| Force \mid Pressure \mid Temperature \mid Switch \mid Service

Operating Instructions

Digicomb for differential pressure P1900XXXXDXX

1. Brief description 3
2. Safety instructions for the digital display 3
2.1. Proper use 3
2.2. Control of the device 3
2.3. Installation 3
2.4. Notes on installation 3
3. Assembly 4
3.1. Insertion in the panel cut-out 4
3.2. Dismantling 5
3.3. Dimension strip. 5
4. Electrical connection 6
4.1.1. Upper connecting terminals 6
4.1.2. Lower connecting terminals 7
4.2. Connecting examples 8
5. Operation 10
5.1 Operating and display elements 10
5.1.1. Keys 10
5.1.2. Displays 10
5.1.3. Dimension window 10
5.2. Switching on 10
5.3. Starting sequence 11
5.4. MIN/MAX memory 11
5.5. Display switchover between two input channels 11
5.6. Overflow/Underflow 11
5.6.1. Overflow / underflow of the arithmetic calculation 12
5.7. Relay 13
5.7.1. Optical response, flashing display 14
5.8. Analogue output 14
5.9. Digital input 14
6. Interface 15
6.1. Operating modes PN34 15
6.2. RS232 / RS485 15
6.2.1. Serial special commands 17
6.2.2. Treatment of calibration points 17
7. Programming 18
7.1. Programming procedure 18
7.1.1. Changing from programming to operating mode 20
7.1.2. Security setting, user level PN50 to 52 21
7.1.3. Input channels and offset 21
7.1.4. Two-channel measurement with calculation 21
7.1.5. Single-channel measurement 22
7.2. Arithmetic functions 22
7.3. Calibration modes 23
7.3.1. Factory calibration 23
7.3.2. Sensor calibration 23
7.3.3. Linearisation 23
8. Program table 25
9. Technical data of the digital display 28
10. Error elimination 30
10.1. Questions and answers 30
10.2. Reset to default values 30

Brief description

The electronic differential pressure measuring instrument "DIGICOMB" is conceived for various measuring tasks in the test laboratory and is served for the measuring instrument monitoring.
A maximum of 2 sensors with standard signals can be connected to the digital display. The 5 -digit display shows the measurements and/or the calculated value of the measurement. During programming, the display is used to indicate the set values and the user prompts. A maximum of 4 relays are available to monitor threshold values. Via the serial interface, data can be communicated from and to the device. This Digicomb is manufactured like your order. In the display shows the difference pressure between the two sensors.

The maximum static pressure may not be higher than the nominal pressure of the sensor.

Safety instructions for the digital display

Please read the users guide before installation and keep it for future reference.

1.1. Proper use

The digital display is designed for the evaluation and display of transmitter signals (standard signals). With the setpoints, it is possible to perform simple control tasks.
Danger! Careless use or improper operation can result in personal injury and/or damage 4 to the equipment.

1.2. Control of the device

The panel meters are checked before dispatch and sent out in perfect condition. Should there be any visible damage, we recommend close examination of the packaging. Please inform the supplier immediately of any damage.

1.3. Installation

The digital display must be installed by a suitably qualified specialist (e.g. with a qualifycation in industrial electronics).

1.4. Notes on installation

- There must be no magnetic or electric fields in the vicinity of the device, e.g. due to transformers, mobile phones or electrostatic discharge. ${ }^{1}$
- The fuse rating of the supply voltage should not exceed a value of 6A N.B. fuse.
- Do not install inductive consumers (relays, solenoid valves etc.) near the device and suppress any interference with the aid of RC spark extinguishing combinations or freewheeling diodes.
- Keep input, output and supply lines separate from one another and do not lay them parallel with each other. Position go and return lines next to one another. Where possible use twisted pair.
- Screen off and twist sensor lines. Do not lay current-carrying lines in the vicinity ${ }^{1}$. Connect the screening on one side on a suitable potential equaliser.
- The device is not suitable for installation in areas where there is a risk of explosion.

[^0]- Any electrical connection deviating from the connection diagram can endanger human life and/or can destroy the equipment.
- Do not install several devices immediately above one another (ambient temperature) ${ }^{1}$

Assembly

The digital display is intended for installation in a control panel. Before assembly, a cutout must be made to accommodate the device. The sizes and tolerances are given in the technical data.
On front of the digital display are the operating and display elements.
On the sides are the fixing elements to mount the device in the panel.
On the back are the terminals for all the electrical connections.
A sealing strip is inserted between the contact surface of the front collar and the control panel.

1.5. Insertion in the panel cut-out

I. Before inserting the unit, the side fixing elements must be pulled from the rail. To do this, slightly raise the screw head of the fixing element and pull the fixing element backwards at the same time.
II. Lay the sealing strip around the unit and push it up against the front collar. Then push the unit from the front through the cut-out.
III. Then place the fixing elements into the guide rails from the rear. While doing this, hold the unit from the front secure in the cut-out. Then, using a slotted screw driver, push the fixing elements as far as possible towards the front panel from the rear. Check that the sealing strip is properly positioned between the front collar and the control panel and correct it if necessary.
IV. Finally secure the device by tightening the screws on the fixing elements until they turn freely. The fixing elements have a slip coupling to prevent any overtightening of the thread; they hold the unit tight with the optimum amount of force.

View of the digital display

1.6. Dismantling

To remove the unit, follow the same steps as described for Assembly in reverse order.
For the version featuring the protective system IP65, a new sealing strip must be used when the unit is replaced.

1.7. Dimension strip

A strip with a physical unit can be inserted in the dimension window.
To do this, take the following steps:
I. Insert a slotted screw driver (size 0 blade) in the ejection slot at the bottom of the front panel and lever out the front.
II. On the back of the front panel, towards the outer edge is a slit in to accommodate the appropriate strip.
III. Insert a suitable dimension strip.
IV. Insert the front panel into the front collar of the unit and press slightly against the upper and lower edges so that it snaps back into the housing.
V. Check that the plastic elements on the front have not bent the LEDs towards the back. This is the case if the digits are not sharp. If this does happen, remove the front panel again and replace it carefully.

Electrical connection

All the necessary signals for operation are connected to the rear terminals.

1.7.1. Upper connecting terminals

The setpoints are tapped on the 12-pole connector strip. Depending on the version, there are between zero and four changeover contacts (Normally-Close, COMmon, Normally-Open).

Relay 1		Relay 2	Relay 3	Relay 4							
21	22	23	24	25	26	27	28	29	30	31	32
NC	NO	COM	NC	NO	COM	NO	NC	COM	NO	NC	COM

Via the 3-pole connector strip, a serial interface is connected. If neither of the two options are implemented in the unit, the respective connecting terminals will be missing.

RS232		
41	42	43
GND (RS)	TxD	RxD \quadRS485 41 42 43 \quadGND (RS)

The lines for the RS232 interface must be connected crosswise, so that TxD of the P1900XXXXdXX is connected to RxD of the other device and RxD of the P1900XXXXdXX to TxD of the other device.

PC or SPS	TxD	TxD RxD GND

Connection pattern PC or SPS \Leftrightarrow digital display

The RS485 interface is connected via a shielded data line with a twisted pair.
At each end of the bus, a termination of the bus lines must be connected. This is necessary to guarantee reliable data transmission on the bus. For this, a resistance of 120 Ohm is inserted between the lines Data B (+) and Data A (-).

Caution! The potential reference can lead to a compensating current (interface \Leftrightarrow measuring input) with a non-galvanically insulated interface and can thus affect the measuring signals.

1.7.2. Lower connecting terminals

Input signal, analogue output, sensor supply and supply voltage are connected to the lower connecting terminal.

Terminal $1 \quad$ Not Connected

4. Danger! A potential should never, under any circumstances, be connected to Terminal 1. This can lead to personal injury and destroy the unit.

Terminal 2-7 Input signal

The two input signals are connected to these terminals.
Terminals 4 and 7 lie on the same potential, but are, from a technical point of view, assigned to the individual channels and should be used accordingly.

1	2	3	4	5	6	7
NC	Input 1 $[$ Volt $]$	Input 1 $[\mathrm{mA}]$	GND (1)	Input 2 $[$ Volt $]$	Input 2 $[\mathrm{mA}]$	GND (2)

Terminals 8-9 Analogue output

The signal for the analogue output is provided on these terminals. Depending on the capabilities of the unit, a current or voltage signal can be tapped.

8	9
Analogue output +	Analogue output -

Terminals 10-11 Sensor supply
The sensor supply is provided on these connectors. The sensor supply is galvanically insulated from the measuring input. The voltage of the sensor supply varies according to the capabilities of the unit.

10	11
Sensor supply +	Sensor supply -

Terminals 13-14 Supply voltage
The supply voltage for the unit is connected to these terminals. The supply voltage is galvanically insulated from the measuring input.

13	14	Supply voltage
$\mathrm{L}+$	$\mathrm{L}-$	24 V DC voltage
L	N	115 or 230 V AC, depending on version

Terminal 12 Digital input

With the implemented option "Digital input", a potential-free contact can be connected to this terminal for controlling specific functions in the unit such as reset, taring, hold etc. For this function, it is necessary to also implement the same sensor supply as is used for supply and to which this connection electrically relates.

12
Digital input

1.8. Connecting examples

This section gives a few examples of practical connections. Other connection options can be combined from the various examples.

1. Measuring two current signals from 2 -line transmitters using the sensor supply; supply voltage 230 V/AC

2. Measuring two voltage signals from 3-line transmitters using the sensor supply; supply voltage $24 \mathrm{~V} / \mathrm{DC}$

3. Measuring a current signal from a 2 -line transmitter using the sensor supply; connecting the digital input; supply voltage 230 V/AC

Input 1			Sensor supply			Supply	
U1	11	GND	+	-		L	N
2	3	4	10	11	12	13	14
$\begin{gathered} \mathrm{B} \\ ? \end{gathered}$	+				$\left.\right\|^{+} s 1$		

Operation

The unit is operated via the [P], [UP] and [DOWN] keys.

1.9. Operating and display elements

1 Program key [P]
2 Minus key [DOWN] 3 Plus key [UP] 4 Seven-segment display 5 Setpoint display 1-4 6 Dimension window

1.9.1. Keys

The P1900XXXXdXX has three keys with which you can parameterise and call up various functions during operation.

1	Program key $[\mathrm{P}]$	With the program key, you can call up the programming mode or perform various functions in the programming mode.
2	Minus key $[\mathrm{DOWN}]$	With the minus key, you can call up the MIN memory or alter parameters in the programming mode.
3	Plus key $[\mathrm{UP}]$	With the plus key, you can call up the MAX memory or alter parameters in the programming mode.

1.9.2. Displays

The P1900XXXXdXX has a 5-digit, 7-segment display and four LEDs.

4	Seven-segment display	The seven-segment display displays measurements or, during programming, the program numbers or parameters.
5	Setpoint display	The setpoint display indicates the state of the relays. If a relay is switched, the LED lights up. If relays are not implemented, these displays can be used for the optical feedback of threshold values.

1.9.3. Dimension window

6	Dimension window	The dimension window shows the factory-set physical unit for the measurement. The dimension can also be changed by the user as described in Chapter 1.7

1.10. Switching on

Before switching on you have to check all the electrical connections to make sure they are correct. On completion of the installation, the device can be switched on by applying the supply voltage.

1.11. Starting sequence

During the switching-on process, a segment test is performed for approx. 1 s , whereby all LEDs on the front (including setpoint LEDs) are triggered. After this, the type of software is indicated for approx. 1 s and then, also for 1 s , the software version. After the starting procedure, the unit changes to operation/display mode.

1.12. MIN/MAX memory

The measured minimum and maximum values of the respective inputs (Channel 1, Channel 2 and arithmetic) are saved in a volatile memory in the unit and are lost when the unit is switched off.
You can call up the contents of the memory by pushing (less than 1 s) the [UP] or [DOWN] key. The relevant value is indicated for approx. 7 s . By briefly pressing the same key again, you will return immediately to the display mode.
When changing back to the display mode, the P1900XXXXdXX will first show the name of the next display value (Ch1, Ch2 or Ar); see 5.5. 'Display switchover between two input channels'.

$$
\begin{array}{lll}
{[\mathrm{UP}]} & \Rightarrow & \text { Display of the MAX value } \\
{[\text { DOWN }]} & \Rightarrow & \text { Display of the MIN value }
\end{array}
$$

You can erase the value shown in the display by simultaneously operating the [UP] \& [DOWN] keys. The erasure is acknowledged by horizontal bars.

1.13. Display switchover between two input channels

With the P1900XXXXdXX, you can temporarily switch the display between the various channels by means of the keyboard.
If you press the [UP] or [DOWN] key for longer than 1 s , the unit will switch over to the next display channel. You can run through the channels forwards with [UP] key or backwards with the [DOWN] key.
Display: Channel 1 Ch1
Channel 2 Ch2
Arithmetic Ar
Channel 1 Ch1
etc.

Example:

Under program number (PN15 ≥ 3), the calculation (Ar) is parameterised as the permanent display. Let us assume you want to display the input value for Channel 1.
Press the [UP] key for at least one second. The P1900XXXXdXX acknowledges the change to Channel 1 by briefly displaying Ch1, after which you can let the key go. The display indicates the input value for Channel 1 for approx. 7 s . After this, the P1900XXXXdXX changes back to the parameterised display (arithmetic Ar). The renewed change in the display is also confirmed by the appearance of Ar. To change several steps in one direction, you must take your finger of the key between times.

1.14. Overflow/Underflow

An overflow of the display is indicated by horizontal bars at the top of the 7-segment display.
An underflow of the display is indicated by horizontal bars at the bottom of the 7-segment display.

1.14.1. Overflow / underflow of the arithmetic calculation

The channel calculation is a floating point operation with the decimal point parameterised as (PN18). Every overflow or underflow of a channel leads to a defined display in the calculation. This defined setting ensures that the corresponding setpoints go into a defined state.

Formula	Channel 1	Channel 2	Result
(Channel 1 + Channel 2) * Constant factor	Overflow	OK or Overflow	Overflow
(Channel 1 + Channel 2) * Constant factor	Underflow	OK or Underflow	Underflow
(Channel 1 + Channel 2) * Constant factor	OK or Overflow	Overflow	Overflow
(Channel $1+$ Channel 2) * Constant factor	OK or Underflow	Underflow	Underflow
(Channel $1+$ Channel 2) * Constant factor	Overflow	Underflow	Overflow
(Channel 1-Channel 2) * Constant factor	Overflow	OK or Underflow	Overflow
(Channel 1 - Channel 2) * Constant factor	Underflow	OK or Overflow	Underflow
(Channel 1 - Channel 2) * Constant factor	OK or Overflow	Underflow	Overflow
(Channel 1 - Channel 2) * Constant factor	OK or Underflow	Overflow	Underflow
(Channel 1-Channel 2) * Constant factor	Under-/Overflow	Under-/Overflow	Overflow
(Channel 1 * Channel 2) * Constant factor	Overflow	OK or Overflow	Overflow
(Channel 1 * Channel 2) * Constant factor	Underflow	OK or Underflow	Underflow
(Channel 1 * Channel 2) * Constant factor	OK or Overflow	Overflow	Overflow
(Channel 1 * Channel 2) * Constant factor	OK or Underflow	Underflow	Underflow
(Channel 1 * Channel 2) * Constant factor	Overflow	Underflow	Overflow
(Channel 1 / Channel 2) * Constant factor	Overflow	any	Overflow
(Channel 1 / Channel 2) * Constant factor	Underflow	any	Underflow
(Channel 1 / Channel 2) * Constant factor	OK	Overflow	Underflow
(Channel 1 / Channel 2) * Constant factor	OK	Underflow	Underflow
(Channel 1 * 100 / Channel 2)	Overflow	any	Overflow
(Channel 1 * 100 / Channel 2)	Underflow	any	Underflow
(Channel 1 * 100 / Channel 2)	OK	Overflow	Underflow
(Channel 1 * 100 / Channel 2)	OK	Underflow	Underflow

1.15. Relay

With the aid of the LEDs next to the 7-segment display, you can view the switching state of the relays. An active relay is indicated by the relevant LED lighting up.
The relays have the following properties with regard to their switching characteristics:

Setpoint x

Threshold
Hysteresis
Operating principle
Switch-on delay
Switch-off delay
active above SP value
The setpoint is off below the threshold and on reaching the threshold.

Deactivated, activated
Threshold value for switchover
Width of the window between the switch thresholds active above SP value / active below SP value Time between reaching the threshold and the resultant switching on of the relay
Time between reaching the threshold and the resultant switching off of the relay

active below SP value

The setpoint is on below the threshold and switched off on reaching the threshold.

Switch-on delay

The relay is on 10 s after reaching the threshold; briefly exceeding the threshold does not lead to the relay being switched on. The switch-off delay functions in a similar manner, in other words it keeps the setpoint switched on until the parameterised time has elapsed.

1.15.1. Optical response, flashing display

The switching on of one or more setpoints can also be set to trigger a flashing of the display to enhance the optical response.

Example:

Let us assume the threshold for flashing of the display is set at setpoint 2.
If setpoint 1 is exceeded and setpoint 2 is not, the setpoint LED 1 lights up permanently.
If setpoint 2 exceeds the threshold, the 7 -segment display will start to flash, setpoint 1 will light up permanently and setpoint LED 2 will flash.
The flashing enhances the optical response and the operator sees immediately that an important threshold has been exceeded with this unit.

1.16. Analogue output

The analogue output is used to rescale the determined values. It is possible to place the reference on one of the two input channels or on the arithmetic value. The analogue output is parameterised via the two program numbers PN20 (full scale) and PN21 (offset). With the offset value, the value is set at which the analogue output indicates the minimum value, and the full scale value the value at which the output indicates its maximum value. The reference of the analogue output is set with program number PN22.
It is possible in this way to rescale the input signal of a measuring transducer or to change it to a different standard signal.

1.17. Digital input

The digital input can be used to trigger certain specific functions in the unit, but will not be dealt with in more detail here.

Interface

The P1900XXXXdXX can be optionally programmed or configured via an interface. The units do not have any standard interface.
Pressing the ENTER or <CR> key is always denoted by .ل.

1.18. Operating modes PN34

The interface can be operated in various modes that can be parameterised via the PN34.

PN34=0

Standard mode in which the unit only replies if called on to do so. This mode is used only for configurations.

PN34=1

Transmission mode in which the measurements are transmitted via the serial interface cyclically with the set measuring time.

The transmission mode is interrupted on receipt of " > 」" and the unit changes to standard mode. To change back to transmission mode, the display must be restarted, either by entering the command $\mathbf{S} \downarrow$ or by switching the device off and on.

With the transmission mode, the display value is transmitted via the interface in ASCII format. Minus signs and decimal points are also transmitted so that the output can be displayed directly on a terminal or processed by a SPS. Zeros at the front are suppressed during transmission. With an over or underflow, the display transmits horizontal bars (hyphens) " -----ل لـ ".

With the aid of this simple protocol structure, the display data can be transferred very easily to a PC etc. and further processed there. In the simplest case, a terminal program from the operating system is sufficient to store the received data in a file.

1.19. RS232 / RS485

For configuration, a terminal program or special configuration tool (e.g. "PM-Tool)"can be used. The communication is a straight point-to-point connection. The baud rate is set to 9600 baud, with 8 data bits, without parity and one stopbit.
Configuration is performed by transmitting ASCII symbols.
The structure of a command: Program number / Command / Value/ \downarrow

Program number	see program number table
Command	= describe a parameter with a decimal value
B describe a parameter with a binary value	

number table\end{array}\right|\)

Below, for example, the value for program number 61 is parameterised with a value of 5,000.
"لـ5000=61"

All values are written directly into the EEPROM of the unit and are valid after changing into operating mode. In contrast, the communication parameters of the interface only become effective after restarting the display.

To simplify the input, there is no need for "." (dots) and "," (commas).
In the basic setting, a message is not acknowledged, which enables the parallel programming of several displays. To check the overall configuration, a checksum can be called up on the LED display.
Successful programming is indicated by a "PROG" in the LED display.
The content of a program number (PN61) is called up by sending the program number to the unit.
"لـ" 61 "
The unit sends the corresponding value (5000) in ASCII.
The binary value of a program number (PN2) is requested, with a "B" added as a result of sending the program number.
"
The unit sends the binary value of the A/D-converter in ASCII.
The allocation of a simple parameter is carried out via the program number and the parameter.
" لـ 0 "
Channel 1 is parameterised to an input signal of $0 \ldots 10 \mathrm{~V}$.
A calibration point always consists of a pair of values, the display value and the binary value, which are described in the following two steps.
The assignment of a display value to a calibration point (PN1) is carried out by inserting a "=" between the program number and the display value.
" لـ 12000"
When an appropriate input signal is received, the display shows 12,000.
The assignment of a binary value to a calibration point (PN1) is carried out by inserting a " B " between the program number and the binary value.

> "لـ1B13987234"

In the case of a matching binary value from the A/D converter, the display works with the display value parameterised under PN1.

Any entry that cannot be interpreted is acknowledged with an "Err" in the display.
In the normal condition, the display does not send an acknowledgement back. Only when the value is called up or the acknowledgement mode is activated by the ">" command does the display send a response from then on. This mode is exited after restarting the unit or 15 s after receiving the last command.

If a non-existent program number or an unknown command is sent, the display will acknowledge this with an "?" via the interface.

1.19.1. Serial special commands

In addition to the program number control, special commands are also possible. In the following table, the $ل$ has been dispensed with at the end of the command.

Command	Acknowledgement	Function
S		Restart the display
Q		Change display mode
A	Display value	Call up display value via the interface
B	Binary value	Call up binary value by the interface
U		Load default configuration
P		Call up test total
$>$	$>$	Activate interface acknowledgement

1.19.2. Treatment of calibration points

Before parameterising the calibration points, the desired measuring input must be selected under PNO/5. With measuring inputs in which a factory calibration exists ($\mathrm{PNO} / 5=1,2,3$), the desired display value for the full scale (PN1) and offset (PN2) must be preset.
With all other variations ($\mathrm{PNO} / 5=0$), the binary value of the measuring input must also be fixed which can be called up via the command "B لـ "ا with the sensor signal connected. This is also necessary when parameterising the calibration points (PN101... 130 and PN141...170), because the factory calibration cannot be used for this.
A calibration can be carried out in accordance with one of the following methods:

I. Sensor calibration

Calibration with sensor (PN0/5 = 0 or PN101... 130 or PN141...170)
The desired sensor signal must be connected to the measuring input and the channel to be calibrated must be activated under PN15. For the calibration, the binary value must be called up from the unit via the command "B.ل". On doing this, the present binary value of the A/D converter will be returned as the response.
"Bل
This value is then saved with the command
" 2 " لـل"
After this, the display value for the measuring value must be entered. Entering the decimal point is dispensed with and only the desired number of places is entered. The decimal point is preset via PN3. If, for example, 10.0 is to be indicated on the
 the display.
II. Factory calibration

Calibration without sensor (PN0/5 = 1, 2, 3)
When calibrating without a sensor, only the scaled display value must be preset for PN1 and PN2. If, for example, PN0 $=3(4 \ldots 20 \mathrm{~mA}$ measuring input) then only the scaled display value for the measurement 20 mA needs to be preset for PN2 and the scaled measurement for the measurement 4 mA for PN2. Should the display value for 4 mA correspond to " 0.00 " and for 20 mA to "150.00", then the commands
 values preset for PN1 and PN2 are irrelevant for this.
III. Adjusting the measuring input ($\mathrm{PNO} / 5=0$)

Should measuring errors occur because of the age of the sensor or for other reasons; this can be balanced out by simple adjustment of the binary calibration
points. To do this, it is merely necessary to call up the binary measurement via the command "B لـ" with the sensor signal connected, and to transfer it to the respective offset (e.g.: "2B8799010ل」") or full scale (e.g. "1B15678342").

IV. Copying the configuration to another P1900XXXXdXX

An existing calibration can only be transferred from one unit to another with the aid of PC software (e.g. PM Tool). The PC software must be able to call up the factory calibration of the source and the target units. A more detailed description has been dispensed with here.

Programming

In the display, the program numbers (PN) are shown, right-justified, as a three-digit number with a P in front of them.

Display of e.g. program number 0

1.20. Programming procedure

The entire programming of the P1900XXXXdXX is done by the steps described below.

Change to programming mode

Pushing the $[P]$ key changes to programming mode. The unit goes to the lowest available program number. If the programming lock is activated, the key must be pushed for at least 1 s.

Example:

Change to programming mode by pushing key $[P]$. The first released program number (PN) appears, in this case PNO.

Change to other program numbers

To change between individual program numbers, hold the [P] key down and push the [UP] key for changing to a higher program number or the [DOWN] key for changing to a lower number. By keeping the keys pushed, e.g. [P] \& [UP], the display will begin, after approx. 1 s , to automatically run through the program numbers.

Example:

Keep key [P] pushed and push the [UP] key several times until PN6 appears in the display. Under this parameter the full scale of the input 2 can be changed.

Change to the parameter

Once the program number appears in the display, you can push the [DOWN] or [UP] key to get to the parameters set for this program number. The currently stored parameters are displayed.

Example:

By pushing the [DOWN] or [UP] key, the currently stored value for PN6 appears in the display. In this case, it is 75,640.

Changing a parameter

After changing to the parameter, the last digit of the respective parameter flashes on the display. The value can be changed with the [UP] or [DOWN] key. To move to the next digit, the [P] key must be briefly pushed. Once the highest digit has been set and confirmed with $[P]$, the lowest digit will begin to flash again.

Example:

The 0 is flashing. This is the last digit and asks if you want to change it. Let us assume the figure is to be changed from 75,640 to 75,000 .
Briefly push the [P$]$ key to move to the next digit. The 4 begins to flash. Change the figure by pushing [UP] or [DOWN] to change the digit from 4 to 0 . Briefly push the [P$]$ key to move on to the next digit. The 6 begins to flash. Change the digit by pushing [UP] or [DOWN] to move the 6 to a 0 . Briefly push the $[P]$ key to move to the next digit. The 5 and 7 do not need to be changed.

Saving parameters

All parameters must be acknowledged by the user by pushing the [P] key for one second. The changed parameters are then taken over as the current operating parameters and saved in the EEPROM.
This is confirmed by horizontal bars lighting up in the display.

Example:
Save the parameters by pushing [P] for 1 s .

All the newly entered data are confirmed by the unit. If no confirmation is received, the relevant parameters have not been saved.

Example:

You receive confirmation from the unit that the changes have been saved through the appearance of horizontal bars in the middle segments.

1.20.1. Changing from programming to operating mode

If no key is pushed in the programming mode for about 7 sec , the unit will return automatically to operating mode.

1.20.2. Security setting, user level PN50 to 52

With the parameters in the security settings, access to the program numbers is regulated through the setting of various user levels. The user levels divide the access into various levels. The user is only given access to the settings authorised by the system operator, such as the setting of thresholds. The lower the figure for the user level given under PN 52, the lower the level of security of the unit parameters against user intervention.

User level (PN 52 =)	PN					3	4	5	6	7

User levels 1, 3,5 and 7 are reserved user levels for which the authorization is in each case the same as the next lower level.
The parameterised user level PN52 is active as long as the authorisation code PN51 and programming lock PN50 are different. On delivery both parameters are set to 0000, so that the programming lock is deactivated.
When changing to programming mode, the unit always jumps to the first free program number. If the user level is parameterised as PN52 = 3, then access to the program numbers of the setpoints is, for example, released but it is not possible at this user level to change the measuring input (PNO).
In order to have access to all program numbers at a later stage (equivalent to user level 0), the four-digit code saved under PN51 must be entered again to release PN50 and then be acknowledged by activating key $[P]$ for approx. 1 s . After this, access to all program numbers is released.

Caution! If the authorisation code becomes lost, the unit can be set to the default value 0000 at the manufacturer's without any data loss.

1.20.3. Input channels and offset

The P1900XXXXdXX has two input channels to which standard signals (optionally $0 \ldots 10 \mathrm{~V}, 0 \ldots 20 \mathrm{~mA}$ or $4 \ldots 20 \mathrm{~mA}$) can be connected. As input signals, different signals can be received, in other words Channel 1, for example, can be used for voltage and Channel 2 for current. For every channel, any desired offset can be set.
The offset shift can be adjusted for every channel with PN 4 and 9. This makes it possible to balance out any deviations from the basic accuracy or sensor drifts.

1.20.4. Two-channel measurement with calculation

The measurement is performed in an alternating process by switching between the two input channels during the set measuring time. The time for the relevant individual measurement is highly dependent on the parameterised measuring time.
After this, the two measured values are set off against each other according to the function selected in PN15, and the result is shown in the display. The arithmetic functions of the unit
are based on floating point arithmetic, and integrate the parameterised decimal points in the calculation.

1.20.5. Single-channel measurement

A single-channel measurement is performed when one of the measuring channels is selected as the display value via PN15. In this case only the selected channel is measured and displayed, which means that the measuring time (PN14) can be set at a lower value (100 ms). Should 200 ms have been set from carrying out a two-channel measurement, this value will not be changed.
If the P1900XXXXdXX is parameterised to a single-channel measurement, no access is possible to the program numbers of the activated channel.

The channel on which no measurement is carried out and the arithmetic result receives the measuring/display value " 0 " (zero). As a result, setpoints or the analogue output that are parameterised to these channels are shifted to a defined state.

1.21. Arithmetic functions

With the P1900XXXXdXX, the measured values can be set off against each other by various mathematical functions.

In the given examples, the values of the channels and the constant are fixed as follows:
Channel $1=100.0$
Channel $2=40.00$
Constant = 20
Display $=\mathrm{xxxx}, \mathrm{x}$
Addition
(Channel 1 + Channel 2) * Constant
With this function, the two scale signals are added and subsequently multiplied by a constant.
Example: $\quad(100.0+40.00) * 20=2800.0$
This function can be used to display inflow/outflow volumes, weighing technology etc.

Subtraction

(Channel 1 - Channel 2) * Constant
With this function, Channel 2 is subtracted from Channel 1 and then multiplied by a constant.
Example: $\quad(100.0-40.00) * 20=800.0$
This function can be used to display differences etc.

Multiplication

(Channel 1 * Channel 2) * Constant
With this function, the two scaled signals are multiplied with each other and then multiplied by a constant.
Example: $\quad(100.0 * 40.00) * 20=80000.0$
This function can be used to display power, energy etc.

Ratio

(Channel 1 / Channel 2) * Constant
With this function, the ratio is formed between the scaled signals of Channel 1 and Channel 2 and then multiplied by a constant.
Example: $\quad(100.0 / 40.00) * 20=50.0$
This function can be used to display mixing ratios etc.

Percent
 (Channel1 * 100 / Channel 2)

With this function, the scaled signal from Channel 1 is multiplied by 100 and then divided by the scaled signal from Channel 2.
Example: $\quad(100.0 * 100) / 40.00=250.0$
This function can be used to display a percentage ratio.

1.22. Calibration modes

The P1900XXXXdXX is equipped with inputs for a standard signal, allowing various applications with regard to adapting to the measuring task. For this purpose, a suitable calibration mode must be selected with which the input is configured in accordance with the measuring signal. For this purpose, the unit offers two possibilities: Factory calibration and sensor calibration.

1.22.1. Factory calibration

All the units are calibrated in the factory, whereby offset and full scale were saved for the various measuring ranges.
For these parameters, new scaled display values can be allocated which are used for scaling the measurement on the display. For the offset, an input signal of 0 is assumed and for full scale, the specific full scale of the parameterised measuring range.
For parameterising, no sensor signal has to be applied because stored values are used. Because of the differing input signals, the corresponding input configuration must be parameterised via PN 0/5.

For a sensor signal with $4 \ldots 20 \mathrm{~mA}$ on channel 1, e.g. PN0 $=3$ has to be parameterised.

1.22.2. Sensor calibration

With sensor calibration ($\mathrm{PN} 0 / 5=0$), the unit can be calibrated directly via the sensor signal or via a calibrator. For this purpose, the measuring signal must be connected to the inputs of the unit. The respective display value must then be programmed under program numbers PN1 \& PN6 (full scale) and under PN2 \& PN7 (offset).
Through this process with two calibration points, the unit is matched up with the measuring section.
A linearisation can be activated for more far-reaching adjustments to the characteristic curve of the sensor.

1.22.3. Linearisation

With the linearisation, the PU5 offers the possibility for linearising non-linear sensors for displaying the measurements and for their further processing (analogue output).
In addition to the 2-point calibration, a maximum of 30 calibration points can be programmed.

Example:

To program e.g. 5 additional calibration points, 5 must be entered under PN 100. Subsequently, for each of the calibration points, the voltage/current must be applied to the unit and the respective display value programmed under the following program numbers PN101 - PN105.
The sensor signal must be consistently parameterised. A gap of at least +1 digit to the previous display value must be adhered to, otherwise the input will be refused and no confirmation of the saving will be given - see Saving parameters.
Linearisation of a pressure transducer for $0 . . .100 \mathrm{mbar}$ with an output of $0 . . .20 \mathrm{~mA}$.
The display value before correction can be either calculated from the known characteristic line of the transducer or is determined empirically.

The non-linear range between 0... 75 mbar. For calibration point 101, this means: A pressure of 15 mbar , the transducer delivers 3.3 mbar instead of the ideal value of 3.0 mbar. Since 20 mA in the display corresponds to $100.0 \mathrm{mbar}, 3.3 \mathrm{~mA}$ in the display corresponds to 16.5 mA before the correction.
\(\left.$$
\begin{array}{|l|c|r|r|r|}\hline \begin{array}{l}\text { Calibration } \\
\text { point (PN) }\end{array} & \text { Pressure } & \begin{array}{l}\text { Output } \\
\text { Transducer } \\
\text { [mbar] }\end{array} & \begin{array}{l}\text { Display } \\
\text { before } \\
\text { correction } \\
(\mathrm{mA}]\end{array} & \begin{array}{l}\text { Desired } \\
\text { display }\end{array}
$$

(OUT)\end{array}\right]\)| 2 | 0 | 0,5 | 2,5 |
| :--- | ---: | ---: | ---: |
| 101 | 15 | 3,3 | 16,5 |
| 102 | 30 | 6,2 | 31,0 |
| 103 | 40 | 9,2 | 46,0 |
| 104 | 60 | 11,4 | 57,0 |
| 105 | 75 | 14,7 | 73,5 |
| 1 | 100 | 20,0 | 100,0 |

Program table

The program table lists all the program numbers (PN) with their function, range of values, default values and user level.

PN	Function	Range of values	Default	User level
Channel 1				
0	Measuring input	$\begin{aligned} & 0=\text { sensor calibration } \\ & 1=0 \ldots . .10 \mathrm{~V} \\ & 2=0 \ldots 20 \mathrm{~mA} \\ & 3=4 \ldots 20 \mathrm{~mA} \end{aligned}$	0	2
1	Full scale	-9999... 99999	10000	2
2	Offset	-9999... 99999	0	2
3	Decimal point	00000...0,0000	none	2
4	Offset shift	-9999... 99999	0	2
Channel 2				
5	Measuring input	$\begin{aligned} & 0=\text { sensor calibration } \\ & 1=0 \ldots 10 \mathrm{~V} \\ & 2=0 \ldots 20 \mathrm{~mA} \\ & 3=4 \ldots .20 \mathrm{~mA} \end{aligned}$	0	2
6	Full scale	-9999...99999	10000	2
7	Offset	-9999...99999	0	2
8	Decimal point	00000...0,0000	none	2
9	Offset shift	-9999... 99999	0	2
General settings				
13	Display time	0,1 ... 10,0	1,0	2
14	Measuring time	$\begin{aligned} & 0,20 \ldots 10,00 \mathrm{~s} \text { (two ch.) } \\ & 0,10 \ldots 10,00 \mathrm{~s} \text { (one ch.) } \end{aligned}$	0,20	2
15	Arithmetic function 1 Channel 1 no calculation 2 Channel 2 no calculation 3 (Channel 1 + Channel 2) * constant addition 4 (Channel 1 - Channel 2) * constant subtraction 5 (Channel 1 * Channel 2) * constant multiplication 6 (Channel 1 / Channel 2) * constant ratio 7 (Channel 1 * $100 /$ Channel 2) percent	1... 7	3	2
16	Constant	-9999...99999	1	2
17	Decimal point for constant	0... 4	0	2
18	Decimal point for calculation	00000...0,0000	0	2
19	Display brightness	0...9 (0=bright / 9=dark)	3	8
Analogue output				
20	Full scale	-9999... 99999	10000	4
21	Offset	-9999... 99999	0	4

PN	Function	Range of values	$\begin{aligned} & \text { Def- } \\ & \text { ault } \end{aligned}$	User level
22	Reference for analogue output	$\begin{aligned} & 0=\text { none } \\ & 1=\text { ch } 1 \\ & 2=\text { ch } 2 \\ & 3=\text { arithmetic function } \end{aligned}$	3	4
Interface				
34	Interface behaviour	$\begin{aligned} & 0=\text { standard operation } \\ & 1=\text { transmission operation } \end{aligned}$	0	4
Security settings				
50	Programming lock	0000... 9999	0000	8
51	Authorisation code	0000... 9999	0000	8
52	User level	0... 8	0	0
Flashing of the LED display				
59	Display flashing (approx. 0.5s) no flashing Flashing at setpoint 1 Flashing at setpoint 2 Flashing at setpoint 3 Flashing at setpoint 4 Flashing at setpoint 1 and 2 Flashing at setpoint 3 and 4 Flashing at setpoint 1, 2, 3 and 4	$0=$ no flashing $1=$ flashes with $1^{\text {st }}$ $2=$ flashes with $2^{\text {nd }}$ $3=$ flashes with $3^{\text {rd }}$ $4=$ flashes with $4^{\text {th }}$ $5=$ flashes with $1^{\text {st }}$ and $2^{\text {nd }}$ $6=$ flashes with $3^{\text {rd }}$ and $4^{\text {th }}$ $7=$ flashes with $1^{\text {st }}, 2^{\text {nd }}$, $3^{\text {rd }}$ and $4^{\text {th }}$	0	6
Setpoint 1				
60	Reference for Setpoint 1	$\begin{aligned} & 0=\text { deactivated } \\ & 1=\text { ch1 } \\ & 2=\text { ch2 } \\ & 3=\text { arithmetic function } \end{aligned}$	1	6
61	Threshold	-9999... 99999	1000	6
62	Hysteresis	1... 99999	1	6
63	Active above / below SP value	$\begin{aligned} & 0=\text { active below SP } \\ & 1=\text { active above SP } \end{aligned}$	1	6
64	Switch delay	0.0... 10.0 sec.	0.0	6
65	Delay type	$\begin{aligned} & 0=\text { none } \\ & 1=\text { switch-on delay } \\ & 2=\text { switch-off delay } \\ & 3=\text { switch-on/off delay } \end{aligned}$	1	6
Setpoint 2				
70	Reference for Setpoint 1	$\begin{aligned} & 0=\text { deactivated } \\ & 1=\text { ch1 } \\ & 2=\text { ch2 } \\ & 3=\text { arithmetic function } \end{aligned}$	1	6
71	Threshold	-9999... 99999	1000	6
72	Hysteresis	1... 99999	1	6
73	Active above / below SP value	$\begin{aligned} & 0=\text { active below SP } \\ & 1=\text { active above SP } \end{aligned}$	1	6
74	Switch delay	0.0...10.0 sec.	0.0	6

Operating Instructions - Digicomb with differential pressure

PN	Function	Range of values	Default	User level
75	Delay type	$\begin{aligned} & 0=\text { none } \\ & 1=\text { switch-on delay } \\ & 2=\text { switch-off delay } \\ & 3=\text { switch-on/off delay } \end{aligned}$	1	6
Setpoint 3				
80	Reference for Setpoint 3	$\begin{aligned} & 0=\text { deactivated } \\ & 1=\text { ch1 } \\ & 2=\text { ch2 } 2 \\ & 3=\text { arithmetic function } \end{aligned}$	1	6
81	Threshold	-9999... 99999	1000	6
82	Hysteresis	1... 99999	1	6
83	Active above / below SP value	$\begin{aligned} & 0=\text { active below SP } \\ & 1=\text { active above SP } \end{aligned}$	1	6
84	Switch delay	0.0...10.0 sec.	0.0	6
85	Delay type	$\begin{aligned} & 0=\text { none } \\ & 1=\text { switch-on delay } \\ & 2=\text { switch-off delay } \\ & 3=\text { switch-on/off delay } \end{aligned}$	1	6
Setpoint 4				
90	Reference for Setpoint 4	$\begin{aligned} & 0=\text { deactivated } \\ & 1=\text { ch1 } \\ & 2=\text { ch2 } 2 \\ & 3=\text { arithmetic function } \end{aligned}$	1	6
91	Threshold	-9999... 99999	1000	6
92	Hysteresis	1... 99999	1	6
93	Active above / below SP value	$\begin{aligned} & 0=\text { active below SP } \\ & 1=\text { active above SP } \end{aligned}$	1	6
94	Switch delay	0.0...10.0 sec.	0.0	6
95	Delay type	$\begin{aligned} & 0=\text { none } \\ & 1=\text { switch-on delay } \\ & 2=\text { switch-off delay } \\ & 3=\text { switch-on/off delay } \end{aligned}$	1	6
Linearisation channel 1				
100	Number of additional calibration points	0... 30	0	2
$\begin{array}{\|l\|} \hline 101 \\ \ldots \\ 130 \\ \hline \end{array}$	Calibration points 1... 30	-9999... 99999		2
Linearisation channel 2				
140	Number of additional calibration points	0... 30	0	2
$\begin{array}{\|l\|} \hline 141 \\ \ldots \\ 170 \end{array}$	Calibration points 1... 30	-9999... 99999		2
Information				
200	Serial number	0... 99999	0	8

Technical data of the digital display

Housing

Dimensions
Assembly cut-out
Wall thickness
Fixing
Material
Protective system
Weight
Connection
Mounting grid

Display

Digit height
Segment colour
Display range
Setpoints
Overflow
Underflow
Display time
Input
Measuring range
Input resistance

Measuring error
at measuring time $=1 \mathrm{~s}$
Temperature drift
at $\mathrm{T}_{U}<20^{\circ} \mathrm{C}$ or $>40^{\circ} \mathrm{C}$
Measuring time
Measuring principle
Resolution
$96 \times 48 \times 134 \mathrm{~mm}(\mathrm{BxHxD})$ including screw terminal $96 \times 48 \times 148 \mathrm{~mm}(\mathrm{BxHxD})$ including plug-in terminal $92,0^{+0,8} \times 45,0^{+0,6} \mathrm{~mm}$
$0 . . .50 \mathrm{~mm}$
snap-in screw element
PC/ABS-blend, black, UL94V-0
Standard IP54 (front), IP00 (back)
approx. 450 g
Screw/plug-in terminal; line cross section up to $2.5 \mathrm{~mm}^{2}$
horizontal $120 \mathrm{~mm} /$ vertical 96 mm (recommended)

14 mm

red
-9999... 99999
one LED per setpoint horizontal bars at top horizontal bars at the bottom
0,2... 10 s
0... 10 V and $0 / 4 \ldots 20 \mathrm{~mA}$
$0 \ldots 10 \mathrm{~V} \quad \mathrm{R}_{\mathrm{I}}=\sim 150 \mathrm{k} \Omega$
$0 / 4 \ldots 20 \mathrm{~mA} \quad \mathrm{R}_{\mathrm{I}}=\sim 50 \Omega$
$0,02 \%$ of Range ± 1 Digit $T_{U}=20 . . .40^{\circ} \mathrm{C}$
all measuring inputs $50 \mathrm{ppm} / \mathrm{K}$
single channel $0,1 \ldots 10,00 \mathrm{~s}$
two channel 0,2...10,00 s
Sigma/Delta
24 bit

Output

Relay

Analogue output
(galv. insulated)
Error
Internal resistance
Sensor supply
(galv. insulated)

Interface

Protocol
RS232
(optional galv. separated)
Lead length
RS485
(optional galv. separated)
Lead length

Power supply

Supply voltage
(galv. insulated)
Power consumption

Memory

Data life

Ambient conditions

Working temperature
Storage temperature
Climatic resistance

EMV

CE
Safety standard

Manufacturer-specific ASCII
9600 Baud, no parity, 8 databits, 1 stopbit
max. 3 m
9600 Baud, no parity, 8 databits, 1 stopbit
max. 1000 m

230 V/AC / 50/60 Hz / ± 10 \%
115 V/AC / $50 / 60 \mathrm{~Hz} / \pm 10 \%$
24 V/DC / ± 10 \%
max. 8 VA
Parameter memory EEPROM
>100 years
$0 . . .60^{\circ} \mathrm{C}$
$-20 . . .80^{\circ} \mathrm{C}$
rel. humidity $\leq 75 \%$ on year average without dew
DIN 61326
Conformity to 89/336/EEC
DIN 61010

Error elimination

The following list gives the recommended procedure for dealing with faults and locating their possible cause.

1.23. Questions and answers

I. The unit permanently indicates overflow.,

- One of the inputs has a very high measurement, check the measuring circuit.
- The arithmetic calculation yields an overflow, see 1.14.1.
II. The unit permanently shows underflow. "_ _ _ _ "
- One of the inputs has a very low measurement, check the measuring circuit.
- The arithmetic calculation yields an underflow, see 1.14.1.
III. The word " HELP " lights up in the 7-segment display.
- The unit has found an error in the configuration memory. Perform a reset on the default values and reconfigure the unit according to your application, see 1.24.
IV. The display values change by very large amounts.
- When dividing, the value of the divisor is very small, check the measuring circuit.
V. "Err1" lights up in the 7-segment display.
- This error can only be eliminated by the manufacturer.

1.24. Reset to default values

To return the unit to a defined basic state, a reset can be carried out to the default values.
The following procedure should be used:
\checkmark Switch off the power supply.
\checkmark Press button [P]
\checkmark Switch on the power supply and press [P] for further approx. 2 s .
With reset, the default values of the program table are loaded and used for subsequent operation. This puts the unit back to the state in which it was supplied.
Caution! This is only possible when the programming lock PN 50 allows access to all PNs or "HELP" is shown in the display.
Caution! All application-related data are lost.

Connection diagram

Carl-Legien-Straße 40
D-63073 Offenbach am Main
Telefon: +49 69 5806-0
Telefax: +49 69 5806-170
E-Mail: info@tecsis.de
Internet: www.tecsis.de

[^0]: ${ }^{1}$ see technical data

