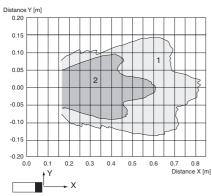


Model Number

UB500-F54-I-V15-Y124880


Single head system

Features

- Analog output 4 mA ... 20 mA
- Very fast response characteristic, suitable for rapid scanning pro-
- Measuring window adjustable
- **Program input**
- Synchronization options
- **Deactivation option**
- **Temperature compensation**

Diagrams

Characteristic response curve

Curve 1: flat surface 100 mm x 100 mm Curve 2: round bar, Ø 25 mm

Technical data

aenerai specifications	
Sensing range	30 500 mm
Adjustment range	50 500 mm
Unusable area	0 30 mm
Standard target plate	100 mm x 100 mm
Transducer frequency	approx. 380 kHz
Response delay	< 10 ms

Indicators/operating means

LED green solid green: monitoring system green flashing: program function LED yellow solid yellow: object in the evaluation range yellow, flashing: program function, object detected LED red solid red: Error red, flashing: program function, object not detected

Electrical specifications

10 ... 30 V DC , ripple 10 %SS Operating voltage U_B

No-load supply current I₀ \leq 55 mA Input/Output

Synchronization 1 synchronous input 0 level: U_{B...+1} V 1 level: +4 V...+U_B

input impedance: > 12 KOhm synchronization pulse: 0.1 ... 8 ms

Synchronization frequency

Common mode operation ≤ 100 Hz ≤ 100 / n Hz, n = number of sensors Multiplex operation

Input

Input type 1 program input

lower evaluation limit A1: -U_B ... +1 V, upper evaluation limit

A2: +4 V ... +U_B

input impedance: > 4.7 k Ω , pulse duration: \geq 1 s

Output Output type 1 analog output 4 ... 20 mA

evaluation limit A1: 50 mm evaluation limit A2: 300 mm Default setting

Switch-off delay toff approx. 50 ms in case of echo loss

Resolution 0.13 mm

Deviation of the characteristic curve ± 1 % of full-scale value Repeat accuracy ± 0.2 % of full-scale value

Load impedance 0 ... 300 Ohm Temperature influence ± 1.5 % of full-scale value

Ambient conditions

Ambient temperature -25 ... 70 °C (-13 ... 158 °F) -40 ... 85 °C (-40 ... 185 °F) Storage temperature

Mechanical specifications Connection type Connector M12 x 1, 5-pin

Protection degree IP65 Material

Housing ABS

Transducer epoxy resin/hollow glass sphere mixture; polyurethane foam

Mass 100 g

Compliance with standards and directives

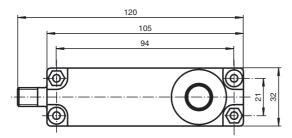
Standard conformity

Standards EN 60947-5-7:2003

IEC 60947-5-7:2003 EMC: evaluation criterion B

Approvals and certificates

UL approval	cULus Listed, General Purpose
CSA approval	cCSAus Listed, General Purpose
CCC approval	CCC approval / marking not required for products rated

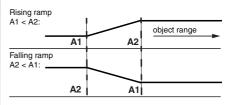

≤36 V

124880_eng.xml

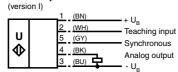
Date of issue: 2013-10-25

Release date: 2013-02-26 15:22

Dimensions



Bore hole and countersinking for screws/hexagon M4


Additional Information

Programmed analogue output function

Electrical Connection

Standard symbol/Connections:

Core colours in accordance with EN 60947-5-2.

Pinout

Connector V15

Accessories

UB-PROG2

Programming unit

V15-G-2M-PVC

Female cordset, M12, 5-pin, PVC cable

V15-W-2M-PUR

Female cordset, M12, 5-pin, PUR cable

Synchronisation

The sensor features a synchronisation input for the suppression of mutual interference. If this input is not used, the sensor will operate using an internally generated clock rate. The synchronisation of multiple sensors can be realised as follows:

External synchronisation:

The sensor can be synchronised by the external application of a square wave voltage. A synchronisation pulse at the synchronisation input starts a measuring cycle. The pulse must have a duration greater than 100 μ s. The measuring cycle starts with the falling edge of a synchronisation pulse. A low level > 1 s or an open synchronisation input will result in the normal operation of the sensor. A high level at the synchronisation input disables the sensor.

Date of issue: 2013-10-25 124880_eng.xml

Release date: 2013-02-26 15:22

Two operating modes are available:

- 1. Multiple sensors can be controlled by the same synchronisation signal. The sensors are synchronised.
- 2. The synchronisation pulses are sent cyclically to individual sensors. The sensors operate in multiplex mode.

Internal synchronisation:

The synchronisation connections of up to 5 sensors capable of internal synchronisation are connected to one another. When power is applied, these sensors will operate in multiplex mode.

The response delay increases according to the number of sensors to be synchronised.

Synchronisation cannot be performed during TEACH-IN and vice versa. The sensors must be operated in an unsynchronised manner to teach the evaluation limits.

Note:

If the option for synchronisation is not used, the synchronisation input has to be connected to ground (0V) or the sensor has to be operated via a V1 cable connector (4-pin).

Adjusting the evaluation range (analogue output)

The ultrasonic sensor has an analogue output with programmable evaluation limits. These are set by applying the supply voltage $-U_B$ or $+U_B$ to the TEACH-IN input. The supply voltage must be applied to the TEACH-IN input for at least 1 s. LEDs indicate whether the sensor has recognised the target during the TEACH-IN procedure. The lower evaluation limit A1 is taught with $-U_B$, A2 with $+U_B$.

Two different output functions can be set:

- 1. Analogue value increases with rising distance to object (rising ramp)
- 2. Analogue value falls with rising distance to object (falling rampe)

TEACH-IN rising ramp (A1 > A2)

- Position object at lower evaluation limit
- TEACH-IN lower limit A1 with UR
- Position object at upper evaluation limit
- TEACH-IN upper limit A2 with + U_R

TEACH-IN falling ramp (A1 > A):

- Position object at lower evaluation limit
- TEACH-IN lower limit A2 with + U_R
- Position object at upper evaluation limit
- TEACH-IN upper limit A1 with UR

LED Displays

Displays in dependence on operating mode	Red LED	Yellow LED	Green LED
TEACH-IN evaluation limit			
Object detected	off	flashes	flashes
No object detected	flashes	off	flashes
Object uncertain (TEACH-IN invalid)	on	off	flashes
Normal mode (evaluation range)	off	on	on
Fault	flashes	previous	off
		state	