

Model Number

ASS58-H

Features

- Industrial standard housing Ø58 mm
- 16 Bit singleturn
- Hardware encoder
- Data transfer up to 2 MBaud
- Optically isolated RS 422 interface
- Recessed hollow shaft

Description

This singleturn absolute encoder with modern fast technology transmits a position value corresponding to the shaft setting via the SSI interface (Synchronous Serial Interface). The resolution of the ASS58-H is maximum 65536 steps per revolution. In contrast to the ASS58 series the encoder does not have a microcontroller. Thus, it is a pure hardware encoder.

The control module sends a clock bundle to the absolute encoder to obtain the position data. The rotary encoder then sends the position data synchronous to the cycles of the control module. It is possible to select the counting direction with the

function input. The absolute encoder is mounted directly onto the application shaft, without any coupling. Rotation of the absolute encoder is prevented by a torque rest The electrical connection is made by a 12-pin

round plug connector. It is also possible to obtain a version with a 1 m cable connector.

Technical data

General specifications

Detection type Functional safety related parameters MTTF_d Mission Time (T_M) L_{10h} Diagnostic Coverage (DC) Electrical specifications Operating voltage U_B No-load supply current I₀ Linearity Output code Code course (counting direction) Interface

Interface type Monoflop time Resolution Single turn Overall resolution Transfer rate Voltage drop Standard conformity Input 1 Input type Signal voltage High Low Input current Switch-on delay Connection Connector Cable Standard conformity Protection degree Climatic testing Emitted interference Noise immunity Shock resistance Vibration resistance Ambient conditions Operating temperature Storage temperature Mechanical specifications

Material Combination 1

Combination 2 (Inox)

Mass

Rotational speed Moment of inertia Starting torque Shaft load Angle offset Axial offset Radial offset

1.9 E+11 at 6000 rpm and 20/40 N axial/radial shaft load 0 % 4.5 ... 30 V DC max. 180 mA ± 2 LSB at 16 Bit, ± 1 LSB at 13 Bit, ± 0,5 LSB at 12 Bit Gray code, binary code cw descending (clockwise rotation, code course descending) SSI $20~\pm10~\mu s$ up to 16 Bit up to 16 Bit 0.1 ... 2 MBit/s U_B - 2.5 V RS 422 Selection of counting direction (cw/ccw) 4.5 ... 30 V 0 ... 2 V < 6 mA < 10 ms type 9416, 12-pin, type 9416L, 12-pin Ø7 mm, 6 x 2 x 0.14 mm², 1 m DIN EN 60529, IP65 DIN EN 60068-2-3, no moisture condensation DIN FN 61000-6-4 DIN FN 61000-6-2 DIN EN 60068-2-27, 100 g, 6 ms DIN EN 60068-2-6, 20 g, 10 ... 2000 Hz -40 ... 85 °C (-40 ... 185 °F) -40 ... 85 °C (-40 ... 185 °F) housing: powder coated aluminium

photoelectric sampling

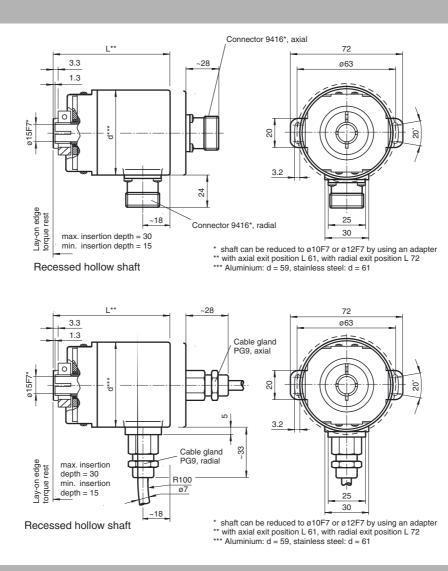
170 a

20 a

housing: powder coated aluminium flange: aluminium shaft: stainless steel housing: stainless steel flange: stainless steel shaft: stainless steel approx. 460 g (combination 1) approx. 800 g (combination 2) max. 12000 min ⁻¹ 50 gcm² < 5 Ncm

 \pm 0.9 $^{\circ}$ static: \pm 0.3 mm, dynamic: \pm 0.1 mm static: \pm 0.5 mm, dynamic: \pm 0.2 mm

Approvals and certificates


UL approval

cULus Listed, General Purpose, Class 2 Power Source

Subject to reasonable modifications due to technical advances.

Copyright Pepperl+Fuchs, Printed in Germany

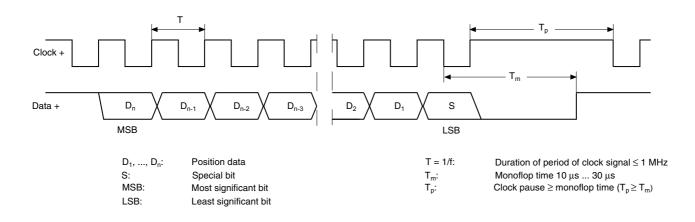
Dimensions

Accessories

9416 Cable connector

2

Electrical connection


Signal	Cable Ø7 mm, 12-core	Connector 9416, 12-pin	Connector 9416L, 12-pin	Explanation
GND (encoder)	White	1	1	Power supply
U _b (encoder)	Brown	2	8	Power supply
Clock (+)	Green	3	3	Positive cycle line
Clock (-)	Yellow	4	11	Negative cycle line
Data (+)	Grey	5	2	Positive transmission data
Data (-)	Pink	6	10	Negative transmission data
Reserved	Blue	7	12	Not wired, reserved
V/R	Red	8	5	Input for selection of counting direction
Reserved	Black	9	9	Not wired, reserved
Reserved	Violet	10	4	Not wired, reserved
Reserved	Grey/Pink	11	6	Not wired, reserved
Reserved	Red/Blue	12	7	Not wired, reserved
		9 8 10 7 12 6	8 7 11 6 5 4	

Description

The Synchronous Serial Interface was specially developed for transferring the output data of an absolute encoder to a control device. The control module sends a clock bundle and the absolute encoder responds with the position value.

Thus only 4 lines are required for the clock and data, no matter what the resolution of the rotary encoder is. The RS 422 interface is optically isolated from the power supply.

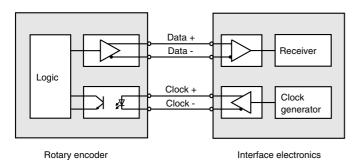
SSI signal course Standard

SSI output format Standard

- At idle status signal lines "Data +" and "Clock +" are at high level (5 V).
- The first time the clock signal switches from high to low, the data transfer in which the current information (position data (D_n) and special bit (S)) is stored in the encoder is introduced.
- The highest order bit (MSB) is applied to the serial data output of the encoder with the first rising pulse edge.
- The next successive lower order bit is transferred with each following rising pulse edge.
- After the lowest order bit (LSB) has been transferred the data line switches to low until the monoflop time T_m has expired.
- No subsequent data transfer can be started until the data line switches to high again or the time for the clock pause Tp has expired.
- After the clock sequence is complete, the monoflop time T_m is triggered with the last falling pulse edge.
- The monoflop time T_m determines the lowest transmission frequency.

SSI output format ring slide operation (multiple transmission)

- In ring slide operation, multiple transmission of the same data word over the SSI interface makes it possible to offer the possibility of detecting transmission errors.
- In multiple transmission, 25 bits are transferred per data word in standard format.
- If the clock change is not interrupted after the last falling pulse edge, ring slide operation automatically becomes active. This means that the information that was stored at the time of the first clock change is generated again.
- After the first transmission, the 26^{th} pulse controls data repetition. If the 26^{th} pulse follows after an amount of time greater than the monoflop time T_m , a new current data word will be transmitted with the following pulses.

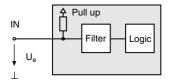


4

If the pulse line is exchanged, the data word is generated offset. Ring slide operation is possible up to max. 13 bits.

Copyright Pepperl+Fuchs, Printed in Germany

Block diagram

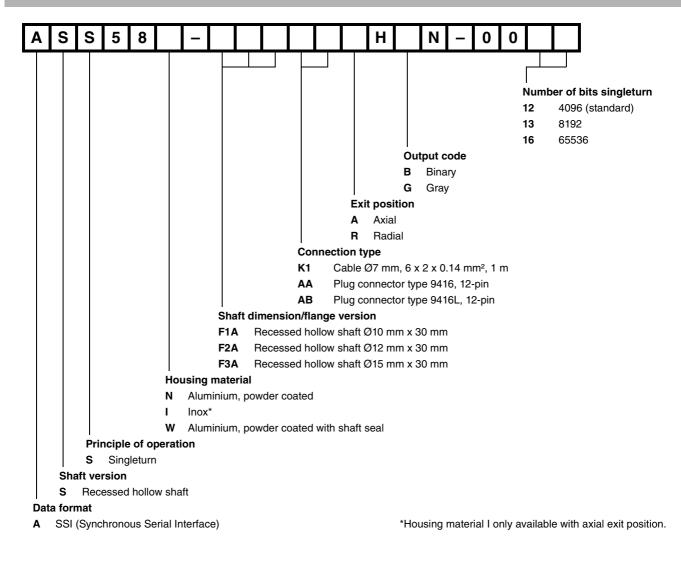


Line length

Line length in m	Baudrate in kHz	
< 50	< 400	
< 100	< 300	
< 200	< 200	
< 400	< 100	

Input

The selection of the counting direction input (V/R) is activated with 0-level.


Accessories

Accessories	Name/defining feature	Order code
Connectore	Cable socket	9416
Connectors	Cable socket	9416L

For additional information on the accessories, please see the "Accessories" section.

6

Order code

Copyright Pepperl+Fuchs, Printed in Germany Pepperl+Fuchs Group • Tel.: Germany +49 621 776-0 • USA +1 330 4253555 • Singapore +65 67799091 • Internet http://www.pepperl-fuchs.com

7