1

Features

- 1-channel signal conditioner
- 24 V DC supply (Power Rail)
- Current and voltage input
- · 2 relay outputs
- Programmable high/low alarm
- Configurable via DIP switches and potentiometer
- Terminal blocks with test sockets

Function

This signal conditioner provides the galvanic isolation beetween field circuits and control circuits.

The device is a trip amplifier with two trip points. Trip points, hysteresis and mode of operation can be set independently for both relay outputs.

0/4 mA ... 20 mA-, 0/1 V ... 5 V- or 0/2 V ... 10 V signals can be connected at the input.

The device actuates the relay output when it reaches the adjusted trip points.

The device is easily configured by the use of DIP switches and potentiometers.

Assembly

CE

Connection

General specifications	
Signal type	Analog input
Supply	
Connection	Power Rail or terminals 14+, 15-
Rated voltage U _n	20 30 V DC
Rated current In	75 mA
Power loss	1 W
Power consumption	2.25 W (typ. 1.68 W)
Input	
Measurement range	terminals 1+, 3-: voltage 0/1 5 V, load \ge 50 k Ω or voltage 0/2 10 V, load \ge 100 k Ω terminals 2+, 3-: current 0/4 20 mA ; load \le 50 Ω
Output	
Output I, II	terminals 7, 8, 9; 10, 11, 12
Contact loading	250 V AC / 5 A / 1250 VA; 125 V DC / 5 A / 150 W
Output III	device configuration : terminals 4, 5, 6
Transfer characteristics	
Deviation	≤ 0.5 %
Influence of ambient temperature	0.01 % / K of adjusted trip value
Input delay	100 ms
Electrical isolation	
Input/Output	safe isolation acc. to DIN VDE 0106, rated insulation voltage 253 V_{eff}
Input/power supply	functional insulation acc. to DIN EN 50178, rated insulation voltage 50 V_{eff}
Output/power supply	safe isolation acc. to DIN VDE 0106, rated insulation voltage 253 V_{eff}
Directive conformity	
Electromagnetic compatibility	
Directive 89/336/EEC	EN 50081-2, EN 50082-2
Conformity	
Insulation coordination	EN 50178
Electrical isolation	EN 50178
Electromagnetic compatibility	NE 21
Degree of protection	IEC 60529
Ambient conditions	
Ambient temperature	-20 60 °C (-4 140 °F)
Mechanical specifications	
Degree of protection	IP20
Mass	approx. 120 g
Dimensions	20 x 124 x 115 mm (0.8 x 4.9 x 4.5 in) , housing type B2
Mounting	on 35 mm DIN mounting rail acc. to EN 60715:2001
General information	
Supplementary information	Statement of Conformity, Declaration of Conformity, Attestation of Conformity and instructions have to be observed where applicable. For information see www.pepperl-fuchs.com.

Refer to "General Notes Relation	ng to Pepperl+Fuchs Product Inform	ation".
Pepperl+Fuchs Group	USA: +1 330 486 0002	Ge
www.pepperl-fuchs.com	pa-info@us.pepperl-fuchs.com	pa-

Germany: +49 621 776 2222 pa-info@de.pepperl-fuchs.com

Singapore: +65 6779 9091 pa-info@sg.pepperl-fuchs.com

2

Function

Internal signal voltage

The device converts the input signals at terminals 1, 2, and 3 into a proportional internal voltage Uint between 0 V and 10 V. This conversion allows reaction-free verification of the input signal. The voltage is output at terminals 4+ and 3-.

Trip points

The potentiometers T1 and T2 convert the set trip points into a proportional switching voltage U_{pot} between 0 V and 10 V. The voltage range corresponds to a range of 0 % to 100 %. This voltage can be measured at terminals 3, 5, and 6.

- Relay output 1: Terminals 5+, 3-
- Relay output 2: Terminals 6+, 3-

The trip point, hysteresis, mode of operation and type of alarm (high or low alarm) can be selected for each relay.

High alarm means that the switching state of the relay changes when the set trip point is exceeded. This state comes to an end if the value falls below a lower limit. The difference between these two values corresponds to the hysteresis, which can be set on the front panel. With a low alarm, the alarm signal is output at values below the trip point.

Release date 2012-11-23 11:30

Date of issue 2015-02-16 038311_eng.xml

USA: +1 330 486 0002 pa-info@us.pepperl-fuchs.com

Singapore: +65 6779 9091 pa-info@sg.pepperl-fuchs.com

Configuration

DIP switch function

Set the DIP switch according to the required function.

Switch	Position	Function
S6	I	Trip point 1 addresses both relay
	Ш	Relay I independent of relay II
S5	I	Relay II energized in case of alarm
	Ш	Relay II de-energized in case of alarm
S4	Ι	Relay I energized in case of alarm
	Ш	Relay I de-energized in case of alarm
S3	I	High alarm relay II
	=	Low alarm relay II
S2	I	High alarm relay I
	Ш	Low alarm relay I
S1	I	Input ranges
		0/1 V to 5 V or 0/4 mA to 20 mA
	Ш	Input ranges
		0/2 V to 10 V or 0/4 mA to 20 mA

Setting the trip points with no input signal

The trip points can be set using the potentiometers T1 and T2 and the proportional switching voltage Upot at terminals 5+, 3-(relay 1) and terminals 6+, 3- (relay 2). This is done using a voltage meter (measuring range 10 V). There must be no input signal at this point. Select the trip points in the unit of the input signal or in %.

Input signal in mA, trip point TP in mA

l _s =	Starting point
TP =	Trip point
l _e =	End point
U _{not} =	Proportional switching voltage

The proportional switching voltage U_{pot} is calculated using the following formula: $U_{pot} = 10 \text{ V x (TP - I_s)/(I_e - I_s)}$

Example:

Trip point TP:	13 mA
l _s :	4 mA
l _e :	20 mA
$U_{pot} = 10 V x (1)$	3 mA - 4 mA)/(20 mA - 4 mA) = 5.6 V

Input signal in mA, trip point TP in % The proportional switching voltage U_{pot} is calculated using the following formula:

 $U_{pot} = 1 \text{ V/2 mA x (TP/100 x (I_e - I_s) + I_s)}$

Example:

Trip point TP: 75 % 4 mA l_s: 20 mA l_e:

 $U_{pot} = 1 \text{ V/2 mA x} (75 \%/100 \% \text{ x} (20 \text{ mA} - 4 \text{ mA}) + 4 \text{ mA}) = 8 \text{ V}$

Germany: +49 621 776 2222 pa-info@de.pepperl-fuchs.com

4

Input signal in V, trip point TP in V

 $U_s =$ Starting point TP = Trip point U_e = End point U_{pot} = Proportional switching voltage

The proportional switching voltage Upot is calculated using the following formula: $U_{pot} = 10 V x (TP - U_s)/(U_e - U_s)$

Example:

Trip point TP: 7 V 2 V U_s: 10 V U_: $U_{pot} = 10 \text{ V x} (7 \text{ V} - 2 \text{ V})/(10 \text{ V} - 2 \text{ V}) = 6.25 \text{ V}$

Input signal in V, trip point TP in %

The proportional switching voltage Upot is calculated using the following formula:

 $U_{pot} = TP/100 x (U_e - U_s) + U_s$

Example:

Trip point TP: 45 % 2 V U_s: U_e: 10 V $U_{pot} = 45 \%/100 \% x (10 V - 2 V) + 2 V = 5.6 V$

Setting the trip points with an input signal

The trip points can be adjusted to the input signal using potentiometers T1 and T2. No measuring device is required.

For low alarm:

- 1. Turn the potentiometer counterclockwise as far as it will go to the left (15 turns).
- 2. Turn the potentiometer clockwise until the output is tripped. Each turn changes the trip point by about 7 %.
- 3. Set the hysteresis. This does not change the trip point.

For high alarm:

- 1. Turn the potentiometer clockwise as far as it will go to the right (15 turns)
- 2. Turn the potentiometer counterclockwise until the output is tripped. Each turn changes the trip point by around 7 %.
- 3. Set the hysteresis. This does not change the trip point.

www.pepperl-fuchs.com

Accessories

Power feed module KFD2-EB2

The power feed module is used to supply the devices with 24 V DC via the Power Rail. The fuse-protected power feed module can supply up to 150 individual devices depending on the power consumption of the devices. Collective error messages received from the Power Rail activate a galvanically-isolated mechanical contact.

Power Rail UPR-03

The Power Rail UPR-03 is a complete unit consisting of the electrical insert and an aluminium profile rail 35 mm x 15 mm. To make electrical contact, the devices are simply engaged.

Profile Rail K-DUCT with Power Rail

The profile rail K-DUCT is an aluminum profile rail with Power Rail insert and two integral cable ducts for system and field cables. Due to this assembly no additional cable guides are necessary.

Power Rail and Profile Rail must not be fed via the device terminals of the individual devices!

