed connection is possible.

� If a program with a modified routing node ID is loaded into the target

PLC, the target PLC accepts the modified routing node ID; however, the

communication connection will be interrupted. Reconnection with a

corrected routing Node ID is possible.

� If a PLC receives a program without valid routing parameters (baud rate/

node ID), this PLC cannot be accessed via a routing connection. Erasing

of the parameters can for example be implemented via a FULL RESET if

the PC with the programming software was directly connected with the

target PLC. The parameters are retained if the FULL RESET is

implemented via the “routing PLC”.

� The routing is independent of the configuration (Master/Device): it is

possible to access a target PLC which has not been configured as a

master or as a device. It must only receive the basic parameters such as

node ID and baud rate, as well as a simple program.

BlockSizeDefault.reg Enters a block size of 20000hex = 128 KByte (default value) in the Registry.

BlockSizeRout.reg Enters a block size of 1000hex = 4 KByte in the Registry.

[HKEY_LOCAL_MACHINE\SOFTWARE\3S-Smart Software Solutions GmbH\Gateway Server\Drivers\
Standard\Settings\Tcp/Ip (Level 2 Route)]

“Blocksize“=dword:00020000

8 Programming via CAN(open) Network (Routing)

8.2 Routing features of the controller

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 81

8.2.2 Addressing
Controllers on the CAN bus can be configured a master or as a slave (device).

The PLCs are assigned with a Node ID/node number (address) in order to

uniquely identify them (with the basis communication). To use the routing

function to access a target PLC, you must assign a further routing ID to the

routing and target PLC. An RS232 or Ethernet interface can be used as a

connection between the PC and XC200.

Figure 56:Routing via XC…, EC4P, …

Table 15: Example for setting the Node Id, Baud rate

The Routing-ID with the master can be set in the PLC configurator in the

“Other parameters” tab:

Figure 57:CAN Master routing settings

Control Function Node ID Routing ID Baud Rate a Fig.

Routing controller master 1 127 125 KB 58

Target controller Device 3 54 125 KB 59

￫ The following applies for device PLCs: The Routing-ID must not
be equal to the Node-ID (Basis communication)!

The exception is the XC100 with operating system ȱ V2.0:

the Routing-ID must be equal to the Node-ID!

PC
Routing control
(Master)

Target controller
(Device)

Node-ID: 1
Routing ID: k

Routing-ID n
Node-ID m

k, n, m = 2…127
RS232 Ethernet CANopen

8 Programming via CAN(open) Network (Routing)

8.2 Routing features of the controller

82 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

The ID for basis communication is defined in the “CanMaster” folder in the

“CAN parameters” tab (Figure 58).

Figure 58:CAN Master: Node ID for basis communication

8.2.3 Communication with the target PLC
▶ Connect the PC to the routing PLC.

▶ Select the target PLC with which you want to communicate for the

project.

▶ Determine the communication settings for the PC and the PLC

connected to the PC.

▶ Enter the target ID (Target ID = Node ID!) of the target PLC (as in the

example) and log on.

You can run the following functions:

� Program Download

� Online change

� Program test (Debugging)

� Create boot project

� Source code storing

Note for project creation

Assign two Node-IDs to the target PLC:

� One ID for basic communication

� One ID for routing

You set the routing ID (node ID, e.g. 54) and the baud rate of the target PLC

(e.g. XC200) in the PLC configuration in the Other parameters window

￫ Figure 57. First click the Activate box in the “RS232/TCP ￫ CAN

Routing” field. The activation is required so that the PLC can communicate

via the CAN bus. Then enter the Node ID/node number and the baud rate on

the CAN bus in the appropriate entry fields.

￫ To guarantee a fast data transfer, the routing should be

performed only with a CAN baud rate of at least 125 Kbits/s.

8 Programming via CAN(open) Network (Routing)

8.2 Routing features of the controller

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 83

The ID for basis communication is defined in the “CanDevice” in the “CAN

setting” tab ￫ Figure 59.

Figure 59:CAN device parameters

ID and baud rate are transferred with the project download to the PLC.

Example

The following example based on Figure 60 shows the access to a PLC

program.

Figure 60:Diagnostics possibilities

a XC100 with Node ID 1

b XC200 with node ID 2, routing ID 127

c PLC (e.g . XC..., EC4P...) with node ID 3 and routing ID 54

You have connected the PC to the controller with node ID 2 and wish to

access the target PLC with routing ID 54.

▶ Open the project of the target PLC whose program you wish to edit or

test.

▶ First configure the parameters for the hardware connection PC ↔ PLC

(Node ID 2).

▶ Choose ‹Online ￫ Communication parameters› menu.

▶ Click the “New” button under “local” channels.

The “New Channel” window appears.

▶ Select the channel in the “Device” window:Serial [RS232] [Level 2

Route] or TCP/IP [Level 2 Route].

▶ You can assign a new name (e. g. „Rout_232“) in the “Name” field.

▶ Confirm with OK. You will return to the initial window.

a b c

CAN

8 Programming via CAN(open) Network (Routing)

8.2 Routing features of the controller

84 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

Figure 61:Channel parameter setting

You have now determined the parameters for the hardware connection

between the PC and the PLC (node ID 2).

▶ Call up the communications parameters in the Online menu once again

and select the PLC which you want to program or test.

▶ Enter the number 54 as the target ID in the example. The target ID is

identical to the routing ID! To enter the target ID, click the field in the

Value column to the right of the term Target ID. Enter there the number

54 and confirm with “OK”.

▶ Log in and complete the operation.

8.2.4 PLC combinations for routing
The following PLC support routing:

8.2.5 Number of communication channels
Several communication channels can be opened, e.g. PC ↔ PLC 2,

PC ↔ PLC 3 in dependence on the PLC (communication channel) which is

connected to the PC. This therefore enables the status of PLC 2 and PLC 3

to be displayed at the same time.

Table 16: Type and number of communication channels

From P XC100, XC121 XC-CPU2011) EC4P XC-CPU202

To O

XC100, XC121 x x x x

XC-CPU2011) x x x x

XC-CPU202 x x x x

EC4P x x x x

1) XC-CPU201 from operating system version V01.03.01

Communication Channel Control Max. channel
number

TCP/IP Level 2 Route XC200 5

Serial RS232 Level2 Route XC…/EC4P 1

9 RS 232 interface in Transparent mode

8.2 Routing features of the controller

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 85

9 RS 232 interface in Transparent mode

In Transparent mode, data is exchanged between the XC200 and data

terminal devices (e.g. terminals, printers, PCs, measuring devices) without

any interpretation of the data. For this purpose, the serial RS232 interface of

the CPU or XIOC-SER modules is to be switched using the user program in

the transparent mode. This applies from operating system version 01.03.xx

for the RS232 interface of the XC-CPU201.

Character formats in transparent mode are: 8E1, 8O1, 8N1, 8N2.

This functionality is provided with the XC200 via the xSysCom200.lib or

SysLibCom.lib libraries. Thus, one of these libraries must be integrated into

the library manager.

The SysLibCom.lib library is introduced (from version 01.03.xx) in order to

guarantee the compatibility between the XC200 and other XControl devices.

Both libraries contain functions for opening and closing the interface, for

sending and receiving the data and for setting the interface parameters.

The control lines of the RS232 of the XIOC-SER modules are controlled with

the SysComWriteControl function from the xSysCom200.lib library and

monitored with the SysComReadControl function.

In contrast to the RS232 interface of the XIOC-SER module, the RS232

interface of the CPU does not feature control lines.

XC-CPU201 XC-CPU202

RS232 of the CPU COM1 LocalCOM

RS232 of the XIOC-SER and XIOC-TC1 COM2…5 COM2…5

xSysCom200.lib for XIOC-SER and XIOC-TC1
SyslibCom.lib for RS232 of CPUs

￫ If the RS232 interface of the XC-CPU201 is in Transparent

mode, programming via this interface not possible. However,

you can test the program via the Ethernet interface (so-called

joint operation).

￫ This type of joint operation is not possible on the XC-CPU202.

The RS232 is set by default for programming mode. The Serial
Programming Off and Serial Programming On browser command

or the library functions (FUN) Disable Com Programming and

Enable Com programming enable the RS232 interface to be

switched from programming mode to Transparent mode.

9 RS 232 interface in Transparent mode

9.1 Programming of the RS 232 interface in transparent mode

86 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

The data types of the libraries are not identical. The baud rate selection

differs:

xSysCom200.lib: 300, … ,115200

SysLibCom.lib: 4800, … ,115200

The RS232 interface of the CPU is addressed (in contrast to the interface of

the XIOC-SER module) via the operating system! Therefore, execution of the

interface functions can take up to 50 ms. The task, in which the RS232

interface is contacted should have an interval time of at least 50 ms and be

assigned with a low priority (high value) in multitasking mode, so that time

critical tasks are not hindered.

The functions (x)SysComRead/Write therefore only process parts of the

required data length. To transfer data blocks completely, repeated calls with

adjusted offset values must be carried out in several task intervals. The

number of calls depends on the baud rate and the data volume.

The performance of the RS232 of the CPU depends on the load of the PLC

(PLCLoad) and the selected baud rate. Due to the high interval times of the

COM1 task, it may be displaced by time-critical tasks. When data is received

at high baud rates, characters may be lost!

9.1 Programming of the RS 232 interface in transparent mode
You can access the data of the RS232 interface using the user program.

The libraries xSysCom200.lib or SysLibCom.lib are provided for this purpose.

Note that only one of the two libraries can be incorporated in the Library

Manager! Both libraries provided a large number of functions, such as for

opening and closing the interface. The library functions are shown here next

to each other: the functions of the xSysCom200.lib library on the left and the

SysLibCom.lib library.

Figure 62:Overview of functions (left: xSysCom200.lib, right: SysLibCom.lib)

The functions are described in the manual “Function blocks of easySoft-

CoDeSys” (MN05002002Z-EN).

See also: Transparent mode: Text output via RS232 (example) ￫ Page 137

10 Configuration and parameterization of the inputs/outputs

10.1 Input/output general

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 87

10 Configuration and parameterization of the inputs/outputs

10.1 Input/output general
In the PLC configuration the local inputs/outputs IX0.0 to IX0.7, QX0.0 to

QX0.5 and the inputs/outputs IX1.0 to IW4 and QX1.0 to QX1.7 indicate the

add-on functions such as e.g. the counters. The inputs and outputs of the

add-on functions only become active after you have selected a function in

the “Other parameters” tab.

Figure 63:PLC configuration

The processing unit transfers states and events to the virtual input.

The required inputs and outputs for the incremental encoder function are

shown in Figure 69 or on Page 91, the necessary inputs and outputs for the

counter functions can be found on Page 94.

In order to expand the local inputs and outputs simple add XIOC modules by

clicking on the “EMPTY SLOT” folder. With the “replace element”

command select a module from the list. The new module name is indicated

instead of the EMPTY SLOT.

10.1.1 Local digital inputs/outputs
Each physical change of the modules on the slots of the rack (slot exchange

or replacement for another function) is detected by the CPU since the input/

output offset is changed so that access errors are caused when assigning

the input and output parameters. If you have reserved free slots in the

configuration for later upgrades, and if these slots are later assigned, this will

also cause an imparity and change of the input/output offset between the

configuration and the program.

10 Configuration and parameterization of the inputs/outputs

10.1 Input/output general

88 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

A difference between the configuration and the physical existence/non-

existence of signal modules is entered as a “Fault event” in the buffered

memory range. The geterrorlist browser command issues this fault as a

“General IO access error”. A unique slot assignment is not possible here.

The following illustrations indicate the changes of assignment of the input

and output parameters when exchanging or adding or removing signal

modules.

Figure 64:Current configuration
S0, S1, ..., S7 = slot number on rack

Figure 65:Configuration change by changing the modules
(S0, S1, …, S7 = slot number of the rack)

CAUTION

� Match the inputs and outputs in the program each time you

make a change to the configuration.

� If the configuration and program do not match or if an

unavailable module is configured, the PLC can‘t change

over to the RUN mode.

10 Configuration and parameterization of the inputs/outputs

10.1 Input/output general

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 89

Figure 66:Configuration change through removal of the module
(S0, S1, ..., S7 = slot number on rack)

Figures 64 to 66 indicate the changes to the input/output parameters of the

signal modules in dependence on the slots and are compiled in Table 17.

Table 17: Input/output parameters with a change of configuration

Figure Slot Module type Input parameter Output parameter

64 2 XIOC--16DX %IW 6 %QW 2

5 XIOC-8DI %IB 8 –

7 XIOC-2AO-U1-2AO-I2 – %QW 4
%QW 6
%QW 8
%QW 10

65 2 XIOC-2AO-U1-2AO-I2 – %QW 2
%QW 4
%QW 6
%QW 8

5 XIOC--16DX %IW 6 %QW 10

7 XIOC-8DI %IB 8 –

66 2 Slot not used – –

5 XIOC-8DI %IB 6 –

7 XIOC-2AO-U1-2AO-I2 – %QW 2
%QW 4
%QW 6
%QW 8

10 Configuration and parameterization of the inputs/outputs

10.2 Inputs/outputs for additional functions

90 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

10.2 Inputs/outputs for additional functions

10.2.1 Incremental encoder
Parameterization occurs in the “PLC Configuration”.

▶ Activate the “Other Parameters” tab in the “PLC Configuration”

window and click on the “Configure Counter/Encoder” button“.

Figure 67:Incremental encoder preselection

▶ Select “Incremental encoder”. The window changes its appearance:

Figure 68:Incremental encoder parametric programming

▶ When the configuration is complete, press the “Apply” button.

10.2.2 Functionality of the inputs/outputs
If you have selected the “Incremental encoder” add-on function, the inputs

I0.0 to I0.3 are assigned with a new function. The inputs I0.4 to I0.7 retain

their standard function. The functions of the virtual inputs and outputs for the

incremental encoder can be seen in the following illustrations.

10 Configuration and parameterization of the inputs/outputs

10.2 Inputs/outputs for additional functions

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 91

Figure 69:Inputs/outputs for incremental encoders

Referencing

In many positioning controllers, the reference point is approached at the

start. The referencing operation can be controlled via the hardware

(reference window signal of the encoder on I0.3) or via the software (QX1.0).

You can make the selection in the PLC configuration. If one of the two

signals is High, this is indicated at input IX1.4. If a pulse is generated in this

state at I0.2 (reference signal of the encoder), the counter status is set to the

reference value you have stated in the PLC configuration.

Figure 70:Relationship between reference signal and reference window

T1 Impulse repeat time of 2 successive marker signals with a single rotation of the incremental encoder

T2 Maximum permissible duration of the reference window. Must be sufficiently less than T1 to ensure

that a second marker pulse is not detected.

T3 Must be long enough to ensure that the L/H edge of the marker pulse is safely detected.

T2 and T3 depend on the frequency of the reference pulse and must be determined for each application

by trial and error.

￫ Set the reference window large enough for the reference signal

to be present only once and still be evaluated reliably.

T1

T2

T3

Reference Signal

Reference Window

10 Configuration and parameterization of the inputs/outputs

10.2 Inputs/outputs for additional functions

92 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

10.2.3 Representation of the inputs/outputs of the incremental encoder

Real inputs

AT %IX0.0: BOOL; (*Bit0*) Signal A

AT %IX0.1: BOOL; (*Bit1*) Signal B

AT %IX0.2: BOOL; (*Bit2*) Reference signal

AT %IX0.3: BOOL; (*Bit3*) Enable referencing1)

AT %IX0.4: BOOL; (*Bit4*) Local input

AT %IX0.5: BOOL; (*Bit5*) Local input

AT %IX0.6: BOOL; (*Bit6*) Local input

AT %IX0.7: BOOL; (*Bit7*) Local input

Representation of the virtual inputs/outputs in the PLC configuration

AT %IX1.0: BOOL; (*State*) [CHANNEL(I)] H = referencing implemented

AT %IX1.1: BOOL; (*N0*) [CHANNEL(I)] L = no zero crossing,
H = zero crossing of the counter level

AT %IX1.2: BOOL; (*N1*) [CHANNEL(I)]

AT %IX1.3: BOOL; (*Error*) [CHANNEL(I)] L = no fault
H = internal error (A and B edges occur simultaneously)

AT %IX1.4: BOOL; (*Referencing activated*) H = referencing has been enabled

AT %IW2: WORD; (*Counter-Value Low-Word*) [CHANNEL(I)] Counter state Low Word

AT %IW4: WORD; (*Counter-Value High-Word*) [CHANNEL(I)] Counter state High Word

AT %QX1.0: BOOL; (*Reference Window*) [CHANNEL(Q)] Enable referencing2)

AT %QX1.1: BOOL; (*Reset Counter0*) [CHANNEL(Q)] Reset to reference value

AT %QX1.2: BOOL; (*Reset Counter1*) [CHANNEL(Q)]

AT %QX1.3: BOOL; (*N0 Quit*) [CHANNEL(Q)] Acknowledgement zero crossover

AT %QX1.4: BOOL; (*N1 Quit *) [CHANNEL(Q)]

AT %QX1.5: BOOL; (*Error Quit*) [CHANNEL(Q)] Error acknowledge

AT %QX1.6: BOOL; (*32BitCounter/Counter0 Enable*) [CHANNEL(Q)] L = inhibit input pulse
H = enable input pulse

AT %QX1.7: BOOL; (*Counter1 Enable*) [CHANNEL(Q)]

1) Precondition: The “Hardware” configuration type has been selected in the configurator.

2) Precondition: The “Software” configuration type has been selected in the configurator.

10 Configuration and parameterization of the inputs/outputs

10.2 Inputs/outputs for additional functions

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 93

10.2.4 Counter
Select between the following functions for the detection of counter pulses:

� 1 x 32 Bit up/down counter or

� 2 x 16 Bit up/down counter.

Parameterization occurs in the “PLC Configuration”.

▶ Activate the “Other Parameters” tab in the “PLC Configuration”

window and click on the “Configure Counter/Encoder” button“.

▶ Select “1 x 32 Bit Up/Down-Counter or 2 x 16 Bit Up/Down-Counter”

and click on the “Apply” button.

Another window opens for the configuration.

▶ State the “Interrupt Source” and the “Setpoint Value” here.

Figure 71:Parameterization of 1 x 32 Bit counter input

▶ When the configuration is complete, press the “Apply” button.

See also:

� Interrupt processing ￫ Page 95

10 Configuration and parameterization of the inputs/outputs

10.2 Inputs/outputs for additional functions

94 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

10.2.5 Representation of the inputs/outputs of the 32 bit counter

10.2.6 Representation of the inputs/outputs of two 16 bit counters

Real inputs

AT %IX0.0: BOOL; (*Bit0*) Input for counter pulses

AT %IX0.1: BOOL; (*Bit1*) Input for direction signal

Representation of the virtual I/Os in the PLC configurator

AT %IX1.0: BOOL; (*State*) [CHANNEL(I)]

AT %IX1.1: BOOL; (*N0*) [CHANNEL(I)] L = no zero crossing, H = zero crossing

AT %IX1.2: BOOL; (*N1*) [CHANNEL(I)]

AT %IX1.3: BOOL; (*Error*) [CHANNEL(I)] H = Error

AT %IW2: WORD; (*Counter-Value Low-Word*) [CHANNEL(I)] Counter state Low Word

AT %IW4: WORD; (*Counter-Value High-Word*) [CHANNEL(I)] Counter state High Word

AT %QX1.0: BOOL; (*Reference Window*) [CHANNEL(Q)]

AT %QX1.1: BOOL; (*Reset Counter0*) [CHANNEL(Q)] Reset to 0

AT %QX1.2: BOOL; (*Reset Counter1*) [CHANNEL(Q)]

AT %QX1.3: BOOL; (*N0 Quit*) [CHANNEL(Q)] Acknowledgement zero crossover

AT %QX1.4: BOOL; (*N1 Quit *) [CHANNEL(Q)]

AT %QX1.5: BOOL; (*Error Quit*) [CHANNEL(Q)] Error acknowledge

AT %QX1.6: BOOL; (*32BitCounter/Counter0 Enable*) [CHANNEL(Q)] L = inhibit count pulse, H = enable count pulse

AT %QX1.7: BOOL; (*Counter1 Enable*) [CHANNEL(Q)]

Real inputs

AT %IX0.0: BOOL; (*Bit0*) Input for counter pulses (counter 0)

AT %IX0.1: BOOL; (*Bit1*) Input for direction signal (counter 0)

AT %IX0.2: BOOL; (*Bit2*) Input for counter pulses (counter 1)

AT %IX0.3: BOOL; (*Bit3*) Input for direction signal (counter 1)

Representation of the virtual I/Os in the PLC configurator

AT %IX1.0: BOOL; (*State*) [CHANNEL(I)]

AT %IX1.1: BOOL; (*N0*) [CHANNEL(I)] L = no zero crossing, H = zero crossing

AT %IX1.2: BOOL; (*N1*) [CHANNEL(I)] L = no zero crossing, H = zero crossing

AT %IX1.3: BOOL; (*Error*) [CHANNEL(I)] H = Error

AT %IW2: WORD; (*Counter-Value Low-Word*) [CHANNEL(I)] Counter status counter 0

AT %IW4: WORD; (*Counter-Value High-Word*) [CHANNEL(I)] Counter status counter 1

AT %QX1.0: BOOL; (*Reference Window*) [CHANNEL(Q)]

AT %QX1.1: BOOL; (*Reset Counter0*) [CHANNEL(Q)] Reset to zero counter 0

AT %QX1.2: BOOL; (*Reset Counter1*) [CHANNEL(Q)] Reset to zero counter 1

AT %QX1.3: BOOL; (*N0 Quit*) [CHANNEL(Q)] Acknowledgement zero for counter 0

AT %QX1.4: BOOL; (*N1 Quit *) [CHANNEL(Q)] Acknowledgement zero for counter 1

AT %QX1.5: BOOL; (*Error Quit*) [CHANNEL(Q)] Error acknowledge

AT %QX1.6: BOOL; (*Counter0 Enable*) [CHANNEL(Q)] 0: L = inhibit count pulse, H = enable count pulse

AT %QX1.7: BOOL; (*Counter1 Enable*) [CHANNEL(Q)] 1: L = inhibit count pulse, H = enable count pulse

10 Configuration and parameterization of the inputs/outputs

10.3 Interrupt processing

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 95

10.3 Interrupt processing

If an interrupt occurs, the operating system executes the program

organizational unit (POU) which is linked to the interrupt source.

A maximum of six interrupt sources (IO Interrupt1, …, IO Interrupt6) are

supported, which differentiate only by the number at the end of the name.

Interrupt generators:

� Input I0.4 L ￫ H edge

� Input I0.4 H ￫ L edge

� Input I0.5 L ￫ H edge

� Input I0.5 H ￫ L edge

� 32 bit counter, actual value = setpoint value or

� 16 bit counter (1), actual value = setpoint value

� 16 bit counter (2), actual value = setpoint value

The POU initiated by the interrupt is always run to completion and cannot be

interrupted by a new interrupt. A new interrupt is only carried out after the

current interrupt has ended.

The interrupts are enabled in the RUN state of the CPU and inhibited in the

STOP state. Interrupt sources which are not enabled in the configuration do

not initiate an interrupt. If a POU is not assigned to an enabled interrupt

source, the interrupt is recognized and executed but without running a POU.

Frequent occurrence of an interrupt during program execution can cause the

programmed task time to time-out and result in a RESET being initiated by

the Watchdog.

User interrupts can be inhibited and re-enabled from the program. The

functions DisableInterrup and EnableInterrupt are provided for this purpose.

A call parameter in the CoDeSys software determines if an individual

interrupt or all interrupts are enabled or inhibited. Enabling of an inhibited

interrupt must be performed with the same parameter used to inhibit it.

Both the DisableInterrupt and EnableInterrupt functions are components of the

XC200_Util.lib library. This library must – if not already done so – be

integrated into the library manager of the CoDeSys.

 CAUTION

The execution of the interrupt POU is not time monitored.

Inadvertently programmed endless loops cant be exited.

NOTICE

All the outputs controlled (H signals) up to this point remain

active and can‘t be switched off.

10 Configuration and parameterization of the inputs/outputs

10.3 Interrupt processing

96 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

10.3.0.1 DisableInterrupt
With this function, you disable (deactivate) a parameterized physical interrupt

by accessing it from the user program.

Figure 72:“DisableInterrupt” function

10.3.1 EnableInterrupt
With this function, the physical interrupt which was deactivated beforehand

can now be re-enabled as an active interrupt.

Figure 73:“EnableInterrupt” function

10.3.2 Parameter definition
The parameterization and prioritization of the interrupt occurs in the “PLC

and Task Configuration” of the CODESYS (activate the “Resources” tab and

call up the “Task configuration l system events” folder). Each interrupt can

be assigned with a POU here.

10 Configuration and parameterization of the inputs/outputs

10.3 Interrupt processing

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 97

10.3.3 Example for interrupt processing
A “Basic” task contains a POU “PLC_PRG”. A further POU “Fastprog”

should be processed if an L ￫ H rising edge on the input I0.5 generates an

interrupt.

▶ Create the POUs “PLC_PRG” and “Fastprog” as shown in Figure 74.

Figure 74: PLC and Task configuration

▶ Changeover to the PLC configuration and assign input I0.5 (L ￫ H edge)

e.g. the interrupt source “IO-Interupt3” from the drop-down menu.

Figure 75: Allocation of I0.5 ￫ interrupt source

▶ Change over to the Task configuration and open the “System events”

folder.

10 Configuration and parameterization of the inputs/outputs

10.3 Interrupt processing

98 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

Figure 76:System events

▶ Enable IO Interrupt 3 by clicking in the check box on the left beside the

name “IO Interrupt 3”. The box is checked to indicate that it has been

activated.

▶ Mark the area of column “Called POU” and the area and the line

“IO Interrupt 3”.

▶ Set the cursor on the marked area and press the function key F2.

Figure 77: Allocation of Interrupt source ￫ POU

The “Help Manager” window opens in which all predefined programs are

listed.

▶ Select the “Fastprog” POU and confirm with OK.

▶ Save the project. You can now test it.

The variable “b” is incremented by one with every rising edge on input I0.5.

11 Libraries, function blocks and functions

11.1 Using libraries

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 99

11 Libraries, function blocks and functions

The libraries contain IEC function blocks and functions that you can use, for

example, for the following tasks:

� Data exchange through the CAN bus

� Controlling the real-time clock

� Determining bus load of the CAN bus

� Triggering interrupts

� Sending/receiving data through the interfaces

The libraries are located in the following folders:

� Lib_Common for all PLCs

� Lib_CPU100 and Lib_CPU200 for PLCs XC100 and XC200

� Lib_XN_PLC_CANopen for PLC XN-PLC

11.1 Using libraries
When you open a project, both libraries Standard.lib and

SYSLIBCALLBACK.lib are copied in to the Library Manager. If you need

further libraries for your application, you have to install these manually.

The libraries in the Library Manager are assigned to the project after saving.

When you open the project, the libraries are then automatically called up as

well.

The following overview lists the documents in which the function blocks and

functions are described.

 Document Library

AWB2700-1437 Standard.lib
Util.lib

MN05003004Z-EN
(previously called AWB 2724-1453)

XC100_Util. lib

MN05003001Z-EN
(previously called AWB 2724-1491)

XC200_Util. lib

Manual 2724-1566 XN_PLC_Util. lib

Online help or PDF files SysLib… . lib

MN05010002Z-EN
(previously called AWB 2786-1456)

XS40_MoellerFB. lib/ Visu. lib/…

AN2700K20 3S_CanOpenDevice. lib
3S_CanOpenManager. lib

AN2700K19 3S_CANopenNetVar. lib

AN2700K27 XC_SysLibCan. lib
XN_PLC_SysLibCan.lib

MN05010001Z-EN
(previously called AWB 2786-1554)

CANUser.lib
CANUser_Master.lib

11 Libraries, function blocks and functions

11.2 XC200 specific functions

100 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

11.1.1 Installing additional system libraries
You can install libraries manually as follows:

Figure 78:Libraries, installing manually

▶ In your project, click the “Resources” tab in the object organizer.

▶ Double-click the “Library Manager” element.

▶ Click ‹Insert ￫ Additional Library… Ins›.

The new window will show the libraries available, depending on the target

system.

Figure 79:Selecting a library

▶ Select the library to install and click Open.

The library now appears in the Library Manager.

11.2 XC200 specific functions
The XC200 specific functions are contained in the XC200_UTIL.lib library.

From operating system version V01.03.xx of the XC-CPU201 the

XC200_Util2.lib library with additional functions has been introduced.

The additional functions are described from Page 106.

11 Libraries, function blocks and functions

11.2 XC200 specific functions

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 101

The functions of the XC200_Util.lib library are divided into the following

groups:

� CAN functions (CAN_Utilities)

� Event functions (EVENT)

� XIOC functions (XIOC)

Figure 80:XC200 specific functions of the XC200-Util.lib library

11.2.1 CAN_Utilities
The CAN_BUSLOAD function is contained in the XC200_Util.lib library in the

“CAN_Utilities” folder.

Figure 81:“CAN_BUSLOAD” function

This function can be called cyclically in a user program. If a read cycle has

been completed successfully, the function returns TRUE and writes the

determined integration time and the bus utilization values to the passed

addresses.

If the bus load calculation is not yet completed or the CAN controller has not

yet been initialized, the function returns FALSE. Each read cycle has a

duration of 500 ms.

See also: Display the loading of the CAN bus (canload) ￫ Page 131

11 Libraries, function blocks and functions

11.2 XC200 specific functions

102 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

11.2.2 Event functions
Events are special occurrences from the operating system or application.

These events are stored in a ring buffer. The following functions allow read

and write access to this event (ring) buffer.

11.2.2.1 IEC_DeleteErrorList
This function erases all error messages listed in the error list.

Figure 82:“IEC_DeleteErrorList” with declaration section function

11.2.2.2 IEC_DeleteEventList
This function erases all error messages listed in the event list.

Figure 83:“IEC_DeleteEventList” with declaration section function

11 Libraries, function blocks and functions

11.2 XC200 specific functions

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 103

11.2.2.3 IEC_GetErrorID
This function returns the Module-ID and Error-ID of the requested error

message.

Figure 84:“IEC_GetErrorID” with declaration section function

The description of the error messages and the error identity can be found in

the Online documentation of the CODESYS software relating to function

IEC_GetErrorID.

11.2.2.4 IEC_GetEventID
This function returns the Module-ID and Error-ID of the requested event

message.

Figure 85:“IEC_GetEventID” with declaration section function

The description of the event messages and the event identity can be found in

the Online documentation of the CODESYS software relating to function

IEC_GetEventID.

11 Libraries, function blocks and functions

11.2 XC200 specific functions

104 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

11.2.2.5 IEC_GetNrOfErrors
This function returns the number of entered error messages.

Figure 86:“IEC_GetNrOfErrors” function

11.2.2.6 IEC_GetNrOfEvents
This function returns the number of entered event messages.

Figure 87:“IEC_GetNrOfEvents” function

11 Libraries, function blocks and functions

11.2 XC200 specific functions

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 105

11.2.2.7 IEC_WriteError
This function writes an error message into the error list of the control.

Figure 88:“IEC_WriteError” function

11.2.2.8 IEC_WriteEvent
This function writes an event message into the event list of the control.

Figure 89:“IEC_WriteEvent” function

11.2.3 XIOC functions
The XIOC functions include functions for processing interrupts (￫ Page 95)

and for programming of the direct peripheral access (￫ Page 58).

11 Libraries, function blocks and functions

11.2 XC200 specific functions

106 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

11.2.4 Additional functions of the XC200_Util2.lib library for the XC-CPU201
The functions of the XC200_Util2.lib library can be seen in the following

overview:

Figure 90:Overview of the XC200_Util2.lib library for the XC-CPU201

11.2.4.1 Ethernet_Utilities
UTI2_GetIPConfig

Issue of the IP address, subnet mask address and IP gateway address.

Figure 91:UTI2_GetIPConfig

Table 18: Input variables for UTI2_GetIPConfig

Table 19: Return values for UTI2_GetIPConfig

Input variables Meaning

UTI2_psIPAddress Pointer to a string in which the read IP address is written.

UTI2_psSubnetmask Pointer to a string in which the read address of the subnet mask is written.

UTI2_psIPGatewayAddress Pointer to a string in which the read address of the standard gateway is written.

ReturnVal Meaning

1 Read successful

< 0 Read fault (general fault)

-4 No valid pointer transferred.

11 Libraries, function blocks and functions

11.2 XC200 specific functions

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 107

UTI2_GetIPDns

Output of the IP address of the DNS server currently entered in the Registry

Figure 92:UTI2_GetIPDns

Table 20: Input variables for UTI2_GetIPDns

Table 21: Return values for UTI2_GetIPDns

UTI2_GetIPWins

Output of the IP address of the WINS server currently entered in the Registry

Figure 93:UTI2_GetIPWins

Table 22: Input variables for UTI2_GetIPWins

Table 23: Return values for UTI2_GetIPWins

Input variables Meaning

UTI2_psIPDns Pointer to a string in which the read IP address is written.

ReturnVal Meaning

1 Read successful

< 0 Read failed

-4 No valid pointer transferred.

Input variables Meaning

UTI2_psIPWins Pointer to a string in which the read IP address is written.

ReturnVal Meaning

1 Read successful

< 0 Read failed

-4 No valid pointer transferred.

11 Libraries, function blocks and functions

11.2 XC200 specific functions

108 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

UTI2_GetMacAddress

Issue of the MAC address (MAC = Media Access Control)

Figure 94:UTI2_GetMacAddress

Table 24: Input variables for UTI2_GetMacAddress

Table 25: Return values for UTI2_GetMacAddress

UTI2_SetIPConfig

Set IP and subnet mask address

Figure 95:UTI2_SetIPConfig

Table 26: Input variables for UTI2_SetIPConfig

Input variables Meaning

UTI2_pbyMacAddress Pointer to an array of 5 byte values, in which the read MAC address is entered.

ReturnVal Meaning

1 Read successful

< 0 Read fault (general fault)

-4 No valid pointer transferred.

NOTICE

A newly entered value must be saved as a non-volatile value by

a “SaveRegistry” or a “Reboot” command. The newly entered

value is accepted only after a restart of the PLC.

Input variables Meaning

UTI2_psIPAddress Pointer to a string variable which contains the IP address to be written.

UTI2_psSubnetmask Pointer to a string variable, which contains the value to be entered from the subnet
mask.

11 Libraries, function blocks and functions

11.2 XC200 specific functions

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 109

Table 27: Return values for UTI2_SetIPConfig

UTI2_SetIPDNS

Setting of the IP address of a DNS server in the registry

(if necessary must be saved with UTI2_SaveRegistry)

Figure 96:UTI2_SetIPDNS

Table 28: Input variables for UTI2_SetIPDns

Table 29: Return values for UTI2_SetIPDns

UTI2_SetIPGateway

Setting IPGateway address

Figure 97:UTI2_SetIPGateway

Table 30: Input variables for UTI2_SetIPGateway

ReturnVal Meaning

1 Write successful

< 0 Write failed (general fault)

-4 No valid pointer transferred.

Input variables Meaning

UTI2_psIPDns Pointer to a string variable which contains the IP address to be written.

ReturnVal Meaning

1 Write successful

< 0 Write failed

-4 No valid pointer transferred.

NOTICE

A newly entered value must be saved as a non-volatile value by

a “SaveRegistry” or a “Reboot” command. The newly entered

value is accepted only after a restart of the PLC.

Input variables Meaning

UTI2_psIPGatewayAddress Pointer to a string variable, which contains the value to be entered from the
gateway address.

11 Libraries, function blocks and functions

11.2 XC200 specific functions

110 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

Table 31: Return values for UTI2_SetIPGateway

UTI2_SetIPWins

Setting of the IP address of a WINS server in the registry

(if necessary must be saved with UTI2_SaveRegistry)

Figure 98:UTI2_SetIPWins

Table 32: Input variables for UTI2_SetIPWins

Table 33: Return values for UTI2_SetIPWins

UTI2_Reboot

Restart with registry save

Figure 99:UTI2_Reboot

Table 34: Input variables for UTI2_Reboot

Table 35: Return values for UTI2_Reboot

ReturnVal Meaning

1 Write successful

< 0 Write failed (general fault)

-4 No valid pointer transferred.

Input variables Meaning

UTI2_psIPGatewayAddress Pointer to a string variable which contains the IP address to be written.

ReturnVal Meaning

1 Write successful

< 0 Write failed

-4 No valid pointer transferred.

Input variables Meaning

UTI2_Dummy A dummy byte which is not evaluated in the function.

ReturnVal Meaning

1 Dummy return value / Reboot executed afterwards.

11 Libraries, function blocks and functions

11.2 XC200 specific functions

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 111

UTI2_SaveRegistry
Saving of the registry

Figure 100:UTI2_SaveRegistry

Table 36: Input variables for UTI2_SaveRegistry

Table 37: Return values for UTI2_SaveRegistry

Input variables Meaning

UTI2_Dummy A dummy byte which is not evaluated in the function.

ReturnVal Meaning

1 Function completed successfully

-1 Errors

11 Libraries, function blocks and functions

11.2 XC200 specific functions

112 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

11.2.5 Additional functions of the XC200_Util2.lib library for the XC-CPU202
The functions of the XC200_Util2.lib library can be seen in the following

overview:

Figure 101:Overview of the XC200_Util2.lib for the XC-CPU202

11 Libraries, function blocks and functions

11.2 XC200 specific functions

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 113

11.2.5.1 ComProgramming
UTI2_DisableComProgramming

Deactivates the serial interface as a programming interface (local COM2).

Figure 102:UTI2_DisableComProgramming

Table 38: Input variables for UTI2_DisableComProgramming

Table 39: Return values for UTI2_DisableComProgramming

UTI2_EnableComProgramming

Activates the serial interface as a programming interface (local COM2).

Figure 103:UTI2_EnableComProgramming

Table 40: Input variables for UTI2_EnableComProgramming

Table 41: Return variables for UTI2_EnableComProgramming

UTI2_GetComConfig

Shows the interface parameters of the local COM interface.

Figure 104:UTI2_GetComConfig

Input variables Meaning

None –

ReturnVal Meaning

TRUE Function completed successfully

FALSE Errors

Input variables Meaning

None –

ReturnVal Meaning

TRUE Function completed successfully

FALSE Errors

11 Libraries, function blocks and functions

11.2 XC200 specific functions

114 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

Table 42: Input variables for UTI2_GetComConfig

Table 43: Return values for UTI2_GetComConfig

UTI2_SetComConfig

Setting of the baud rate of the local serial interface

Figure 105:UTI2_SetComConfig

Table 44: Input variables for UTI2_SetComConfig

Table 45: Return values for UTI2_SetComConfig

11.2.5.2 Ethernet_Utilities
UTI2_EnableDHCP

Activates the DHCP function of the PLC.

Figure 106:UTI2_EnableDHCP

Table 46: Input variables for UTI2_EnableDHCP

Input variables Meaning

None –

ReturnVal Meaning

DWORDCOM Baud rate of the local COM port
(4800, 9600, 19200, 38400, 57600, 115200)

Input variables Meaning

dwBaudrate (4800, 9600, 19200, 38400, 57600, 115200)

ReturnVal Meaning

TRUE

FALSE

Input variables Meaning

Dummy BYTE

11 Libraries, function blocks and functions

11.2 XC200 specific functions

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 115

Table 47: Return values for UTI2_EnableDHCP

To work with DHCP you must reboot the UTI2_SaveRegistry function and

the PLC. After booting the controller requests an IP address from the DHCP

server.

To deactivate the DHCP function, you must call the function

UTI2_SetIPConfig or the browser command setipconfig.

UTI2_GetIPConfig

Issue of the IP address, subnet mask address and IP gateway address

Figure 107:UTI2_GetIPConfig

Table 48: Input variables for UTI2_GetIPConfig

Table 49: Return values for UTI2_GetIPConfig

UTI2_GetIPDns

Output of the IP address of the DNS server currently entered in the Registry

Figure 108:UTI2_GetIPDns

Table 50: Input variables for UTI2_GetIPDns

ReturnVal Meaning

TRUE always true

Input variables Meaning

UTI2_psIPAddress Pointer to a string in which the read IP address is written.

UTI2_psSubnetmask Pointer to a string in which the read address of the subnet mask is written.

UTI2_psIPGatewayAddress Pointer to a string in which the read address of the standard gateway is written.

ReturnVal Meaning

1 Read successful

< 0 Read failed

-4 No valid pointer transferred.

Input variables Meaning

UTI2_psIPDns Pointer to a string in which the read IP address is written.

11 Libraries, function blocks and functions

11.2 XC200 specific functions

116 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

Table 51: Return values for UTI2_GetIPDns

UTI2_GetIPWins

Output of the IP address of the WINS server currently entered in the Registry

Figure 109:UTI2_GetIPWins

Table 52: Input variables for UTI2_GetIPWins

Table 53: Return values for UTI2_GetIPWins

UTI2_GetKeepAliveTime

Output of KeepAliveTime in seconds

Figure 110:UTI2_GetKeepAliveTime

Table 54: Input variables for UTI2_GetKeepAliveTime

Table 55: Return values for UTI2_GetKeepAliveTime

ReturnVal Meaning

1 Read successful

< 0 Read failed

-4 No valid pointer transferred.

Input variables Meaning

UTI2_psIPWins Pointer to a string in which the read IP address is written.

ReturnVal Meaning

1 Read successful

< 0 Read failed

-4 No valid pointer transferred.

Input variables Meaning

Dummy BYTE Not evaluated in the function.

ReturnVal Meaning

KeepAliveTime KeepAliveTime in seconds

11 Libraries, function blocks and functions

11.2 XC200 specific functions

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 117

UTI2_GetMacAddress

Issue of the MAC address (MAC = Media Access Control)

Figure 111:UTI2_GetMacAddress

Table 56: Input variables for UTI2_GetMacAddress

Table 57: Return values for UTI2_GetMacAddress

UTI2_IsDHCPEnabled

Read DHCP status

Figure 112:UTI2_IsDHCPEnabled

Table 58: Input variables for UTI2_IsDHCPEnabled

Table 59: Return values for UTI2_IsDHCPEnabled

Input variables Meaning

UTI2_pbyMacAddress Pointer to an array of 5 byte values, in which the read MAC address is entered.

ReturnVal Meaning

1 Read successful

< 0 Read fault (general fault)

-4 No valid pointer transferred.

Input variables Meaning

Dummy BYTE Not evaluated in the function.

ReturnVal Meaning

TRUE DHCP is active.

FALSE DHCP inactive

11 Libraries, function blocks and functions

11.2 XC200 specific functions

118 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

UTI2_SetIPConfig

Set IP and subnet mask address

Figure 113:UTI2_SetIPConfig

Table 60: Input variables for UTI2_SetIPConfig

Table 61: Return values for UTI2_SetIPConfig

UTI2_SetIPDNS

Setting of the IP address of a DNS server in the registry

(if necessary must be saved with UTI2_SaveRegistry)

Figure 114:UTI2_SetIPDNS

Table 62: Input variables for UTI2_SetIPDns

Table 63: Return values for UTI2_SetIPDns

Input variables Meaning

UTI2_psIPAddress Pointer to a string variable which contains the IP address to be written.

UTI2_psSubnetmask Pointer to a string variable, which contains the value to be entered from the subnet
mask.

ReturnVal Meaning

1 Write successful

< 0 Write failed (general fault)

-4 No valid pointer transferred.

Input variables Meaning

UTI2_psIPDns Pointer to a string variable which contains the IP address to be written.

ReturnVal Meaning

1 Write successful

< 0 Write failed

-4 No valid pointer transferred.

11 Libraries, function blocks and functions

11.2 XC200 specific functions

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 119

UTI2_SetIPGateway

Setting IPGateway address

Figure 115:UTI2_SetIPGateway

Table 64: Input variables for UTI2_SetIPGateway

Table 65: Return values for UTI2_SetIPGateway

UTI2_SetIPWins

Setting of the IP address of a WINS server in the registry

(if necessary must be saved with UTI2_SaveRegistry)

Figure 116:UTI2_SetIPWins

Table 66: Input variables for UTI2_SetIPWins

Table 67: Return values for UTI2_SetIPWins

Input variables Meaning

UTI2_psIPGatewayAddress Pointer to a string variable, which contains the value to be entered from the
gateway address.

ReturnVal Meaning

1 Write successful

< 0 Write failed (general fault)

-4 No valid pointer transferred.

Input variables Meaning

UTI2_psIPGatewayAddress Pointer to a string variable which contains the IP address to be written.

ReturnVal Meaning

1 Write successful

< 0 Write failed

-4 No valid pointer transferred.

11 Libraries, function blocks and functions

11.2 XC200 specific functions

120 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

UTI2_SetKeepAliveTime

Sets the KeepAliveTime in seconds.

Figure 117:UTI2_SetKeepAliveTime

Table 68: Input variables for UTI2_SetKeepAliveTime

Table 69: Return values for UTI2_SetKeepAliveTime

11.2.5.3 Plc_Prg_Utilities
UTI2_CopyProjectToMmc

Copies a project to MMC/SD.

Figure 118:UTI2_CopyProjectToMmc

Table 70: Input variables for UTI2_CopyProjectToMmc

Table 71: Return values for UTI2_CopyProjectToMmc

UTI2_CopyProjectToUsb

Copies a project to the USB stick.

Figure 119:UTI2_CopyProjectToUsb

Input variables Meaning

5 – 500 Meaningful values in seconds

ReturnVal Meaning

TRUE Value valid

FALSE Value outside of valid range

Input variables Meaning

None –

ReturnVal Meaning

TRUE Function completed successfully.

FALSE Errors

11 Libraries, function blocks and functions

11.2 XC200 specific functions

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 121

Table 72: Input variables for UTI2_CopyProjectToUsb

Table 73: Return values for UTI2_CopyProjectToUsb

UTI2_CreateStartupIni

Creates the Startup.ini on disk_sys and disk_mmc.

Figure 120:UTI2_CreateStartupIni

Table 74: Input variables for UTI2_CreateStartupIni

Table 75: Return values for UTI2_CreateStartupIni

UTI2_GetPlcVersionList

Display of device version list

Figure 121:UTI2_GetPlcVersionList

Table 76: Input variables for UTI2_GetPlcVersionList

Table 77: Return values for UTI2_GetPlcVersionList

Input variables Meaning

None –

ReturnVal Meaning

TRUE Function completed successfully

FALSE Errors

Input variables Meaning

None –

ReturnVal Meaning

TRUE Function completed successfully

FALSE Errors

Input variables Meaning

pVersionList Pointer to UTI2_VersionList

ReturnVal Meaning

TRUE Function completed successfully

FALSE Errors

11 Libraries, function blocks and functions

11.2 XC200 specific functions

122 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

UTI2_Reboot

Restart of the PLC

Figure 122:UTI2_Reboot

Table 78: Input variables for UTI2_Reboot

Table 79: Return values for UTI2_Reboot

UTI2_RemoveProjectFromMmc

Removes the backup project from the MMC/SD

Figure 123:UTI2_RemoveProjectFromMmc

Table 80: Input variables for UTI2_RemoveProjectFromMmc

Table 81: Return values for UTI2_RemoveProjectFromMmc

Input variables Meaning

UTI_Dummy Set variable to 0.

ReturnVal Meaning

1 Dummy return value / Reboot executed afterwards.

Input variables Meaning

None –

ReturnVal Meaning

TRUE Function completed successfully

FALSE Errors

11 Libraries, function blocks and functions

11.2 XC200 specific functions

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 123

UTI2_RemoveProjectFromUsb

Removing the backup project from the USB stick

Figure 124:UTI2_RemoveProjectFromUsb

Table 82: Input variables for UTI2_RemoveProjectFromUsb

Table 83: Return values for UTI2_RemoveProjectFromUsb

UTI2_RemoveStartupIni

Removes the Startup.ini file from the disk_sys and the disk_mmc.

Figure 125:UTI2_RemoveStartupIni

Table 84: Input variables for UTI2_RemoveStartupIni

Table 85: Return values for UTI2_RemoveStartupIni

Input variables Meaning

None –

ReturnVal Meaning

TRUE Function completed successfully

FALSE Errors

Input variables Meaning

None –

ReturnVal Meaning

TRUE Function completed successfully

FALSE Errors

11 Libraries, function blocks and functions

11.2 XC200 specific functions

124 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

UTI2_SaveRegistry

Saves the changes retentively in the Registry.

Figure 126:UTI2_SaveRegistry

Table 86: Input variables for UTI2_SaveRegistry

Table 87: Return values for UTI2_SaveRegistry

11.2.5.4 USER_IP
UIP_AddUserIPAddress

Adds a new IP address to the system.

Figure 127:UIP_AddUserIPAddress

Table 88: Input variables for UIP_AddUserIPAddress

Table 89: Return values for UIP_AddUserIPAddress

Input variables Meaning

UTI2_Dummy Set variable to 0.

ReturnVal Meaning

1 Function completed successfully

-1 Errors

Input variables Meaning

IPAddress IP address to be added

IPMask Associated IP screen to be added

ReturnVal Meaning

TRUE IP address was successfully added.

FALSE Table full; Address already present in the User IP table, address already present in
operating system table

11 Libraries, function blocks and functions

11.2 XC200 specific functions

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 125

UIP_DeleteUserIPAddress

Deletes an IP address from the system.

Figure 128:UIP_DeleteUserIPAddress

Table 90: Input variables for UIP_DeleteUserIPAddress

Table 91: Return values for UIP_DeleteUserIPAddress

UIP_GetFirstuserIPAddress

Reads the first user IP address entered from the user IP table.

Figure 129:UIP_GetFirstuserIPAddress

Table 92: Input variables for UIP_GetFirstuserIPAddress

Table 93: Return values for UIP_GetFirstuserIPAddress

Input variables Meaning

IPAddress Identifies the entry to be deleted from the user IP table.

ReturnVal Meaning

TRUE Associated user IP table entry was deleted.

FALSE Associated user IP table entry was not present.

Input variables Meaning

IPAddress Points to wildcard for the user table entry to be determined.

IPMask Points to wildcard for the user table entry to be determined.

ReturnVal Meaning

TRUE Valid entry found.

FALSE The user IP address table does not contain an entry.

11 Libraries, function blocks and functions

11.2 XC200 specific functions

126 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

UIP_GetNextUserIPAddress

Reads the next user IP address entered from the user IP table.

Figure 130:UIP_GetNextUserIPAddress

Table 94: Input variables for UIP_GetNextUserIPAddress

Table 95: Return values for UIP_GetNextUserIPAddress

UIP_GetUserIPAddressCount

Supplies the number of the user IP entries currently present in the user

IP table.

Figure 131:UIP_GetUserIPAddressCount

Table 96: Input variables for UIP_GetUserIPAddressCount

Table 97: Return values for UIP_GetUserIPAddressCount

Input variables Meaning

IPAddress Pointer to DWORD wildcard for the user table entry to be determined.

IPMask Pointer to DWORD wildcard for the user table entry to be determined.

ReturnVal Meaning

TRUE Valid entry found

FALSE The user IP address table does not contain any other entry.

Input variables Meaning

None –

ReturnVal Meaning

0 up to maximum number
(= 3)

Number of the values currently entered in the user IP address table

11 Libraries, function blocks and functions

11.2 XC200 specific functions

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 127

UIP_MakeUserIP

Converts the IP string to IP_DWORD (Bigendianness).

Figure 132:UIP_MakeUserIP

Table 98: Input variables for UIP_MakeUserIP

Table 99: Return values for UIP_MakeUserIP

Input variables Meaning

IPAdress Pointer to IP address apostrophe (e.g. 192.168.119.1')

ReturnVal Meaning

IP address in hexadecimal
representation

IP as DWORD (e.g.16#C0A8770B – corresponds to the above IP address
192.168.119.11)

0 Error in the input string or invalid string

12 Browser commands

11.2 XC200 specific functions

128 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

12 Browser commands
The PLC browser is a text based PLC terminal monitor. Commands for

scanning particular information from the PLC are entered in an entry line and

sent to the PLC as a string. The response string is shown in a result window

of the browser. This function can be used for diagnosing and debugging. The

browser commands available for the XC200 target system are as follows.

Table 100:Browser commands (in alphabetical order)

Attribute ID Description

? Get a list of implemented commends

caninfo Display CAN controller information

canload Display of the loading of the CAN fieldbus

clearerrorlist Erase error list

cleareventlist Delete event list

copyprojtommc1) Copy the (boot) project onto a Multi Media Card (incl. directory structure/project directory)

copyprojtousb1) Copy the (boot) project onto the USB drive (incl. directory structure/project directory)

createstartupini Create the Startupini file on the disk_sys and disk_mmc

delpwd Erase password for online access

dpt Output data pointer table

enabledhcp Activates the DHCP function of the PLC.

filecopy1) Copy File

filedelete1) Delete File

filedir1) Directory list [First folder in the list]

filerename1) Rename file

getbattery Display battery status

getcomconfig Display baud rate of serial interface 1

getcommunicationport Read the interface parameters for the TCP/IP communication

geterrorlist Display error list

geteventlist Display event list

getipconfig Display Ethernet address

getipdns Display current DNS address

getipgateway Display Gateway address

getipwins Display current WINS address

getlanguage Display dialog language for the error list

getmacaddress Display MAC address [80-80-99-2-x-x]

getprgprop Read program information

getprgstat Read program status

getrtc Display data and time [YY:MM:DD] [HH:MM:SS]

getswitchpos Display status of the operating switch

gettargetname Display device names

getversion Display version information

isdhcpenabled Scanning whether DHCP is activated

12 Browser commands

11.2 XC200 specific functions

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 129

memdisk_sys Displays the free memory at disk_sys.

pid Output project ID

pinf Output project information

plcload1) Display system performance: CPU usage

ppt Output module pointer table

reboot Accept changes (registry save) and restart PLC

reflect1) Mirror current command line for test purposes.

reload Reload boot project again

removeprojfrommmc Removes the backup project from the MMC/SD

removestartupini Erases the Startup.ini file from the disk_sys and disk_mmc

resetprg Reset user program

resetprgcold User program cold reset

resetprgorg Reset user program to original state

restoreretain Restore retentive data from file [file name]

rtsinfo runtime system information (version, IO drivers)

saveregistry Accept modifications

saveretain Save retentive data in the file [file name]

serialProgrammingOn “Enable serial programming with CoDeSys on XC202 local COM2 port” – enables the local COM as a programming
interface. Factory setting. Serial interface in programming mode

serialProgrammingOff “Disable serial programming with CoDeSys on XC202 local COM2 port” – Disables the local COM as programming
interface. Serial interface in programming mode

setcomconfig1) Set the baud rate of the serial interface [setcomconfig 4800,9600,19200, 38400, 57600,115200]

setcommunicationport Set the interface parameters for the TCP/IP communication

setipconfig1) Set Ethernet configuration [setipconfig adr1.adr2.adr3.adr4 mask1.mask2.mask3.mask4]
e.g. setipconfig 192.168.119.010 255.255.255.000

setipdns Set DNS address [setipdns adr1.adr2.adr3.adr4]

setipgateway1) Set gateway address [adr1.adr2.adr3.adr4]; e.g.: setipgateway 192.168.119.010

setipwins Set WINS address [setipwins adr1.adr2.adr3.adr4]

setlanguage Determine dialog language for error list [deu/eng/fra/ita]

setpwd Activate password for online access

setrtc1) Set date and time [YY:MM:DD] [HH:MM:SS]; e.g.setrtc 03:07:24 10:46:33

settargetname1) Set device name [devicename]; e.g.: settargetname test

shutdown Accept changes (registry save) and switch off PLC

startprg Start user program

stopprg Stop user program

tsk Output IEC task list with task information

tskclear Clear IEC task information: Cyclecount, accumulated, max. and min. cycle

updatefrommmc update windows image from /disk_mmc/MOELLER/XC-CPU201/btsxc201_Vxxxxx.nbk

1) You can call up help with extended information for these Browser commands in the CoDeSys software.
Enter a question mark followed by a space before the command e.g.: ? plcload in the command line of the PLC browser

Attribute ID Description

12 Browser commands

12.1 Calling browser commands

130 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

12.1 Calling browser commands
▶ Activate the “Resources” tab in the CODESYS software and select the

“PLC browser” folder.

▶ Click at the top right of the window on the button “…”

▶ Double-click the required browser command to select it. Add other

settings to the command if necessary, e.g. baud rate withsetcomconfig,

￫ Table 100.

▶ The command may require additional parameters.

▶ Press the Return button.

The result will be displayed.

12.2 Accessing communications parameters
Settings of the communication parameters via Browser commands such as

device names, Ethernet addresses, gateway addresses or baud rates of the

serial interface, are only modified and not directly accepted or saved in the

database entry in Windows-CE REGISTRY with the following commands.

The function is only accepted after the next Windows CE start.

� setcomconfig
� setipconfig
� setipgateway
� settargetname

After one of these browser commands has been executed, saving of the

Registry is necessary. The following browser commands are available for

that.

� saveregistry (saves the registry)

� shutdown (saves the registry and waits for “voltage off”)

� reboot (saves the registry and generates a “software reset”)

The commands setcomconfig, setipconfig, setipgateway and settargetname must

be supplemented in the command line of the PLC browser, e.g.B. with the

Baud rate at setcomconfig, ￫ Table 100. Close the line by pressing RETURN.

An answer is received in the window with the grey background.

The setipconfig browser command automatically generates a settargetname.

The target name is comprised of a short description of the target system and

the last numeric block of the IP address, e.g..: Xc201_Nr010.

The target name is automatically generated according to the IP address and

the target system. It can be called via gettargetname.

12 Browser commands

12.3 Display CPU loading (plcload)

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 131

12.3 Display CPU loading (plcload)

The plcload browser command provides information on the current system

loading of the central processing unit.

A utilization of more than 95 percent can cause a failure of the serial and

Ethernet communication and/or an impairment of the real-time response.

12.3.1 Display the loading of the CAN bus (canload)
The PLC browser command canload belongs to the “XC200_Util.lib” library.

It indicates the loading of the CAN bus.

Examples for display:

Figure 133:Loading of the CAN bus (Example 1)

a Loading of the CAN bus in the last integration interval.

b Current baud rate of the CAN bus

c Time via which the loading of the CAN bus has been integrated.

The integration time is set by default to 500 ms and can‘t be changed via the browser.

Figure 134:Loading of the CAN bus with alarm message (example 2)

a Alarm message, ￫ Table 101

Table 101:Possible alarm messages

Alarm message Meaning

ATTENTION: HIGH BUSLOAD Loading of the CAN bus f 75 %

CAN bus not activated The CAN bus is not active.

CAN-Busload = Invalid Calculation Monitoring of the bus load has failed.

c
B
a

a

12 Browser commands

12.3 Display CPU loading (plcload)

132 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

12.3.2 Access to memory objects
These commands have the name of the memory card, the directory structure

and the file names as parameters. Pay close attention to the respective

special characters when entering commands.

� filecopy
� FileRename
� filedelete
� filedir

Examples for XC-CPU201

filedir (without parameter details the default setting is: \\disk_sys\\project)

filedir \\disk_sys

filedir \\disk_sys\\project

filedir \\disk_mmc\\MOELLER\\XC-CPU201-EC512k-8DI-6DO

filedir \\disk_mmc\\MOELLER\\XC-CPU201-EC512k-8DI-6DO\\project\\aaa.prg

filedir \\disk_usb\\MOELLER\\XC-CPU201-EC512k-8DI-6DO

filedir \\disk_usb\\MOELLER\\XC-CPU201-EC512k-8DI-6DO\\project\\bbb.prg

filecopy \\disk_sys\\project\\default.prg \\disk_sys\\project\\yyy.prg

filerename \\disk_sys\\project\\yyy.prg \\disk_sys\\project\\xxx.prg

filecopy \\disk_sys\\project\\default.prg \\disk_mmc\\MOELLER\\XC-CPU201-EC512k-8DI-6DO \\project\\default.prg

filedelete \\disk_mmc\\MOELLER\\XC-CPU201-EC512k-8DI-6DO\\project\\default.prg

￫ If the CPU “XC-CPU201-EC256K-8DI-6DO” is available, the

instruction section “512” is replaced by “256”.

On the XC-CPU202 \CONTROL is used instead of \MOELLER.

12 Browser commands

12.3 Display CPU loading (plcload)

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 133

12.3.3 Error and event list after calling browser commands
The dialog language for error and event lists is available in German, English,

French and Italian.

The active language is displayed with getlanguage, the conversion of the

language is implemented with setlanguage.

Examples for language conversion

If the error and event list is to be displayed in German, the setlanguage deu

browser command should be entered. The input is ended with “Return”.

You receive the following displayed window.

Figure 135:Browser command “setlanguage”

The following is an overview of the messages which can occur in the

browser error and event lists. The module ID indicates which program type

the fault signals:

TheEvent-ID defines the fault number of the program. The error number can

start at 0 for every module ID.

Modul-ID Program Type

1 RTS (runtime system)

2 CST (Moeller specific adaption)

3 XIO (XIOC)

4 CAN

5 IEC

Modul-ID Event-ID Error Message

2 1 Stop program

2 2 Start program

2 3 Reset warm

2 4 Cold reset

2 5 Reset Hard

2 6 Battery empty

2 7 No program loaded

2 8 Task monitoring

4 10 CAN controller started

4 20 CAN controller stopped

4 30 Overflow

12 Browser commands

12.3 Display CPU loading (plcload)

134 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

4 31 Overflow

4 40 Overflow

4 41 Overflow

4 42 Overflow

4 50 Critical CAN fault

4 60 CAN controller in status error warning

4 70 CAN controller in status Bus-Off

1 16 Task monitoring fault

1 17 Hardware monitoring fault

1 18 Bus error

1 19 Checksum error

1 20 Field bus error

1 21 I/O update fault

1 22 Cycle time exceeded

1 80 Invalid instruction

1 81 Access violation

1 82 Privileged instruction

1 83 Page fault

1 84 Stack overflow

1 85 Invalid scheduling

1 86 Invalid access Identity

1 87 Access on protected page

1 256 Access to uneven address

1 257 Array limit exceeded

1 258 Division by zero

1 259 Overflow

1 260 Exception cant be overlooked

1 336 Floating decimal point: General fault

1 337 Floating decimal point: Not normalized operand

1 338 Floating decimal point: Division by zero

1 339 Floating decimal point: Inexact result

1 340 Floating decimal point: Invalid instruction

1 341 Floating decimal point: Overflow

1 342 Floating decimal point: Stack verification error

1 343 Floating decimal point: Underflow

Modul-ID Event-ID Error Message

13 Appendix

13.1 Characteristic of the Ethernet cable

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 135

13 Appendix

13.1 Characteristic of the Ethernet cable
Only use the intended cable type for wiring the Ethernet network. The cable

must be at least category Cat-5 compatible. Cat-5 cables are suitable for data

transfer rates of between 10 and 100 MBit/s.

Table 102:Characteristics of the Ethernet cable

The maximum segment length is 100 m. If the network expansion is greater,

suitable infrastructure components must be used. For this, transceivers,

hubs and switches must be considered.

The cable to be selected depends on the the ambient conditions at the

installation location (interference, flexibility, transmission speed).

The installation guidelines for the (Ethernet) wiring are described in

ISO/IEC 11801 and EN50173.

UTP1) STP2) SSTP3)

Transmission medium Unshielded Twisted Pair Shielded Twisted Pair Shielded Twisted Pair

Transfer speed 10 MBit/s
100 MBit/s

10 MBit/s
100 MBit/s

10 MBit/s
100 MBit/s

Surface mounting Stranded every two
cores

Stranded every two
cores

Stranded every two
cores

Without screen with full screen with full screen, each
core pair is additionally
screened

Flexibility Medium Medium Medium

Screening None Single double

Topology Point-to-point Point-to-point, line, star Point-to-point, line, star

Maximum segment length 100 m 100 m 100 m

1) Use in industrial environments is not recommended due to poor EMC characteristics.

2) The conductor pairs are shrouded in a full shield. The task of the full screen is to prevent external interference.
This cable is (conditionally) suitable for industrial use due to the high crosstalk values between the individual
conductor pairs.

3) This cable has a separate internal screen for every conductor pair as opposed to the STP cable.
This significantly reduces the crosstalk values and the cable also demonstrates a good level of protection
against EMC. This characteristic makes the SSTP cable particularly good for industrial use.

13 Appendix

13.2 Properties of the CAN cable

136 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

13.2 Properties of the CAN cable

Use only cable that is approved for CAN application, with the following

characteristics:

� Characteristic impedance 100 to 120 Ω
� Capacitance < 60 pF/m

The specifications for cable, plugs and bus termination resistor are defined in

ISO 11898. Some requirements and specifications for the CAN network are

listed below.

In Table 104 standard parameters for the CAN network with fewer than 64

CAN stations are listed. (the table complies with the specifications of

ISO 11898.)

The length of the CAN bus cable is dependant on the conductor cross-

section and the number of bus users connected. The following table includes

values for the bus length in dependance on the cross-section and the

connected bus users, which guarantee a secure bus connection (table

corresponds with the stipulations of the ISO 11898).

Table 103:Cable cross-section, bus length and number of bus users conform to ISO 11898

If the bus length is greater than 250 m and/or are more than 64 slaves

connected, the ISO 11898 demands a residual ripple of the supply voltage of

Ȱ 5%.

As the bus cable is connected directly to the COMBICON connector of the

CPU, additional details concerning stub lines are not required. The bus users

are configured in the “PLC Configuration” window of the CPU in the

programming software.

Cable recommendation: LAPP cable, UNITRONIC-BUS LD

Table 104:Standard parameters for CAN network cable according to the ISO 11898

Cable cross-section [mm] Maximum length [m]

n = 32 n = 64 n = 100

0.25 200 170 150

0.5 360 310 270

0.75 550 470 410

n = number of connected bus users

Bus length Loop resistance Core cross-
section

Bus
termination
resistor

Baud rate at cable
length

 [m] [mO/m] [mm2] [O] [Kbit/s]

0 – 40 70 0.25 – 0.34 124 1000 at 40 m

40 – 300 < 60 0.34 – 0.6 150 – 300 > 500 at 100 m

300 – 600 < 40 0.5 – 0.6 150 – 300 > 100 at 500 m

600 – 1000 < 26 0.75 – 0.8 150 – 300 > 50 at 1000 m

13 Appendix

13.3 Transparent mode: Text output via RS232 (example)

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 137

13.3 Transparent mode: Text output via RS232 (example)
The example shows a text output via the RS232 interface of the CPU in

transparent mode.

PROGRAM PLC_PRG

VAR

BRAKE:TONE;

STEP:UINT;

dwSioHandle: DWORD;

WriteBuffer:STRING(26);

nWriteLength: DWORD;

typComSettings:COMSETTINGS;

typComSetSettings:BOOL;

out AT %QB0:BYTE;

INP AT %IX0.0:BOOL;

STEPERR: UINT;

Closeresult: BOOL;

Coun: DWORD;

RESET: BOOL;

END_VAR

(*Cycle time: 50ms!*)

CASE STEP OF

0: IF INP =1 THEN (*Start: IX0.0 = TRUE*)

STEP:=1;

END_IF

1: (*Öffnen/Open*)

IF dwSioHandle=0 THEN

 dwSioHandle:=xSysComOpen(Port:=Com1);

IF (dwSioHandle>0) THEN

typComSettings.typBaudRate :=Baud_9600;

typComSettings.typDataLength :=Data_8Bit;

typComSettings.typParity :=NO_PARITY;

typComSettings.typPort :=COM1;

typComSettings.typStopBits :=ONE_STOPBIT;

xSysComSetSettings(dwHandle:=dwSioHandle,
ComSettings:=ADR(typComSettings));

STEP :=2;

RESET:=TRUE;

ELS
E

STEPERR:=STEP;

STEP:=99;

END_IF

WriteBuffer:='This is the sent text';

END_IF

13 Appendix

13.3 Transparent mode: Text output via RS232 (example)

138 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

2: (*Ausgabe/Output*)

IF (dwSioHandle>0) THEN

 nWriteLength:=xSysComWrite(dwHandle:=dwSioHandle,

 dwBufferAddress:=ADR(WriteBuffer),

 dwBytesToWrite:=LEN(WriteBuffer)+1,dwTimeOut:=0);

END_IF

IF nWriteLength = LEN(WriteBuffer)+1 THEN

 STEP:=3;

 Coun:=coun+1;

END_IF

3: (*Schliessen/Shut*)

Closeresult:=xSysComClose(dwHandle:=dwSioHandle);

IF (Closeresult = TRUE) THEN

 dwSioHandle:=0;

 STEP:=4;

ELSE

 STEPERR:=STEP;

 STEP:=99;

END_IF

4: (*Verzögerung/Delay*)

BRAKE(IN:=1, PT:=T#2s);

IF BRAKE.Q = 1 THEN

 STEP :=5;

 BRAKE(IN:=0, PT:=T#2s);

END_IF

5: (*End*)

STEP:=0;

99: (*Fehler/Error*)

STEPERR:=STEPERR;

END_CASE

13 Appendix

13.4 Access to the CPU drives/memory card

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 139

13.4 Access to the CPU drives/memory card

13.4.1 SysLibFile.lib library
The SysLibFile library allows you access to the file system of the XC200,

the MMC/SD and the USB stick.

The library contains the following functions:

� SysFileClose
� SysFileCopy
� SysFileDelete
� SysFileEOF
� SysFileGetPos
� SysFileGetSize
� SysFileGetTime
� SysFileOpen
� SysFileRead
� SysFileRename
� SysFileSetPos
� SysFileWrite

13.4.2 Modes for opening a file

13.4.2.1 “r” mode
The “r” mode opens the file for reading. The file handle which is returned by

the SysFileOpen function is invalid if this file does not exist. The value “-1” or

“16#FFFFFFFF” is then displayed.

The file is opened for sequential reading and with each read access, the read

position will be advanced by the number of bytes which have been read.

￫ Information about these functions can be found in the online

documentation of the CODESYS programming system under the

“SysFile<Function>” search term.

CAUTION

� The PLC may not be switched off when files from the

MMC/SD or the USB stick are opened.

� A power failure when a file is opened can destroy the memory

card.

� All the open files must be closed before switch off of the

voltage.

13 Appendix

13.4 Access to the CPU drives/memory card

140 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

13.4.2.2 “w“ mode
The “w” mode opens the file in write mode. An existing file with this name

will be overwritten.

13.4.2.3 “a” mode
The “a” mode (append) opens a file in the “w” mode. When data is written

to this file, then new text is added to the end of the file.

The SysFileRead and SysFileWrite functions are each transferred with a buffer

and a file handle return value from the SysFileOpen function.

In order to close a file, the SysFileClose is called with the return value from

the SysFileOpen function.

13.4.3 Examples of the “SysFile...” functions
The SysFileOpen function is used to open a file. The function receives the file

names – complete with file path – transferred to it. Furthermore, the function

receives the mode in which the file should be opened.

Open in “r” mode

Open in “w” mode

Open in “a” mode

Closing a file

CAUTION

If you open a file with “w” mode and close it again, this file is

overwritten and a file length of 0 bytes is generated.

OpenFile1 := SysFileOpen('\disk_sys\project\File1','r');

OpenFile2 := SysFileOpen(’\disk_mmc\MOELLER\XC-CPU201-EC512k-8DI-6DO\Project \File2’,’w’);

OpenFile3 := SysFileOpen(’\disk_usb\MOELLER\XC-CPU201-EC512k-8DI-6DO\Project \File3’,’a’);

CloseFile:=SysFileClose(OpenFile2);

CloseFile:=SysFileClose(OpenFile3);

￫ On the XC-CPU202 \CONTROL is used instead of \MOELLER.

13 Appendix

13.5 Dimensions

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 141

13.5 Dimensions

XC-CPU200 XT-FIL-1 line filter

Module rack XIOC-BP-XC XIOC-BP-XC1

95 mm (3.74")60 mm (2.36")

1
0

0
 m

m
 (

3
.9

4
"

)

100 mm (3.94")

90

35 30

8.
5

4.
5

35
.5

88

M
 4

14

21

53
.5

53
.5

50
50

1

3.5 360

39

16

3.5 390

39

53
.5

53
.5

50
50

1

16 60

13 Appendix

13.6 Technical Data

142 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

13.6 Technical Data

XC-CPU201-EC256-8DI-6DO(-XV),
XC-CPU201-EC512-8DI-6DO(-XV)
XC-CPU202-EC4M-8DI-6DO-XV

General

Standards IEC/EN 61131-2
EN 50178

Ambient temperature °C 0 - +55

Storage temperature °C -25 - +70

Mounting position Horizontal

Relative humidity, non-condensing (IEC/EN 60068-2-30) % 10 - 95

Air pressure (in operation) hPa 795 - 1080

Vibration resistance 5 - 8.4 Hz ?±3.5 mm
8.4 - 150 Hz ±1.0 g

Mechanical shock resistance 15 g/11 ms

Overvoltage category II

Pollution degree 2

Degree of protection IP20

Rated insulation voltage V 500

Emitted interference EN 61000-6-4, Class A

Interference immunity EN 61000-6-2

Battery (lifespan) Worst case 3 years, typical 5 years

Weight kg 0.23

Dimensions (W x H x D) mm 90 x 100 x 100

connection terminals Plug-in terminal block

Terminal capacity

Screw terminals

flexible with ferrule mm2 0.5 - 1.5

solid mm2 0.5 - 2.5

Spring-cage terminals

Flexible mm2 0.34 - 1.0

solid mm2 0.14 - 1.0

Electromagnetic compatibility (EMC) ￫ Page 146

13 Appendix

13.6 Technical Data

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 143

Power supply for the CPU (24 V/0 V)

Mains failure bridging

Duration of dip ms 10

Repetition rate S 1

Input rated voltage V DC 24

admissible range V DC 20.4 - 28.8

Current consumption A normally 0.85

Residual ripple % ≦ 5

Maximum heat dissipation (without local I/O) PV CO 6

TVSS Yes

Protection against polarity reversal Yes

External line filter Part no.: XT-FIL-1

Internal line filter Yes

Inrush current xIn No limitation
(limited only by upstream 24 V DC power supply unit)

Output voltage for the signal modules

Output rated voltage V DC 5

Output current A 3.2

Off-load stability Yes

Short-circuit strength Yes

Potential isolation from supply voltage No

CPU

Microprocessor XC-CPU201…: Risc processor
XC-CPU202…: ARM 532MHz

memory

Program code kByte XC-CPU201-EC256…: 512 from operating system version V1.04.01
XC-CPU201-EC512…: 2048 from operating system version
V1.04.01
XC-CPU202-EC4M…: 4096

Program data kByte XC-CPU201-EC256…: 256
XC-CPU201-EC512…: 512
XC-CPU202-EC4M…: 512

Marker (EC256K/EC512K/EC4M) kByte 16/16716

Retain data (EC256K/EC512K/EC4M) kByte 32/32/64

Persistent data (EC256K/EC512K/EC4M) kByte 32/32/64

Watchdog Yes

RTC (Real-Time Clock) Yes

Interfaces

Multi-Media Card or Secure Digital Card Yes, optional, order separately

XC-CPU201-EC256-8DI-6DO(-XV),
XC-CPU201-EC512-8DI-6DO(-XV)
XC-CPU202-EC4M-8DI-6DO-XV

13 Appendix

13.6 Technical Data

144 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

Ethernet interface

Baud rate MBit/s 10/100

Terminal type RJ45

RS 232 serial interface (without handshake line)

Baud rate Bit/s 4800, 9600, 19200, 38400, 57600, 115200

Terminal type RJ45

potential isolation No

in the “transparent mode”

Baud rate Bit/s 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200

Character formats 8E1, 8O1, 8N1, 8N2

CAN(open)/easyNet

Baud rate Kbits/s 20/50/100/125/250/500/800/1000

Potential isolation Yes

Device profile According to DS 301 V4

29 Bit Identifier XC-CPU201: No
XC-CPU202: Yes

PDO type asyn., cyc., acyc.

Connection Plug-in spring-loaded terminal block, 6-pole

Bus terminating resistors With XC-CPU201…: external; with XC-CPU202…: switchable

Module Count max. 126

USB interface, V1.1 with XC-CPU201…, V2.0 with XC-CPU202…

Baud rate (Autochanging) MBit/s 1.5/12

Potential isolation No

Power supply for connected devices:

Rated operating voltage V DC 5

max. current A 0.5

Terminal type Downstream plug

Power supply of local inputs/outputs (24 VQ/0 VQ)

Rated operating voltage V DC 24

Voltage range V DC 20.4 - 28.8

Current consumption A max. 3 (load dependent)

Potential isolation

Power supply against CPU voltage Yes

TVSS Yes

Protection against polarity reversal Yes

XC-CPU201-EC256-8DI-6DO(-XV),
XC-CPU201-EC512-8DI-6DO(-XV)
XC-CPU202-EC4M-8DI-6DO-XV

13 Appendix

13.6 Technical Data

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 145

Digital inputs

Input rated voltage V DC 24, observe polarity

Voltage range V DC 19.2 - 30

Input current per channel at rated operating voltage

Functionality: Normal digital input mA normally 3.5

Functionality: Fast digital input mA normally 7

Heat dissipation per channel

Functionality: Normal digital input mW normally 85

Functionality: Fast digital input mW normally 168

Switching levels as per EN 61131-2

Limit values type “1” V DC low < 5, high > 15

Input delay

Functionality: Normal digital input

Off r On ms normally 0.1

On r Off ms normally 0.1

Functionality: Fast digital input

Off r On ms normally 7

On r Off ms normally 1

Inputs Count 8

Channels with the same reference potential Count 8

Of which can be used as

Interrupt inputs Count 2

Counter input 32 Bit or Count 1

Counter input 16 Bit or Count 2

Incremental encoder input (Track A, B, C) Count 1

Max. input frequency kHz 50

Status display LED

Digital outputs

Heat dissipation per channel

QX0.0 and QX0.5 CO 0.08

Load circuits

QX0.0 and QX0.5 A 0.5

Output delay

Off r On typ 0.1 ms

On r Off typ 0.1 ms

Channels Count 6

Channels with the same reference potential Count 6

XC-CPU201-EC256-8DI-6DO(-XV),
XC-CPU201-EC512-8DI-6DO(-XV)
XC-CPU202-EC4M-8DI-6DO-XV

13 Appendix

13.6 Technical Data

146 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

Status display LED

duty factor % DF 100

Utilization factor g 1

XC-CPU201-EC256-8DI-6DO(-XV),
XC-CPU201-EC512-8DI-6DO(-XV)
XC-CPU202-EC4M-8DI-6DO-XV

Electromagnetic compatibility

Interference immunity

ESD (IEC/EN 61000-4-2) Contact discharge 4 kV

Air discharge 8 kV

RFI (IEC/EN 61000-4-3) AM (80 %) 80 – 1000 MHz 10 V/m

GSM mobile (IEC/EN
61000-4-3)

PM 800 – 960 MHz 10 V/m

Burst (IEC/EN 61000-4-4) Network/digital I/O (direct) 2 kV

Analog I/O, fieldbus
(capacitive connection)

1 kV

Surge (IEC/EN 61000-4-5) Digital I/O, asymmetric 0.5 kV

Analog I/O, asymmetric,
connection on the screen

1 kV

Mains DC, asymmetric 1 kV

Mains DC, symmetrical 0.5 kV

Cable conducted interference, induced by high frequency fields (previously:
radiated RFI) (IEC/EN 61000-4-6)

3 V

13 Appendix

13.7 Technical data – Filter

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 147

13.7 Technical data – Filter

24 V DC filter XT-FIL-1

General

Standards IEC/EN 61131-2
EN 50178

Ambient temperature °C 0 - +55

Storage °C -25 - +70

Mounting position horizontal/vertical

Relative humidity, non-condensing (IEC/EN 60068-2-30) % 10 - 95

Air pressure (in operation) hPa 795 - 1080

Vibration resistance 5 - 8.4 Hz ±3.5 mm
8.4 - 150 Hz ±1.0 g

Mechanical shock resistance 15 g/11 ms

Impact strength 500 g/o 50 mm ±25 g

Overvoltage category II

Pollution degree 2

Degree of protection IP20

Rated surge voltage V 850

Emitted interference EN 61000-6-4, Class A

Interference immunity EN 61000-6-2

Weight g 95

Dimensions (W x H x D) mm 35 x 90 x 30

connection terminals Screwed terminal

Terminal capacity

Screw terminals

flexible with ferrule mm2 0.2 - 2.5 (AWG22-12)

solid mm2 0.2 - 2.5 (AWG22-12)

power supply

Input voltage V DC 24

admissible range V DC 20.4 - 28.8

Residual ripple % ≦ 5

TVSS Yes

Potential isolation

Input voltage against PE Yes

Input voltage against output voltage No

Output voltage to PE Yes

Output voltage V DC 24

Output current A 2.2

13 Appendix

13.7 Technical data – Filter

148 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 149

Index

A
Addressing

Inputs/outputs and markers 66

PLC on CAN Bus . 81

Aeration . 20

Alter parameters . 71

B
Backup time, battery . 12

Battery . 12

Baud Rate . 81

Baud rate

Specifying/changing . 71

Block size, for data transfer 79

Boot project . 39

Deleting, on SD/MMC 40

Deleting, on USB stick 40

Breakpoint . 34

Browser commands . 128

C
Cable routing . 21

Cache memory . 14

CAN

-Device parameters . 83

Interface . 15

Interface, configuration 28

-Master routing settings 81

Telegrams, receive/send from user program .

16

CAN stack . 55

CANopen cable, properties 136

CODESYS gateway server 80

COLDSTART (startup behavior) 32

commissioning . 34

Communication

Channel . 72, 84

Error . 71

Parameter . 70

Communication with the target PLC 82

ComProgramming . 113

Configuration, inputs/outputs 87

Connection

Incremental encoder 24

Inputs/outputs . 23

Interrupt actuators . 25

PC . 26

Power supply and local inputs/outputs 11

Up/down counter . 25

Voltage supply . 23

Connection set-up . 70

Control panel layout . 20

Counter . 93

CPU

Display of the operating states 34

Functional areas . 9

Load . 131

Cyclic task . 49

D
Data security . 12

Data transfer, block size . 79

Debugging . 34, 128

Decrementing . 18, 25

Diagnostics . 69, 128

via CAN . 83

Dialog language, for errors and event lists . . . 133

Dimensions . 141

Direct peripheral access

Failure code . 63

Direct periphery access . 58

Documentation, online . 7

Down counter . 93

Connection . 25

Download of programs . 37

Drives . 14, 139

E
easyNET interface . 15, 28

Electromagnetic interference 20

Error list . 133

Ethernet cable, properties 135

Ethernet interface . 14

Event controlled task . 50

Event list . 133

150 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

F
Failure code, with direct peripheral access 63

Flash . 14

Forcing . 35

Function blocks . 100

Functional areas, CPU . 9

Functions . 100

CAN_BUSLOAD . 101

DisableInterrupt . 96

EnableInterrupt . 96

GetSlotPtr . 63

IEC_DeleteErrorList 102

IEC_DeleteEventList 102

IEC_GetErrorID . 103

IEC_GetEventID . 103

IEC_GetNrOfErrors 104

IEC_GetNrOfEvents 104

IEC_WriteError . 105

IEC_WriteEvent . 105

Read...Direct . 60

SysFile… . 140

UIP_AddUserIPAddress 124

UIP_DeleteUserIPAddress 125

UIP_GetFirstuserIPAddress 125

UIP_GetNextUserIPAddress 126

UIP_GetUserIPAddressCount 126

UIP_MakeUserIP . 127

UTI2_CopyProjectToMmc 120

UTI2_CopyProjectToUsb 120

UTI2_CreateStartupIni 121

UTI2_DisableComProgramming 113

UTI2_EnableComProgramming 113

UTI2_EnableDHCP . 114

UTI2_GetComConfig 113

UTI2_GetIPConfig 106, 115

UTI2_GetIPDns . 115

UTI2_GetIPWins . 116

UTI2_GetKeepAliveTime 116

UTI2_GetMacAddres 108

UTI2_GetMacAddress 117

UTI2_GetPlcVersionList 121

UTI2_IsDHCPEnabled 117

UTI2_Reboot . 110, 122

UTI2_RemoveProjectFromMmc 122

UTI2_RemoveProjectFromUsb 123

UTI2_RemoveStartupIni 123

UTI2_SaveRegistry 111, 124

UTI2_SetComConfig 114

UTI2_SetIPConfig 108, 118

UTI2_SetIPDns . 118

UTI2_SetIPGateway 109, 119

UTI2_SetIPWins . 119

UTI2_SetKeepAliveTime 120

Write...Direct . 61

Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu 151

H
HALT (startup behavior) . 32

Help for browser commands 129

I
Incremental encoder . 90

Connection . 24

Input . 17

Incrementing . 17, 25

Inputs

Addressing . 66

configuration and parameterization 87

Signal state . 11

Wiring example . 23

Installation, central processing unit 19

Interface

CANopen, configuration 28

Definition (communication) 70

easyNET, configuration 28

ETH232, configuration 27

USB, configuration . 27

Interference factors . 20

Interrupt . 95

Actuator connection . 25

Inputs . 18

Interrupt, CAN Bus . 16

IP Address . 72

IP address . 106

Scan/modify . 73

IP Gateway address

Issue . 106

IPGateway address

Setting . 109, 119

L
Language switchover, error and event list

(browser commands) . 133

Layout of units . 21

LED

RUN/STOP . 34

SF . 34

LED display . 11

Library . 139

Installation . 100

Lightning protection . 22

Limit values, for memory usage 64

Load program . 37

M
Markers Addressing . 66

Memory

Application program . 9

Systems . 14

Usage, limit values . 64

Memory card . 139

Memory system

disk_mmc . 13

disk_sys . 13

disk_usb . 13

MMC memory card . 14

Monitoring time, Task . 55

Mounting position . 21

Multi-media card . 13

Multitasking . 48, 52

N
Node ID . 81

Node Number . 81

O
Online documentation . 7

Operating states CPU (LED display) 34, 63

Operating system

Updating . 41

Operation . 29

Output MAC address 108, 117

Outputs

Addressing . 66

configuration and parameterization 87

Signal state . 11

Wiring example . 23

P
Parameterization, inputs/outputs 87

PC connection . 26

Performance scope, CPU . 9

PING response . 74

plcload . 131

Plc_Prg_Utilities . 120

Port assignment . 70

Power down logic . 10

Power supply . 23

for processor unit and local inputs/outputs 10

Power off/interruption (behavior) 33

Priority (task) . 48

152 Modular PLC XC-CPU201-…(-XV), XC-CPU202-…-XV 06/14 MN05003001Z-EN www.eaton.eu

Program

Call (task) . 49

Processing . 48

Start . 33

Stop . 33

Programming . 8

Programming interface 14, 27

Pulse generators . 25

R
Reactors . 22

real-time clock . 12

Reference signal . 91

Reference window . 91

Registry save . 111

Reset . 36

RJ 45 interface . 26

Routing . 78

RS232 interface . 14

S
Secure Digital Card . 13

Segments . 64

Shielding . 22

Signal state inputs/outputs 11

Single cycle mode . 35

Single-step mode . 34

Startup behavior . 29

Configuring with CoDeSys 32

Startup.ini file . 75

Status display . 35

Subnet mask address . 106

Suppressor circuit for interference sources . . . 22

Switching threshold . 10

SysLibRTC.pdf . 12

System

Events . 48

Libraries . 100

Load, CPU . 131

Memory . 14

Parameter predefined (in Startup.ini file) . . 75

Times . 48

System events . 51

T
Task

Condition . 48

Configuration . 48

Cyclic . 49

Monitoring . 55

TCP/IP connection (for routing) 79

Technical Data . 142

Terminal assignment . 11

Test and commissioning 34

Text output via the RS-232 interface 137

Transparent mode . 85, 137

Type (task condition) . 48

U
Up counter . 93

Connection . 25

Up/down counter . 17

USB interface, assignment 27

USB stick . 13, 14

User memory, size . 9

User program, memory values 9

USER_IP . 124

V
Voltage dip . 10

Voltage supply

Connection . 23

W
WARMSTART (startup behavior) 32

Watchdog . 55

Web Server . 9

Web visualization . 64

Wiring . 21

Wiring example

Inputs/outputs . 23

Power supply . 23

X
XIOC modules . 8

	Title
	Imprint
	Safety instructions
	Contents
	0 About this manual
	0.1 List of revisions
	0.2 Writing conventions
	0.2.1 Hazard warnings of material damages
	0.2.2 Hazard warnings of personal injury
	0.2.3 Tips

	0.3 Additional documentation

	1 Design of the XC200 PLC
	1.1 Rack
	1.1.1 Performance scope of the CPU
	1.1.2 Functional spans
	1.1.3 Power supply
	1.1.4 Local inputs/outputs
	1.1.5 Processor unit with interfaces
	1.1.6 Real-Time Clock
	1.1.7 Battery
	1.1.8 Multi-media card (MMC), secure digital card (SD), USB stick
	1.1.9 CPU drives
	1.1.10 ETH232 programming interface
	1.1.11 Splitting of the ETH232 interface
	1.1.12 CAN/easyNet interface
	1.1.13 Reaction of the station on the CAN bus
	1.1.14 Add-on functions of the CPU (local inputs)

	2 CPU installation
	2.1 Detaching the CPU

	3 Engineering
	3.1 Control panel layout
	3.1.1 Ventilation
	3.1.2 Layout of units

	3.2 Preventing interference
	3.2.1 Cable routing and wiring
	3.2.2 Suppressor circuit for interference sources
	3.2.3 Shielding

	3.3 Lighting protection
	3.3.1 External lightning protection
	3.3.2 Internal lightning protection

	3.4 Connections
	3.4.1 Connecting the power supply
	3.4.2 Connecting inputs/outputs (central processing unit)
	3.4.3 Connecting the incremental encoder
	3.4.4 Connecting up/down counter
	3.4.5 Connecting interrupt actuators
	3.4.6 Connect PC

	3.5 Interface assignments
	3.5.1 USB interface
	3.5.2 XC200 programming interface
	3.5.3 CAN/easyNet interface

	4 Operation
	4.1 Startup behavior
	4.1.1 Startup behavior of the XC-CPU201
	4.1.2 Startup behavior of the XC-CPU202
	4.1.3 Configuring the start-up behavior with CODESYS

	4.2 Program start
	4.2.1 Program start (STOP ￫ RUN)
	4.2.2 Program stop (RUN ￫ STOP)

	4.3 Power off/Interruption of the power supply
	4.3.1 CPU operating state display
	4.3.2 Test and commissioning (Debugging)
	4.3.3 Breakpoint/single-step mode
	4.3.4 Single-cycle mode
	4.3.5 Forcing
	4.3.6 Status display
	4.3.7 Reset

	4.4 Programs and project
	4.4.1 Loading the program
	4.4.2 General information on RETAIN PERSISTENT
	4.4.3 Storing and deleting the boot project

	4.5 Updating the operating system
	4.5.1 XC-CPU201
	4.5.2 XC-CPU202

	5 Program processing, multitasking and system times
	5.1 Task configuration
	5.1.1 Creating the “Basic” cyclic task
	5.1.2 Creating event controlled task “Param” and defining the program call

	5.2 System events
	5.2.1 Assigning a POU to a system event

	5.3 Multitasking
	5.3.1 Updating the input/output images
	5.3.2 Behavior of the CAN stack with multitasking

	5.4 Task monitoring with the watchdog
	5.4.1 Multiple tasks with the same priority

	5.5 Direct peripheral access
	5.5.1 ReadBitDirect
	5.5.2 ReadWordDirect
	5.5.3 ReadDWordDirect
	5.5.4 Write…Direct
	5.5.5 WriteBitDirect
	5.5.6 WriteWordDirect
	5.5.7 GetSlotPtr
	5.5.8 Failure code with direct peripheral access

	5.6 Operating states
	5.7 Web visualization
	5.8 Limit values for memory usage
	5.9 Addressing inputs/outputs and markers
	5.9.1 Activate “Automatic addresses”
	5.9.2 “Activating Check for overlapping addresses”
	5.9.3 Uneven word addresses
	5.9.4 Address range
	5.9.5 Free assignment or modification of addresses of input/output modules and diagnostic addresses
	5.9.6 Run “Automatic calculation of addresses”

	5.10 Diagnostics

	6 Connection set-up PC – XC200
	6.1 Connection set-up via RS 232 interface
	6.2 Defining/changing the PC’s communication settings
	6.2.1 Changing the CPU’s communication settings

	6.3 Connection set-up with Ethernet
	6.3.1 Selecting communication channel and address

	6.4 Scan/modify the IP address

	7 Setting system parameters via the Startup.ini file
	7.1 Overview
	7.1.1 Parameters in the Startup.ini file

	7.2 Structure of the ini file
	7.3 Creating the Startup.ini file
	7.4 Entry of the ini file HOST_NAME
	7.4.1 Switch-on of the control with inserted memory card with XCSTARTUP.ini file
	7.4.2 Alter parameters
	7.4.3 Deleting the Startup.ini file

	8 Programming via CAN(open) Network (Routing)
	8.1 Prerequisites
	8.2 Routing features of the controller
	8.2.1 Notes
	8.2.2 Addressing
	8.2.3 Communication with the target PLC
	8.2.4 PLC combinations for routing
	8.2.5 Number of communication channels

	9 RS 232 interface in Transparent mode
	9.1 Programming of the RS 232 interface in transparent mode

	10 Configuration and parameterization of the inputs/outputs
	10.1 Input/output general
	10.1.1 Local digital inputs/outputs

	10.2 Inputs/outputs for additional functions
	10.2.1 Incremental encoder
	10.2.2 Functionality of the inputs/outputs
	10.2.3 Representation of the inputs/outputs of the incremental encoder
	10.2.4 Counter
	10.2.5 Representation of the inputs/outputs of the 32 bit counter
	10.2.6 Representation of the inputs/outputs of two 16 bit counters

	10.3 Interrupt processing
	10.3.1 EnableInterrupt
	10.3.2 Parameter definition
	10.3.3 Example for interrupt processing

	11 Libraries, function blocks and functions
	11.1 Using libraries
	11.1.1 Installing additional system libraries

	11.2 XC200 specific functions
	11.2.1 CAN_Utilities
	11.2.2 Event functions
	11.2.3 XIOC functions
	11.2.4 Additional functions of the XC200_Util2.lib library for the XC-CPU201
	11.2.5 Additional functions of the XC200_Util2.lib library for the XC-CPU202

	12 Browser commands
	12.1 Calling browser commands
	12.2 Accessing communications parameters
	12.3 Display CPU loading (plcload)
	12.3.1 Display the loading of the CAN bus (canload)
	12.3.2 Access to memory objects
	12.3.3 Error and event list after calling browser commands

	13 Appendix
	13.1 Characteristic of the Ethernet cable
	13.2 Properties of the CAN cable
	13.3 Transparent mode: Text output via RS232 (example)
	13.4 Access to the CPU drives/memory card
	13.4.1 SysLibFile.lib library
	13.4.2 Modes for opening a file
	13.4.3 Examples of the “SysFile...” functions

	13.5 Dimensions
	13.6 Technical Data
	13.7 Technical data – Filter

	Index

