

Model Number

ENA58IL-S***-SSI

Features

- Solid shaft
- SSI interface
- Up to 32 Bit multiturn
- Free of wear magnetic sampling
- High resolution and accuracy

Description

The ENA58IL series are high precision encoders with internal magnetic sampling.

This multiturn absolute encoder transmits a position value corresponding to the shaft setting via the SSI interface (Synchronous Serial Interface).

The control module sends a start sequence to the absolute encoder to obtain the position data. The rotary encoder then sends the position data synchronous to the cycles of the control module. It is possible to select the counting direction with the function input.

Technical data

General specifications

Functional safety related parameters

 $\begin{array}{ll} \text{MTTF}_{d} & \text{150 a} \\ \text{Mission Time } (\text{T}_{M}) & \text{20 a} \end{array}$

L_{10h} 1.9 E+11 at 6000 rpm and 20/40 N axial/radial shaft load Diagnostic Coverage (DC) 0 %

up to 16 Bit

Diagnostic Coverage (DC)
Electrical specifications

Operating voltage U_B 4.75 ... 30 V DC

No-load supply current I₀ typ. 50 mA

Power consumption P₀ approx. 1.5 W

Output code Gray code, binary code

Code course (counting direction) adjustable

Interface

Interface type SSI

Resolution
Single turn

 $\begin{array}{ccc} \text{Multiturn} & \text{up to 16 Bit} \\ \text{Overall resolution} & \text{up to 32 Bit} \\ \text{Transfer rate} & \text{0.1} \dots \text{2 MBit/s} \\ \text{Cycle time} & < 100 \ \mu\text{s} \\ \text{Standard conformity} & \text{RS 422} \\ \end{array}$

Input 1

Input type Selection of counting direction (cw/ccw)

Signal voltage

High 4.75 V ... U_B (cw descending)

Low 0 ... 2 V or unconnected (cw ascending)
Input current < 6 mA

Switch-on delay < 50 mA < 250 ms

Input 2

Input type zero-set (PRESET 1) with falling edge

 $\begin{array}{lll} \text{Signal voltage} & & & \\ \text{High} & & 4.75 \text{ V} \dots \text{U}_{\text{B}} \\ \text{Low} & & 0 \dots 2 \text{ V} \end{array}$

Input current < 6 mA
Signal duration ≥ 1.1 s

Connection

Connector M12 connector, 8-pin or M23 connector, 12-pin

Cable Ø7 mm, 6 x 2 x 0.14 mm², 1 m (cable length, see order code)

Standard conformity

Degree of protection DIN EN 60529, IP65 or IP67
Climatic testing DIN EN 60068-2-3, no moisture condensation

Emitted interference EN 61000-6-4:2007 Noise immunity EN 61000-6-2:2005

 Shock resistance
 DIN EN 60068-2-27, 200 g, 6 ms

 Vibration resistance
 DIN EN 60068-2-6, 30 g, 10 ... 1000 Hz

Ambient conditions

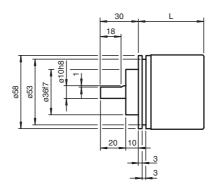
Operating temperature -40 ... 85 °C (-40 ... 185 °F)
Storage temperature -40 ... 85 °C (-40 ... 185 °F)
Relative humidity 98 % , no moisture condensation

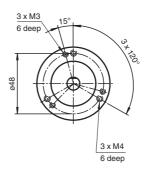
Mechanical specifications

Material
Housing nickel-plated steel

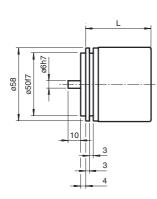
Flange aluminum
Shaft Stainless steel
Mass approx. 300 g , with cable

Rotational speed max. 12000 min ⁻¹


Moment of inertia 50 gcm²

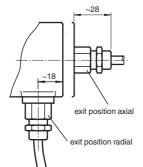

Starting torque < 5 Ncm

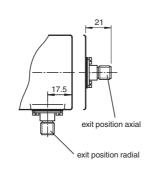
Starting torque < 5 Nor Shaft load


Axial 40 N Radial 110 N

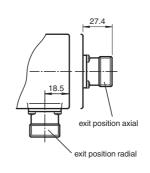
Dimensions

Clamping flange


Servo flange


	L [mm]			
Design	Axial output	Radial output		
Singleturn	41.7	52.7		
Multiturn	52.7			

Connections


Dimensions in mm

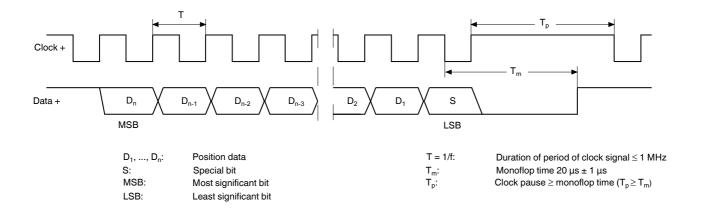
Cable

Connector M12

Connector M23

Release date: 2015-03-19 10:43 Date of issue: 2015-03-19 t166164_eng.xml

Electrical connection


Signal	Cable, 12-core	Connector M12, 8-pin	Connector M23, 12-pin, cw	Connector M23, 12-pin, ccw	Explanation
GND (encod- er)	White	1	1	1	Power supply
U _b (encoder)	Brown	2	2	8	Power supply
Clock (+)	Green	3	3	3	Positive cycle line
Clock (-)	Yellow	4	4	11	Negative cycle line
Data (+)	Grey	5	5	2	Positive transmission data
Data (-)	Pink	6	6	10	Negative transmission data
Reserved	Black		7	12	Not wired, reserved
V/R	Red	8	8	5	Input for selection of counting di- rection
PRESET 1	Blue	7	9	9	zero-setting input
Reserved	Violet		10	4	Not wired, reserved
Reserved	Grey/Pink		11	6	Not wired, reserved
Reserved	Red/Blue		12	7	Not wired, reserved
		2 (8 1 7 6 3 4 5	8 9 1 10 7 6 6 3 3 3	9 10 2 2 3 4 11 5	

Description

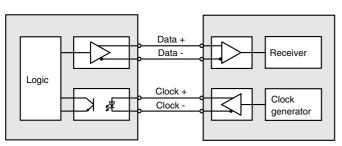
The Synchronous Serial Interface was specially developed for transferring the output data of an absolute encoder to a control device. The control module sends a clock bundle and the absolute encoder responds with the position value.

Thus only 4 lines are required for the clock and data, no matter what the resolution of the rotary encoder is. The RS 422 interface is optically isolated from the power supply.

SSI signal course Standard

SSI output format Standard

- At idle status signal lines "Data +" and "Clock +" are at high level (5 V).
- The first time the clock signal switches from high to low, the data transfer in which the current information (position data (D_n) and special bit (S)) is stored in the encoder is introduced.±
- The highest order bit (MSB) is applied to the serial data output of the encoder with the first rising pulse edge.
- The next successive lower order bit is transferred with each following rising pulse edge.
- After the lowest order bit (LSB) has been transferred the data line switches to low until the monoflop time T_m has expired.
- No subsequent data transfer can be started until the data line switches to high again or the time for the clock pause T_D has expired.
- After the clock sequence is complete, the monoflop time T_m is triggered with the last falling pulse edge.
- The monoflop time $T_{\rm m}$ determines the lowest transmission frequency.

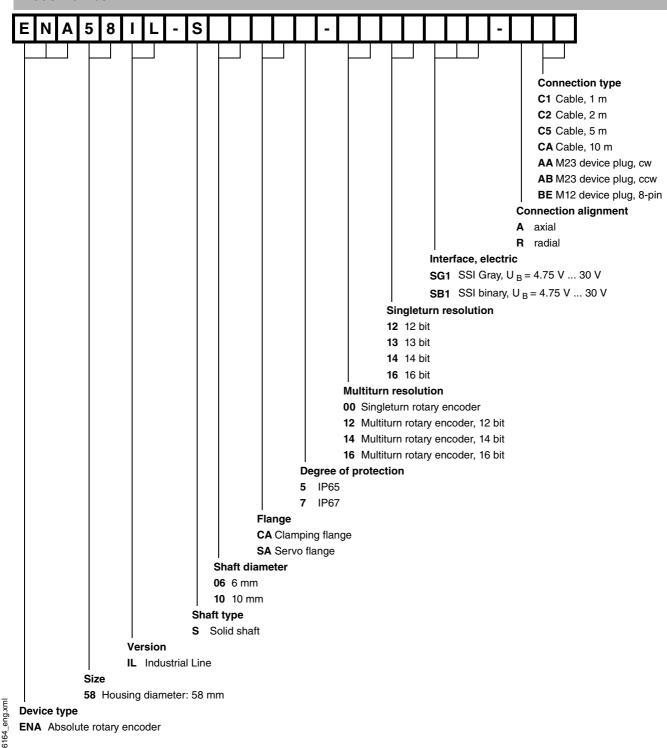

SSI output format ring slide operation (multiple transmission)

- In ring slide operation, multiple transmission of the same data word over the SSI interface makes it possible to offer the possibility of detecting trans-
- In multiple transmission, n bits are transferred per data word in standard format. The value n equals the total resolution of the encoder. As an example: a multiturn encoder with a resolution of 8192 steps/revolution (13 bit) and a max. number of 4096 revolutions (12 bit) has a total resolution of n = 25 bit.
- If the clock change is not interrupted after the last falling pulse edge, ring slide operation automatically becomes active. This means that the information that was stored at the time of the first clock change is generated again.
- After the first position transmission, the n+1 pulse controls data repetition. If the n+1 pulse follows after an amount of time greater than the monoflop time T_m, a new current data word will be transmitted with the following pulses.

If the pulse line is exchanged, the data word is generated offset.

Block diagram

Rotary encoder


Interface electronics

Line length

Line length in m	Baudrate in kHz		
< 50	< 400		
< 100	< 300		
< 200	< 200		
< 400	< 100		

PEPPERL+FUCHS

Model number

